Supporting Information

for

Rapid transformation of sulfinate salts into sulfonates

promoted by a hypervalent iodine(III) reagent

Elsa Deruer, Vincent Hamel, Samuel Blais and Sylvain Canesi*

Address: Laboratoire de Méthodologie et Synthèse de Produits Naturels, Université du

Québec à Montréal, C.P. 8888, Succ. Centre-Ville, Montréal, H3C 3P8 Québec, Canada

Email: Sylvain Canesi - canesi.sylvain@uqam.ca

*Corresponding author

General procedures, synthesis of the products, spectroscopic data, and copies of ¹H, ¹³C, NMR spectra

Table of contents

- I. General information and materials S2
- II. Experimental procedures S2–S9.
- III. Copies of ¹H and ¹³C NMR spectra for all compounds S10–S58

I. General information and materials:

Unless otherwise indicated, ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively, in CDCl₃ solutions. Chemical shifts are reported in ppm on the δ scale. Multiplicities are described as s (singlet), d (doublet), dd, ddd, etc. (doublet of doublets, doublet of doublets of doublets, etc.), t (triplet), q (quartet), quin (quintuplet), sext (sextuplet), sept (septuplet),m (multiplet), and further qualified as app (apparent), br (broad). Coupling constants, J, are reported in Hz.

II. Experimental procedures:

a) General procedure for the formation of sulfonate 4:

lodobenzene diacetate (DIB, 0.24 mmol, 1.2 equiv) was added at room temperature to a vigorously stirred solution of dichloromethane (0.5 mL), alcohol (0.5 mL), sulfinate (0.2 mmol, 1 equiv) and acetic acid (0.01 to 0.05 mL) or TBAC (55.5 mg, 0.2 mmol, 2 equiv) to solve the sulfonate salt. The mixture was then stirred for 15 min (followed by TLC with a mixture of acetic acid/ethyl acetate/hexane) and then filtered on silica with ethyl acetate. The residue was purified by silica gel chromatography with a mixture of ethyl acetate/hexane to give sulfonate product **4**, **6** and **8**.

Methyl 4-methylbenzenesulfonate (4a)¹: was prepared without dichloromethane and acetic acid, and was obtained by silica gel chromatography with a mixture of EtOAc/hexane (5/95) as a colorless oil: 0.20 mmol, 33 mg, 99% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 3.73 (s, 3H), 2.44 (s, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 145.1, 132.3, 130.0, 128.2, 56.3, 21.7; LRMS (ESI) calcd for C₈H₁₁O₃S (M + H)⁺: 187, found 187.

Ethyl 4-methylbenzenesulfonate (4b)²: was prepared without dichloromethane and acetic acid, and was obtained by silica gel chromatography with a mixture of EtOAc/hexane (5:95) as an yellow oil: 0.15 mmol, 30.5 mg, 75% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 4.09 (q, J = 7.1 Hz, 2H),

¹ Chandra, J.; Chaudhuri, R.; Rao Manne, S.; Mondal, S.; Mandal, B. ChemistrySelect **2017**, 2, 8471

² Moussa, I. A.; Baniset, S. D.; Beinat, C.; Giboureau, N.; Reynolds, A. J.; Kassiou, M. *J. Med. Chem.* **2010**, 53, 6228-6239

2.43 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H).¹³C NMR (75 MHz, CDCl₃) δ 144.79, 133.38, 129.93, 127.94, 77.58, 77.16, 76.74, 66.92, 21.71, 14.80; LRMS (ESI) calcd for C₉H₁₃O₃S (M+H)⁺: 201; found: 201.

2,2,2-Trifluoroethyl 4-methylbenzenesulfonate (4c)³: was prepared without dichloromethane and was obtained by silica gel chromatography with a mixture of EtOAc/hexane (1:99) as a white foam: 0.190 mmol, 48.5 mg, 95% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 4.35 (q, *J* = 7.9 Hz, 2H), 2.47 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.1, 132.0, 130.3, 128.2, 122.0 (q, *J* = 277.7 Hz), 64.7 (q, *J* = 38.1 Hz), 21.8; LRMS calcd for C₉H₉F₃O₃NaS (M+Na)⁺: 277; found: 277.

1,1,1,3,3,3-Hexafluoropropan-2-yl 4-methylbenzenesulfonate (4d)³: was prepared without dichloromethane and was obtained by silica gel chromatography with a mixture of EtOAc/hexane (1:99) as a white foam: 0.097 mmol, 31.2 mg, 48% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 5.26 (sept, *J* = 5.7 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 146.8, 132.1, 130.3, 128.3, 120.1 (q, *J* = 281 Hz), 72.0 (septet, *J* = 35.5 Hz), 22.0; LRMS calcd for C₁₀H₈F₆NaO₃S (M+Na)⁺: 345; found: 345.

