# # Shift from stochastic to spatially-ordered patterns of expression for metabolic enzymes in 3D microtumors # Manjulata Singha, Tomoko Warita, Katsuhiko Warita, James R. Faeder, Robin E.C. Lee, Shilpa Santa and Zoltán N. Oltvai # # 3D microtumor model # M1 and M2 can be switched via the rule "NUc->INHIBc" begin parameters NA 6.02e23 # Avogadros number Rcore = 300 # Radius to outer edge of Core Rinner =450 # Radius to outer edge of Inner Layer Rspheroid =600 #Model Spheroids are 600 microns Vcore = 4/3*3.14*(Rcore)^3 # V = 113094000 for 600u spheroid Vinner = 4/3*3.14*(Rinner)^3-4/3*3.14*(Rcore)^3 # V = 268598250 for 600u spheroid Vouter = 4/3*3.14*(Rspheroid)^3-4/3*3.14*(Rinner)^3 #V = 523059750 NUe 10^6 #Diffusible nutrient (amino acid) from liquid environment diff 1 #Diffusion rate between outer-inner compartments; all rates are normalized to diffusion f_diff 1/2.25 # Change in diffusion rate between outer-inner and inner-core is the ratio of the surface areas = (Rcore)^2/(Rinner)^2 = 1/2.25 end parameters begin seed species NUo 0 NUi 0 NUc 0 PHGDHo 0 #Cellular enzyme for amino acid biosynthesis (default 15) PHGDHi 0 PHGDHc 0 Ki67o 0 #Cellular marker for proliferation (default 5000) Ki67i 0 #(default 2500) Ki67c 0 #(default 1000) INHIBc 0 #Inhibitor of PHGDH expression in M2 INHIBi 0 INHIBo 0 INHIBe 0 end seed species begin observables Molecules NU_o NUo Molecules NU_i NUi Molecules NU_c NUc Molecules Ki67_o Ki67o Molecules Ki67_i Ki67i Molecules Ki67_c Ki67c Molecules PHGDH_o PHGDHo Molecules PHGDH_i PHGDHi Molecules PHGDH_c PHGDHc Molecules INHIB_c INHIBc Molecules INHIB_i INHIBi Molecules INHIB_o INHIBo end observables begin functions NUp_i()= if(NU_o()>0,NU_i()/NU_o(),0) NUp_c()= if(NU_o()>0,NU_c()/NU_o(),0) Ki67p_i()= if(Ki67_o()>0,Ki67_i()/Ki67_o(),1) Ki67p_c()= if(Ki67_o()>0,Ki67_c()/Ki67_o(),1) PHGDHp_i()= if(PHGDH_o()>0,PHGDH_i()/PHGDH_o(),1) PHGDHp_c()= if(PHGDH_o()>0,PHGDH_c()/PHGDH_o(),1) end functions begin reaction rules #compartments extracellular (e), outer layer (o), inner layer (i), and core (c) # Nutrient transport between (o) and (e) # NUe is extracellular pool; NUo is the nutrient pool within outer surface layer; model assumes extracellular nutrients are in excess and not depleted so that a steady state can be achieved 0->NUo 0.00001*NUe NUo-> 0 0.0001 #PHGDH production consumes nutrients, rate of production is reduced in the presence of Inhibitor NUo->PHGDHo 0.001/(1+5*INHIB_o) NUi->PHGDHi 0.001/(1+5*INHIB_i) NUc->PHGDHc 0.001/(1+5*INHIB_c) #Production of factors that contribute to Ki-67 positive status consume nutrients NUo->Ki67o 0.1 NUi->Ki67i 0.1 NUc->Ki67c 0.1 #Select rule for Model 1 (M1) or Model 2 (M2) #NUc->INHIBc 0 #M1: No Inhibitor; comment out this rule for model 2 NUc->INHIBc 0.05 #M2: Inhibitor is expressed; comment out this rule for model 1 # Transport of inhibitor INHIBc<->INHIBi 0.001,0.001 INHIBi<->INHIBo 0.001,0.001 INHIBo<->INHIBe 0.001,0.001 #Transport of nutrients within the microtumor NUo<->NUi diff,diff #default value of 0.5,0.5 NUi<->NUc f_diff*diff,f_diff*diff #Modified diffusion relates to flux through compartment surfaces #de novo serine biosynthesis PHGDHo->NUo+PHGDHo 1 PHGDHi->NUi+PHGDHi 1 PHGDHc->NUc+PHGDHc 1 #decay of species Ki67o->0 0.01 Ki67i->0 0.01 Ki67c->0 0.01 PHGDHo->0 0.05 PHGDHi->0 0.05 PHGDHc->0 0.05 INHIBc->0 0.005 INHIBi->0 0.005 INHIBo->0 0.005 end reaction rules generate_network({overwrite=>1}); simulate_ode({t_end=>6e5, n_steps=>10,print_functions=>1}); #EOF