Electronic Supplementary Material

Clinical Translation of Tumor Acidosis Measurements with AcidoCEST MRI

Journal: Molecular Imaging and Biology

Kyle M. Jones, B.S.,¹ Edward A. Randtke, Ph.D.,² Eriko Yoshimaru, Ph.D.,³

Christine M. Howison, B.S.,² Pavani Chalasani, M.D.,⁴ Robert R. Klein, M.D.,⁵ Setsuko

K. Chambers, M.D.,^{3,6} Philip H. Kuo, M.D., Ph.D.,^{1,2,3} and Mark D. Pagel, Ph.D.^{1,2,3}

1. Biomedical Engineering Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ

2. Department of Medical Imaging, University of Arizona, Tucson, AZ

3. University of Arizona Cancer Center, Tucson, AZ

4. Division of Hematology-Oncology, University of Arizona, Tucson, AZ

5. Department of Pathology, University of Arizona, Tucson, AZ

6. Department of Obstetrics and Gynecology, University of Arizona, Tucson, AZ

Corresponding Author: Mark D. Pagel, Ph.D. Department of Medical Imaging University of Arizona 1515 N. Campbell Ave. Tucson, AZ 85724-5024 Tel: (520)-404-7049 Email: mpagel@u.arizona.edu

Studies of chemical solutions

To perform studies with a 600 MHZ NMR spectrometer, solutions of 78 mM iopamidol were adjusted to pH values of 5.82, 6.08, 6.47, 6.72, 6.93, 7.42 and 7.67. A solution of 39 mM of the agent was prepared at pH 6.72 to ensure that the estimated exchange rate (k_{ex}) of each exchanging pool of iopamidol was independent of concentration.

To perform studies with a 7 T MRI scanner, solutions of 10 mM iopamidol were adjusted to pH values of 5.36, 6.40, 6.60, 6.78, 6.96, 7.13, 7.33, and 7.54. Each solution was placed in a 300 μ l centrifuge tube and all samples were placed in a box filled with agar. The box was placed in a 7T Biospec MRI scanner (Bruker Biospin, Billerica, MA) maintained at 37.0 \pm 0.5 °C using warm air (SA Instruments, Inc., Stony Brook, NY). To maintain the temperature of the box, a fiber optic sensor was inserted into the agar, which controlled the warm air based on the temperature of the agar. Four acidoCEST MRI scans were acquired using a CEST-FISP MRI protocol with parameters listed in Table S1. Saturation frequencies were iterated from -10 ppm to 10 ppm in increments of 0.2 ppm.

To perform studies with a 7 T MRI scanner, solutions of 50 mM iopamidol were adjusted to pH values of 5.21, 6.42, 6.63, 6.76, 7.03, and 7.22. Each solution was placed in a 50 mI conical tube and all samples were placed in a Styrofoam container that was filled with water. The container was wrapped with a heating pad to maintain a 37.0 ± 0.5 °C temperature, and placed in a 3T MRI scanner. A fiber optic sensor was inserted into the water inside the container, which controlled the heating pad. Four acidoCEST MRI scans were acquired using a CEST-FISP MRI protocol with parameters listed in Table S1. Saturation frequencies were iterated from -10 ppm to 10 ppm in increments of 0.2 ppm.

MRI acquisition parameters

The MRI acquisition parameters for imaging chemical solutions, mouse models, and patients, are listed in table S1. The CEST-FISP MRI protocol is described in reference 1.

	7 T chemical 3 T chemical solutions and patient			
	solutions and			
	flank tumor			
	model	Ovarian	Ductal Carcinoma	
Anatomical MRI				
Acq Sequence	Spin Echo	Gradient Echo	Spin Echo	
TR	1076 msec	4.36 msec	2.96 msec	
TE	12.7 msec	2.3 msec	1.2 msec	
Slice thickness	1 mm	3 mm	1 mm	
Number of slices	10	88	60	
Orientation	Axial	Axial	Axial	
In-plane resolution	453x453 μm²	1.5x1.5 mm ²	1.4x1.4 mm ²	
Matrix size	128x128	288x216	288x248	
Field of view	5.8x5.8 cm ²	42.0 cm ²	34.0 cm ²	
Number of averages	1	1	1	
Respiration gating	No	No	No	
Total acq. time	2:17 min	11 sec	30 sec	
CEST-FISP MRI				
B ₀ correction	aciodCEST	WASSR	acidoCEST	
TR	3.70 msec	4.47 msec	4.47 msec	
TE	1.60 msec	1.62 msec	1.62 msec	
Excitation Angle	10°	15°	15°	
Slice thickness	1 mm	10 mm	10 mm	
Number of slices	1	1	1	
Orientation	Axial	Axial	Axial	
In-plane resolution	453x453 μm²	2x2 mm ²	2x2 mm ²	
Matrix size	128x128	160x160	160x160	
Field of view	5.8x5.8 cm ²	32.0 cm ²	32.0 cm ²	
Number of averages	1	1	1	
Respiration gating	No	No	No	
Sat. Power	3.5 μΤ	1.5 μT	1.5 μT	
Sat. Pulse Shape	Half Gauss	Rectangular	Rectangular	
Sat.Time	5 sec	1.0 sec	2.0 sec	
Acq. time (1 image)	5.4 sec	1.715 sec	2.715 sec	
Acq. time (Full CEST spectra)	3:47 min	36.0 sec	57.0 sec	