S O Is

Isopropyl 4-methylbenzenesulfonate (4e)⁴: was prepared without dichloromethane and was obtained by silica gel chromatography with a mixture of EtOAc/hexane (5:95) as an yellow oil: 0.147 mmol, 31.5 mg, 74% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.72 (sept, *J* = 6.3 Hz, 1H), 2.43 (s, 3H), 1.26 (d, *J* = 6.3 Hz, 6H), ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 134.7, 129.9, 127.8, 77.2, 22.9, 21.7; LRMS calcd for C₁₀H₁₅O₃S (M+H)⁺: 215; found: 215.

2-Chloroethyl 4-methylbenzenesulfonate (4f)⁵: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (5:95) as an yellow oil: 0.102 mmol, 24.0 mg, 51% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, *J* = 8.3 Hz, 2H), 7.36 (d, *J* = 8.1 Hz,

³ Miller, S. C. J. Org. Chem. **2010**, 75(13), 4632-4635

⁴ Comagic, S.; Schirrmacher, R. *Synthesis* **2004**, *6*, 885-888

⁵ Ameri David, R. L.; Kornfield, J. A. *Macromolecules* **2008**, *41*, 1151-1161

2H), 4.23 (t, J = 6.0 Hz, 2H), 3.65 (t, J = 6.0 Hz, 2H), 2.45 (s, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 133.7, 130.1, 128.1, 69.0, 40.9, 21.8; LRMS calcd for C₉H₁₁ClNaO₃S (M+Na)⁺: 257; found: 257.

3-Bromopropyl 4-methylbenzenesulfonate (4g)⁶: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (8:92) as a colorless oil: 0.102 mmol, 30.0 mg, 51% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.17 (t, *J* = 5.8 Hz, 2H), 3.41 (t, *J* = 6.3 Hz, 2H), 2.45 (s, 3H), 2.23 – 2.11 (quin, *J* = 6.3 Hz, 2H), ¹³C NMR (75 MHz, CDCl₃) δ 145.1, 132.8, 130.1, 128.1, 67.9, 31.9, 28.6, 21.8; LRMS calcd for C₁₀H₁₃BrNaO₃S (M+Na)⁺: 315; found: 315.

2-Butoxyethyl 4-methylbenzenesulfonate (4h)⁷: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (15:85) as a colorless oil: 0.114 mmol, 31.0 mg, 57% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.15 (dd, *J* = 5.4, 4.3 Hz, 2H), 3.59 (dd, *J* = 5.4, 4.3 Hz, 2H), 3.37 (t, *J* = 6.5 Hz, 2H), 2.44 (s, 3H), 1.53– 1.37 (m, 2H), 1.37– 1.20 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.9, 133.2, 129.9, 128.1, 71.4, 69.5, 68.2, 31.7, 21.8, 19.3, 14.0; LRMS calcd for C₁₃H₂₁O₄S (M+H)⁺: 273; found: 273.

Prop-2-yn-1-yl 4-methylbenzenesulfonate (4i)⁸: was prepared without dichloromethane and was obtained by silica gel chromatography with a mixture of EtOAc/hexane (15:85) as a colorless oil: 0.162 mmol, 34.0 mg, 81% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 4.72 (d, *J* = 2.5 Hz, 2H), 2.50 (t, *J* = 2.5 Hz, 1H), 2.48 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 145.4, 133.0, 130.0, 128.3, 77.4, 75.5, 57.5, 21.8; LRMS calcd for C₁₀H₁₁O₃S (M+H)⁺: 211; found: 211.

Pentan-2-yl 4-methylbenzenesulfonate (4j)⁹: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (2:98) as a colorless oil: 0.120 mmol, 29.0

⁶ Hromatka, O.; Stehlik, G.; Sauter, F. *MonatsheftefuerChemie* **1960**, *91*, 107-116

⁷ Hermet, P.; Lois-Sierra, S.; Bantignies, J.-L.; Rols, S.; Sauvajol, J.-L.; Serein-Spirau, F.; Lère-Porte, J.-P.; Moreau, J. J. E. *J. Phys. Chem. B.* **2009**, *113*, 4197–4202

⁸ Asano, K.; Matsubara, S. *Org. Lett.*, **2009**, *11*(8), 1757-1759

⁹ Roque Pena, J. E., Alexanian, E. J. Org. Lett. **2017**, *19(17)*, 4413-4415

mg, 60% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 2H), 7.33 (d, J= 8.0 Hz, 2H), 4.63 (sext, J = 6.2 Hz, 1H), 2.44 (s, 3H), 1.70 – 1.37 (m, 2H), 1.37 – 1.15 (m, 5H), 0.82 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 134.8, 129.8, 127.9, 80.6, 38.8, 21.8, 21.0, 18.3, 13.8; LRMS calcd for C₁₂H₁₉O₃S (M+H)⁺: 243; found: 243.

