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Figure S1. Behavior in the RSG task for individual animals. Related to Figure 1, format like Figure 1E. In 

Monkey J, we tested additional conditions (e.g. different target locations) in the 1g =  context leading to a larger 

number of trials in that context.  



 
Figure 2. DMFC responses of individual animals. Related to Figure 2. (A,D) Recording locations for the two 

monkeys reconstructed based on individual structural MRI scans (PS, principal sulcus; AS, arcuate sulcus; CS, 

central sulcus). (B,E) Population activity in the Ready-Set epoch for individual animals formatted like Figure 
2B. (C,F) Population activity in the Set-Go epoch for individual animals formatted like Figure 2C.  

  



 

Figure S3. Rotation of trajectories through time, related to Figure 4. We estimated the degree to which the 

principal axes (PC directions) associated with nearest states along the five trajectories , { }[ ]i i
s j , changed with 

time relative to 0t =  using two metrics: a similarity index ( (0, )SI t ) that measures the variance explained by 

PCs at time t  and 0t =  (see below for full description), and a rotation index (
1
(0, )PC tθ ) measuring the angle of 

the first PC (PC1) in the state space at time t  compared to 0t = . (A) (0, )SI t . This index varies between 0 and 

1 with 1 signifying matching PCs and 0 signifying orthogonal PCs. The gradual change in (0, )SI t  away from 1 

and toward 0 indicated that { }i i
Ω  gradually changed orientation with time. Shaded area represents 90% 

bootstrap confidence intervals (n = 100). Dashed lines represent the 90% confidence intervals for the similarity 

of two sets of { }[ ]i i
s j  drawn randomly from a multivariate Gaussian distribution with covariance matched to the 

data. (0, )SI t  captures the extent to which the orientation of { }[ ]i i
s j  in state space changes with time and is 

therefore sensitive to both rotations and scaling transformations. (B) 
1
(0, )PC tθ . The gradual change in 

1
(0, )PC tθ  away from 0 toward 90 deg indicates that trajectories underwent rotations through state space from 

Set to Go. Unlike (0, )SI t  that is sensitive to both rotations and scaling transformations, 
1
(0, )PC tθ  is only 

sensitive to rotations. These data-driven observations motivated the use of KiNeT for analyzing neural 

trajectories throughout the paper.  

 
Similarity Index: The similarity index, adapted from (Garcia, 2012), was calculated using the following 

procedure: 1) Select two datasets, one for neural activity patterns at the time of Set ( 0t = ), denoted by 0r , and 

one at time t  after Set, denoted by tr . 2) Calculate the principal component coefficients for each dataset. 3) 

Project the points of each dataset onto their own and the others’ principal coefficients, creating four sets of 

principal component scores. 4) Calculate the fraction of variance explained by each principal component in 

each of the four sets of scores. 2,
0,0

iσ  is the fraction of variance in 0r  explained by principal component i  of 0r , 
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2,
,0
i

tσ  is the fraction of variance of tr  explained by principal component i  of 0r , 2,
,
i

t tσ  is the fraction of variance in 

tr  explained by principal component i  of tr , and 2,
0,

i
tσ  is the fraction of variance in 0r  explained by principal 

component i  of tr . 5) For each component of each dataset, calculate the difference between (1) the fraction of 

variance explained by that component for its own dataset (e.g. 2,
0,0

iσ ) and (2) the fraction explained by that 

same component for the other dataset (e.g. 2,
,0
i

tσ ). 6). Sum and normalize the calculated differences. This can 

be written as follows: 

 
2, 2, 2, 2,
0,0 ,0 , 0,(0, ) 1 1/ 4 (| | | |)i i t i

t t t t
i

S t σ σ σ σ= − − + −∑   

 

The similarity index is 0 when the associated covariance matrix of one dataset lies in the nullspace of the 

other, and 1 when the covariance matrices are identical. 

 

In order to interpret the values of similarity index in the DMFC dataset, we compared similarity index for two 

surrogate datasets that matched the statistics of DMFC activity. Each dataset was constructed by drawing five 

samples (the number of pt  bins) from a ten-dimensional Gaussian distribution (the number of principal 

components) with a diagonal covariance matrix constructed using the eigenvalues of the covariance matrix of 

the DMFC data. We calculated the similarity index for 1000 pairs of surrogate data (i.e., null distribution), and 

used the 5th and 95th percentiles to generate 90% confidence intervals. With this procedure, a similarity index 

above the 90% confidence interval was considered more “similar” than expected by chance, whereas a 

similarity index below the 90% confidence interval was considered dissimilar. 
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Figure S4. “Go”-aligned KiNeT, related to Figure 4. Applying KiNeT to neural trajectories aligned to the Set 

cue resulted in [ ]it j  which diverged from ref [ ]t j  to scale with trajectory length in a manner consistent with 

neural speed control as a means to produce different pt . To rule out the possibility that this temporal scaling of 