Preparation of the Mouse Model

The University of Arizona Institutional Animal Care and Use Committee approved our studies with mouse models of human ovarian cancer. A flank tumor model was prepared by injecting 10⁶ epithelial SKOV3 tumor cells in 0.5 mL of 50% Matrigel[™] in the subcutaneous rear flank of 10 female C.B-17/ICRACC white SCID mice at 4-8 weeks of age. Starting two weeks after cell injection, each mouse was evaluated with acidoCEST MRI each week for four weeks.

At the start of each MRI scan, 1.5-2.5% isoflurane in O_2 gas was used to anesthetize a mouse. The mouse was positioned in a customized cradle, and a pneumatic pad was positioned under the mouse to monitor respiration (SA Instruments, Inc., Stony Brook, NY). A fiber optic sensor was used to monitor core body temperature, which was maintained at 37.0 \pm 0.5°C using warmed air. A tail vein was catheterized to deliver the contrast agent.

Table S2. Summary of mouse survival and agent uptake in tumor models

Week	Flank Tumor Model		
Week	Number of mice imaged	Number of mice with sufficient contrast agent uptake	
1	10	4	
2	10	3	
3	10	4	
4	10	5	

Bloch fitting and Lorentzian line shape fitting

For Bloch and Lorentzian line shape fitting (a.k.a. Lorentzian fitting), a step size of 10^{-8} and a function tolerance of 10^{-8} was used. Initial values for Bloch fitting were pHe = 7.0; concentration = 10 mM; T₁ = 2.0 sec; T₂ = 0.056 sec; B₀ offset = 360 Hz (where B₀ offset is the water saturation shift offset for an individual pixel relative to the Larmor frequency); and two scale factors set to a value of 1 to account for the change in baseline between the pre-injection and post-injection scans. Initial values for Lorentzian fitting were widths of 2 ppm and amplitudes of 10% for both the 4.2 and 5.5 ppm peaks of iopamidol. The offsets of 4.2 and 5.5 ppm were also used as initial guesses for the location of the two peaks in the difference CEST spectrum. A line shape for the hydroxyl groups of iopamidol was not fit from *in vivo* studies due to their proximity to water. The B₀ offset was estimated by taking the minimum value in the CEST spectrum for both the pre and post injection images as the true water saturation offset frequency and adjusting all other saturation offset frequencies according to the B₀ offset estimate [2].

The Bloch equations are written as suggested by Murase [3]:

$$\begin{bmatrix} -\frac{1}{T_{2w}} - \chi k_{ex} & -(\omega_w - \omega) & 0 & k_{ex} & 0 & 0 & 0\\ (\omega_w - \omega) & -\frac{1}{T_{2w}} - \chi k_{ex} & -\omega_{B1} & 0 & k_{ex} & 0 & 0\\ 0 & \omega_{B1} & -\frac{1}{T_{1w}} - \chi k_{ex} & 0 & 0 & k_{ex} & \frac{M_w}{T_{1w}}\\ \chi k_{ex} & 0 & 0 & -\frac{1}{T_{2b}} - k_{ex} & -(\omega_b - \omega) & 0 & 0\\ 0 & \chi k_{ex} & 0 & (\omega_b - \omega) & -\frac{1}{T_{2b}} - k_{ex} & -\omega_{B1} & 0\\ 0 & 0 & \chi k_{ex} & 0 & \omega_{B1} & -\frac{1}{T_{1b}} - k_{ex} & \frac{\chi M_w}{T_{1b}}\\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
[A1]

where T_{1w} = longitudinal relaxation time of water, T_{2w} = transverse relaxation time of water, T_{1b} = longitudinal relaxation time of iopamidol, T_{2b} = transverse relaxation time of iopamidol, χ = mole

fraction of labile pool, k_{ex} = exchange rate, ω_a = resonant frequency of water (rad/sec), ω_b = resonant frequency of labile pool (rad/sec), ω = RF irradiation frequency, and ω_{B1} = nutation rate (rad/sec).

This formula is fit in the same way as previously described by Woessner [4] except pH is fit directly instead of fitting k_{ex} . The exchange rate is related to pH (Eq. [A2]).

$$k_{ex} = k_0 + k_b \cdot 10^{KW-pH}$$
 [A2]

where k_w = water ionization constant, k_0 = uncatalyzed exchange rate, and k_b = base catalyzed exchange rate.

The exchange rate of water and the 4 labile pools of iopamidol are determined, so the size of the matrix A is 16x16. To simulate the difference spectrum, data is simulated with $\chi = 0$ and simulated with $\chi =$ estimated mole fraction. The difference of these spectra is compared to the experimental difference, and is fit via non-linear least squares.