2-Methylbutyl 4-methylbenzenesulfonate (4k)¹⁰: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (2:98) as an yellow oil: 0.152 mmol, 36.9 mg, 76% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 3.84 (qd, *J* = 9.4, 6.1 Hz, 2H), 2.44 (s, 3H), 1.77 – 1.59 (m, 1H), 1.46 – 1.28 (m, 1H), 1.22 – 1.05 (m, 1H), 0.87 (d, *J* = 6.8 Hz, 3H), 0.82 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.7, 133.3, 129.9, 128.0, 74.9, 34.4, 25.5, 21.7, 16.1, 11.1; LRMS calcd for C₁₂H₁₉O₃S (M+H)⁺: 243; found: 243.

1-Chloropropan-2-yl 4-methylbenzenesulfonate (4l)¹¹: was obtained obtained by silica gel chromatography with a mixture of EtOAc/hexane (5:95) as a colorless oil: 0.129 mmol, 32.0 mg, 65% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.73 (sext, *J* = 6.0 Hz, 1H), 3.53 (qd, *J* = 11.7, 5.4 Hz, 2H), 2.45 (s, 3H), 1.37 (d, *J* = 6.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 145.1, 133.8, 130.0, 128.0, 77.7, 46.5, 21.8, 18.7; LRMS calcd for C₁₀H₁₃ClNaO₃S (M+Na)⁺: 271; found: 271.

Phenylethyl 4-methylbenzenesulfonate (4m)¹²: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (10/90) as a colorless oil: 0.10 mmol, 27 mg, 50% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.28 - 7.24 (m, 3H), 7.14 (dd, *J* = 7.5, 1.8 Hz, 2H), 4.24 (t, *J* = 7.1 Hz, 2H), 2.98 (t, *J* = 7.1 Hz, 2H), 2.45 (d, *J* = 4.9 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 144.8, 136.3, 133.1, 129.9, 129.0, 128.7, 127.9, 127.0, 70.7, 35.4, 21.7. LRMS (ESI) calcd for C₁₅H₁₇O₃S (M + H)⁺: 277, found 277.

¹⁰ Yang, Z.; Jin, X.; Guaciaro, M., Molino, B. F. *J. Org. Chem.* **2012**, 77, 3191–3196

¹¹ Sletzinger, M.; Chamberlin, E. M.; Tishl, M. J. Am. Chem. Soc., **1952**, 74, 5619-5620

¹² Gao, J.; Pan, X.; Liu, J.; Lai, J.; Chang, L.; Yuan, G. *RSC Adv.*, **2015**, *5*, 27439

Butyl 4-methylbenzenesulfonate (4o)¹: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (10/90) as a colorless oil: 0.14 mmol, 32 mg, 70% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.3 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.03 (t, *J* = 6.5 Hz, 2H), 2.45 (s, 3H), 1.68 – 1.56 (m, 2H), 1.34 (m, 2H), 0.86 (t, *J* = 7.4 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 144.8, 133.3, 129.9, 128.0, 70.5, 30.9, 21.7, 18.7, 13.5. LRMS (ESI) calcd for C₁₁H₁₇O₃S (M + H)⁺: 229, found 229.

Cyclopentyl 4-methylbenzenesulfonate (4p)⁹:was obtained by silica gel chromatography with a mixture of EtOAc/hexane (2:98) as a colorless foam: 0.125 mmol, 30.0 mg, 63% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.78 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.01 – 4.90 (m, 1H), 2.45 (s, 3H), 1.89 – 1.64 (m, 6H), 1.60 – 1.44 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 144.5, 134.7, 129.9, 127.8, 85.6, 33.2, 23.2, 21.7; LRMS calcd for C₁₂H₁₇O₃S (M+H)⁺: 241; found: 241.