trajectories was an artifact of temporal smearing of PSTHs near the time of Go caused by averaging trials of 

different lengths, we applied KiNeT to data aligned to Go (saccade). (A). Aligned times (speed) across both 

contexts. As in the Set-aligned analysis, [ ]it j  for shorter iΩ  diverged to shorter values, while [ ]it j  for longer 

iΩ  diverged towards longer values as ref [ ]t j  (here time before Go) increased. In contrast to the lack of 

temporal scaling proximal to the Set cue, [ ]it j  were ordered according to pt  leading all the way up to the Go 

cue. Circles on the ref [ ]t j  line indicate  for which the ordering of [ ]it j  was significantly correlated with the pt  

bin (bootstrap test, r > 0.1, p < 0.05, n = 100). (B,C) pt -related structure of { }i
Ω  (B). Analysis of direction. As 

in the Set-aligned KiNeT, [ ]i i
jθ Ω   was significantly smaller than 90 degrees for the majority of the Set-Go 

interval (bootstrap test, [ ]i i
jθ Ω  < 90, p < 0.05, n = 100) indicating that [ ]i jΩ∆  were similar, across iΩ . (C) 

Analysis of distance. Euclidean distance to refΩ . Trajectories were ordered in neural space according to [ ]iD j , 

where iΩ  with pt  more similar to the middle pt  bin to being located closer to refΩ . Significance tested by 



counting the number of times in which [ ]iD j  was not ordered according to pt  bin in bootstrap samples for each 

 (p < 0.05, n = 100).  



 
Figure S5. Kinematic analysis of neural trajectories (KiNeT) for individual animals. Related to Figure 4; Format 

like Figure 4B-D. (A-C). Monkey J, N = 195 units. (D-F). Monkey C, N = 129. 

  



 
 
Figure S6: KiNeT across contexts for individual subjects. Related to Figure 5; format like Figure 5B. (A). 
Monkey J. (B). Monkey C. 
  



 
 
Figure S7. KiNeT applied across gains, individual animals. Related to Figure 6; format like Figure 6C-F. (A-D) 
Monkey J. (E-H). Monkey C.  



 
 
Figure S8. Relating neural variability to behavioral variability in individual animals. Related to Figure 7; format 

like Figure 7D,E. (A,B) Results of Monkey J for 1g =  (A) and 1.5g =  (B), N = 178 Units. (C,D) Results of 

Monkey C for 1g =  (C) and 1.5g =  (D), N = 95. 

  



 
Figure S9. Alignment between behavioral- and context-related neural variability. Related to Figure 8. A. 

Schematic illustrating neural trajectories for 1g =  (gray filled circles) and 1.5g =  (red filled circles) with the 

time axis normal to the plane of illustration. Blue arrow illustrates [ ]i jΩ∆  for 1g = , and the yellow arrow 

illustrates [ ]p
i j∆ . Both are calculated as in Figure 8. The purple arrow illustrates [ ]g

i j∆ , which is defined here 

as the vector connecting trajectories for matching intervals across contexts. We asked whether neural 

variability associated with longer pt  ( [ ]p
i j∆ ) was aligned to the gain vector ( [ ]g

i j∆ ). B. Angle between [ ]g
i j∆  

and [ ]p
i j∆  (gray and red for 1g =  and 1.5g = , respectively). Average angles were less than 90 deg for the 

majority of the Set-Go epoch suggesting that some behavioral variability might be explained by variability along 

the gain vector. C. Alignment between [ ]g
i j∆  and [ ]i jΩ∆ . Angles between vectors [ ]i jΩ∆  and [ ]g

i j∆  (i.e., 

displacements of trajectories with interval and context) were also less than 90 deg for most of the Set-Go 

epoch. This makes it difficult to interpret whether the alignment measured in B was spurious. In other words, it 

could be the case that [ ]p
i j∆  is primarily aligned with [ ]i jΩ∆ , and only aligned with [ ]g

i j∆  through [ ]i jΩ∆ . D. 

Orthogonalization of [ ]g
i j∆  with respect to [ ]i jΩ∆ . To test whether [ ]p

i j∆  was aligned with [ ]g
i j∆  

independently from [ ]i jΩ∆ , we calculated a vector [ ]g
i j⊥Ω∆  (red arrow), which was the vector rejection of [ ]g

i j∆  

from [ ]i jΩ∆ . E. Possible configurations. i. [ ]p
i j∆  is aligned with [ ]g

i j∆  independently from [ ]i jΩ∆ . ii. [ ]p
i j∆  is 

aligned with [ ]g
i j∆  only through [ ]i jΩ∆ . F. Alignment between [ ]g

i j⊥Ω∆  and [ ]p
i j∆ . Angles between these two 

vectors was close to 90 deg through the Set-Go epoch. We interpret this result as a lack of evidence that 

variability in the context-dependent input contributed to behavioral variability in the RSG task. However, this is 

not surprising given that the gain varied in blocks and was given through clear visual cues throughout each 

trial.   