The pH, T_1 , T_2 , agent concentration, B_0 , and two scale factors to account for a shift in baseline are estimated from the fitting process. From our experience, pH primarily changes the shape of the CEST spectrum while the concentration, T_1 , and the two scale factors primarily change the amplitude of the CEST spectrum. Therefore, the estimate of pH is largely independent of the other parameters being fit.

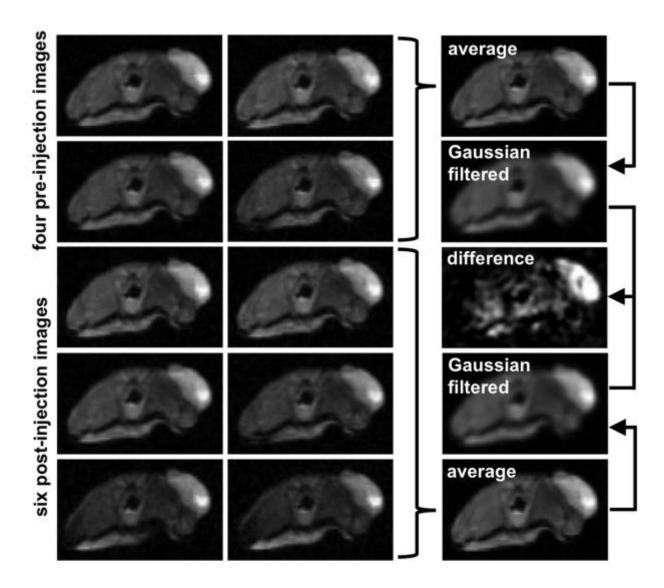


FIGURE S1. AcidoCEST MR image processing. The four pre-injection images were averaged to create an average pre-scan image, and the six post-injection images were averaged to create an average post-scan image. A Gaussian spatial filter was applied to both the average pre-scan and average post-scan images. The average, smoothed post-injection image was subtracted from the average, smoothed pre-injection image to create a difference image.

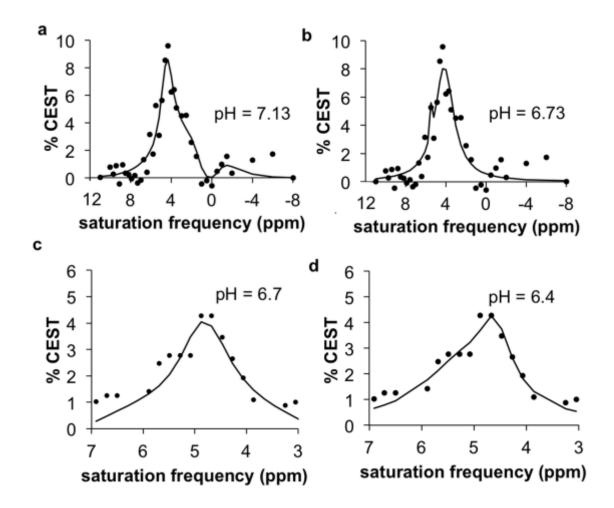


Fig. S2. Analyses of acidoCEST MRI results of the tumor models. A representative CEST spectrum from a pixel of the flank tumor model was analyzed by **a** Bloch fitting and **b** Lorentzian line shape fitting. A representative CEST spectrum from a pixel of the patient with metastatic ovarian cancer was analyzed with **c** Bloch fitting and **d** Lorentzian line shape fitting.

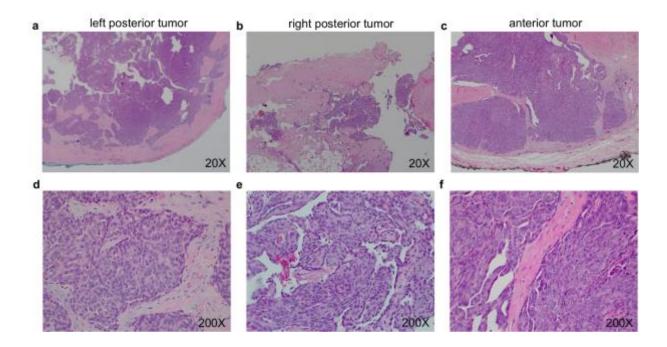


Figure S3. Histopathology of the metastatic ovarian tumors. Staining for collagen in **a,d**) the left posterior tumor, **b,e**) the right posterior tumor and **c,f**) anterior tumor showed higher fibrosity in the right posterior tumor and the rim of the left posterior tumor.

References:

- Shah T, Lu L, Dell KM, Pagel MD, Griswold MA, Flask CA (2011) CEST-FISP: a novel technique for rapid chemical exchange saturation transfer MRI at 7T. Magn Reson Med 65:432-437.
- Chen LQ, Randtke EA, Jones KM, et al. (2015) Evaluations of tumor acidosis within in vivo tumor models using parametric maps generated with acidoCEST MRI Mol Imaging Biol 17:488-496
- Murase K, Tanki N. Numerical solutions to the time-dependent Bloch equations revisited. Magn Reson Imaging 2011;1:126-131.

 Woessner DE, Zhang S, Merritt ME, Sherry AD. Numerical solution of the Bloch equations provides insights into the optimum design of PARACEST agents for MRI. Magn Reson Med 2005;4:790-799.