3,3-Dimethylbutan-2-yl 4-methylbenzenesulfonate (6)¹³: was obtained by silica gel chromatography with a mixture of EtOAc/hexane (98:2) as an yellow foam: 0.090 mmol, 23.0 mg, 45% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.40 (q, *J* = 6.4 Hz, 1H), 2.45 (s, 3H), 1.22 (d, *J* = 6.4 Hz, 3H), 0.85 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 144.4, 134.9, 129.8, 127.9, 87.8, 35.0, 25.7, 21.6, 16.1; LRMS Calc. for C₁₃H₂₀NaO₃S (M+Na)⁺: 279; found: 279.

(*E*)-Butyl buta-1,3-diene-1-sulfonate (8a): was obtained by silica gel chromatography with a mixture of EtOAc/hexane (90/10) as a colorless oil: 0.14 mmol, 27 mg, 72% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.27 (m, 1H), 6.71 (t, *J* = 11.2 Hz, 1H), 6.09 (dd, *J* = 11.0, 0.7 Hz, 1H), 5.68 (s, 1H), 5.66 – 5.62 (m, 1H), 4.14 (t, *J* = 6.5 Hz, 2H), 1.77 – 1.64 (m, 2H), 1.42 (m, 2H), 0.93 (t, *J* = 7.4 Hz, 3H), ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 130.4, 129.1, 122.6, 70.5, 31.1, 18.8, 13.6; LRMS (ESI) calcd for C₈H₁₅O₃S (M + H)⁺ 191, found 191.

¹³Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Yo. *Tetrahedron* **1999**, *55* (8), 2183-2192

(*E*) 3,3-Dimethylbutan-2-yl buta-1,3-diene-1-sulfonate (8b): was obtained by silica gel chromatography with a mixture of EtOAc/hexane (10/90) as a colorless oil: 0.74 mmol, 16 mg, 37% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.30 (m, 1H), 6.64 (t, *J* = 11.2 Hz, 1H), 6.12 (dd, *J* = 11.1, 0.8 Hz, 1H), 5.66 (d, *J* = 0.6 Hz, 1H), 5.61 (dd, *J* = 3.2, 2.4 Hz, 1H), 4.43 (q, *J* = 6.4 Hz, 1H), 1.36 (d, *J* = 6.4 Hz, 3H), 0.95 (s, 9H), ¹³C NMR (75 MHz, CDCl₃) δ 141.8, 130.5, 128.6, 124.2, 88.0, 35.1, 25.8, 16.3; LRMS (ESI) calcd for C₁₀H₁₈O₃SNa (M + Na)⁺ 241, found 241.

2-Tosylthiophene and 3-tosylthiophene (9a and

9b) : lodobenzene diacetate (DIB, 0.24 mmol, 1.2 equiv) in solution of thiophene (1.0 mL) was added at room temperature to a vigorously stirred solution of thiophene (1.0 mL) with sulfinate (0.2 mmol, 1 equiv) and acetic acid (0.05 mL) to dissolve the sulfonate salt. The mixture was then stirred for 25 min (followed by TLC with a mixture of acetic acid/ethyl acetate/hexane) and then concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of (50/50) dichloromethane/hexane.

9a¹⁴ was obtained as a white foam: 0.031mmol, 7.4 mg, 15% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.87 (d, J = 8.1 Hz, 2H), 7.67 (dd, J = 3.9, 1.3 Hz, 1H), 7.62 (dd, J = 5.0, 1.5 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.06 (dd, J = 5.1, 3.9 Hz, 1H), 2.41 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 144.47, 143.68, 139.29, 133.68, 133.18, 130.09, 127.89, 127.54, 77.58, 77.16, 76.74, 21.75; LRMS (ESI) calcd for C₁₁H₁₁O₂S₂ (M+H)⁺: 239; found: 239.

9b¹⁵ was obtained as a white foam: 0.016mmol, 3.8 mg, 8% yield.¹H NMR (300 MHz, CDCl₃) δ 8.07 (dd, *J* = 3.0, 1.5 Hz, 1H), 7.84 (d, *J* = 8.1 Hz, 2H), 7.38-7.35 (m, 1H), 7.34 – 7.28 (m, 2H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 144.41, 142.60, 138.84, 131.32, 130.07, 128.37, 127.68, 125.96, 77.58, 77.16, 76.74, 21.73; LRMS (ESI) calcd for $C_{11}H_{11}O_2S_2$ (M+H)⁺: 239; found: 239.