 



Figure S10. Analysis of the recurrent neural networks (RNNs), related to Figure 4 and Figure 8. (A,G) 

“Behavior” of tonic (A) and transient (G) networks. Same format as in Figure 1E. The networks successfully 

learned the task as evidenced by positive regression slopes ( , larger for 1.5g =  context) when analyzing 

contexts independently, and a significant positive interaction between st  and g  (p << 0.001) when analyzing 

contexts together. For each network, we simulated 30 trials per st  and g , removing outliers in which pt  was 

more than 3.5 times the median absolute deviation (MAD) away from the mean. (B,H) Single unit examples. 

Three of the 200 units from each network are plotted in the same format as Figure 2A. Gray shaded regions 

show the duration of the Ready and Set input pulses (10 ms duration). Population analyses were carried out on 

activity immediately following the offset of the Set pulse. (C-E, I-K) Organization of neural trajectories within 

each context; same format as Figure 4B-D. KiNeT analysis verified that the organization of neural trajectories 

within contexts in the RNNs qualitatively matched the key features observed in DMFC. Specifically, trajectories 

were organized in state space according to pt  and evolved at different speeds (compare to Figure 4B-D). 

Some features observed in the DMFC data were not consistently observed in all networks. As observed in the 

DMFC data (Figure 4B), KiNeT did not detect pt -dependent speed changes in the early part of the set interval 

for the tonic network (C). In contrast, pt -dependent speed changes were detected substantially earlier for the 

transient network (I). However, the onset as measured by KiNeT was variable across networks and did not 

appear to be correlated with input type (i.e. tonic vs. transient). Similarly, trajectories of the tonic network 

appeared to coalesce near Go (E), like the neural data (Figure 4D) but unlike the transient network (K). As 

with the onset of variable speed, this feature was variable across networks and was not clearly associated with 

input type. (F,L) Relating unit variability to behavioral variability; same format as in Figure 7. 

  



 



Figure S11. Analysis of Rostral vs. Caudal recording locations, related to Figures 2,4-7. (A, M) All recording 

locations, labelled by subject, with rostral (A) or caudal (L) locations highlighted in gray. (B,C, N,O) Neural 

population trajectories; format like Figure 2B,C. (D-F, P-R) KiNeT analysis of neural population trajectories 

within contexts; format like Figure 4B-D. (G, S). Comparison of neural and behavioral variability; format like 

Figure 7D,E. (H, T). KiNeT across contexts rejecting single structure; format like Figure 5B. (I-K, U-X) KiNeT 

applied across contexts showing similar, separate structures; format like Figure 6C-F. For rostral locations, 

panels B-F and H-L, N = 92 units (40 for monkey J, 52 for monkey C). For G, N = 86 (40 for monkey J, 46 for 

monkey C). (M-X) For caudal locations, panels N-R and T-X, N = 232 units (155 for monkey J, 77 for monkey 

C). For S, N = 187 (138 for monkey J, 49 for monkey C). 

  



 

Symbol Description 

iΩ  The i -th neural trajectory 

{ }i i
Ω  A collection of neural trajectories 

refΩ  “Reference” neural trajectory 

1Ω   The trajectory of shortest duration 

NΩ   The trajectory of longest duration 

reft   Elapsed time for j -th time bin on refΩ  

ref [ ]s j   Neural state on refΩ  at reft  

[ ]is j   Neural state on iΩ  with minimum distance to ref [ ]s j  

{ }[ ]i j
s j  [ ]is j  across all time bins 

{ }[ ]i i
s j  [ ]is j  on all trajectories at j -th time bin 

[ ]it j   Elapsed time on iΩ  at [ ]is j  

{ }[ ]i j
t j  Elapsed time on iΩ  across all time bins 

{ }[ ]i i
t j  Elapsed time on all trajectories at j -th time bin 

[ ]iD j  Euclidean distance between [ ]is j  and ref [ ]s j  

[ ]i jΩ∆  
Vector between nearby trajectories. For analyses of Figure 4-6, [ ]i jΩ∆  connects [ ]is j  to 

1[ ]is j+ , 1 4i≤ ≤ . For analyses of Figure 7, see above section "Calculation of for 

comparing variability within and across neural trajectories" 

[ ]i jθ Ω  Angle between [ ]i jΩ∆  and 1[ ]i jΩ
+∆ , 1 3i≤ ≤  

[ ]i jθ Ω  Average of [ ]i jθ Ω  across  for the j -th time bin 

http://api.gmath.guru/cgi-bin/gmath?%5Cdpi%7B480%7Di


[ ]g
i jθ   Angle between , 1[ ]g

i jΩ =∆  and , 1.5[ ]g
i jΩ =∆ , 1 1i N≤ ≤ −  

 

Table S1. Abridged symbol key. 
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