2-Bromo-4-tosylthiophene and 2-bromo-

5-tosylthiophene (10a and 10b): Iodobenzene diacetate (DIB, 0.40 mmol, 2 equiv) in DCM

¹⁴ Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Parisi, L. M. Org. Lett. **2002**, *4*, 4719-4721

¹⁵ Olah, G. A.; Kobayashi, S.; Nishimura, J. J. Am. Chem. Soc. **1973**, *95*, 564-569

(0.5 mL) was added to a vigorously stirred solution of sulfinate 1 (0.2 mmol, 1 equiv) in (0.5 mL) 2-bromothiophene and (0.5 mL) dichloromethane and trifluoroacetic acid (0.05 mL) was introduced to dissolve the sulfinate, at room temperature. The mixture was then stirred for 25 min (followed by TLC with a mixture of acetic acid/ethyl acetate/hexane) and then concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of 5/95 ethyl acetate/hexane. **10a** was obtained as a brown solid, 13 mg, 20% yield and **10b** 6mg 10% yield.

(10a): ¹H NMR (300 MHz, CDCl₃) δ 7.84 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 4.0 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.03 (d, *J* = 4.0 Hz, 1H), 2.42 (s, 3H).¹³C NMR (75 MHz, CDCl₃) δ 144.85, 144.46, 138.77, 133.20, 130.88, 130.23, 127.57, 121.90, 21.77. LRMS (ESI) calcd for C₁₁H₁₀BrO₂S₂ (M + H)⁺: 316, found: 316.

(10b): ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, *J* = 8.3 Hz, 2H), 7.44 (d, *J* = 5.8 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 5.8 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 144.8, 140.4, 138.0, 129.9, 128.8, 128.1, 126.9, 117.7, 21.8; LRMS (ESI) calcd for C₁₁H₁₀BrO₂S₂ (M + H)⁺: 316, found: 316.

O *ortho*-Tosylanisole and *para*-tosylanisole (11a and 11b):

lodobenzene diacetate (DIB, 0.24 mmol, 1.2 equiv) in solution in (1.0 mL) of anisole was added to a vigorously stirred solution of sulfinate (0.2 mmol, 1 equiv) in anisole (1.0 mL) and acetic acid (0.05 mL) was introduced at room temperature. The mixture was then stirred for 25 min (followed by TLC with a mixture of acetic acid/ethyl acetate/hexane) and then concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of 5:95 ethyl acetate/hexane (for compound **11**). It was obtained as a white foam: 0.027mmol, (3.6 mg each) 7.2 mg, 14% total yield.

(11a) ¹H NMR (300 MHz, CDCl₃) δ 8.14 (dd, *J* = 6.3, 1.5 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.50 (dt, *J* = 5.7, 1.8 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.09 (dt, *J* = 7.5, 09 Hz, 1H), 6.89 (d, *J* = 8.7 Hz, 1H), 3.77 (s, 3H), 2.41 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 157.19, 143.89, 138.73, 135.45, 129.95, 129.49, 129.26, 128.63, 120.64, 112.57, 77.58, 77.16, 76.74, 56.00, 21.74.

(11b) ¹H NMR (300 MHz, CDCl₃) δ 7.86 (d, *J* = 8.7 Hz, 2H), 7.79 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 3.83 (s, 3H), 2.38 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 163.4, 143.9, 139.6, 133.7, 130.0, 129.9, 127.5, 114.6, 77.6, 77.2, 76.7, 55.8, 21.7. LRMS (ESI) calcd for C₁₄H₁₅O₃S (M + H)⁺: 263, found : 263.

4-(Tosyloxy)butyl 2,2,2 trichloroacetate (12): Iodobenzene diacetate (DIB, 0.24 mmol, 1.2 equiv) in solution of tetrahydrofuran (1.0 mL) was added at room temperature to a vigorously stirred solution of tetrahydrofuran (1.0 mL) with sulfinate (0.2 mmol, 1 equiv) and trichloroacetic acid (0.05 mL) to dissolve the sulfonate salt. The mixture was then stirred for 25 min (followed by TLC with a mixture of acetic acid/ethyl acetate/hexane) and then concentrated under vacuum. The residue was purified by silica gel chromatography with a mixture of 5/95 ethyl acetate/hexane. 12 was obtained as a white foam: 0.80mmol, 31.4 mg, 40% yield; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.1 Hz, 2H), 4.33 (t, *J* = 6.0 Hz, 2H), 4.09 (t, *J* = 5.8 Hz, 2H), 2.45 (s, 3H), 1.95 – 1.66 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 162.02, 145.09, 133.07, 130.06, 128.03, 89.87, 77.58, 77.16, 76.74, 69.59, 68.52, 25.48, 24.65, 21.79.

S36

