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1 Introduction

Multi-Omics Factor Analysis (MOFA) is a statistical model aimed at disentangling sources of variation
in multi-omics data. Here, we introduce the statistical model (section 2) and its inference procedure in
more detail, both in case of Gaussian data (section 3) and non-Gaussian data (section 4). In addition,
we provide practical considerations for training (section 5).

Mathematical notation

– Matrices are denoted with bold capital letters: W
– Vectors are denoted with bold non-capital letters. If the vector comes from a matrix, two indices

separated by a comma will always be shown at the bottom: the first one corresponding to the row
and the second one to the column. The symbol ’:’ denotes the entire row/column. For instance,
wj,: refers to the entire jth row from W matrix.

– Scalars are denoted with non-bold non-capital letters. If the value comes from a matrix, two indices
separated by a comma will always be shown at the bottom: the first one corresponding to the row
and the second one to the column. For instance, wj,k refers to the value coming from the jth row
and the kth column from the W matrix.

– 0k is a zero vector of length K.
– Ik is the identity matrix with rank K.
– Eq[x] denotes the expectation of x under the distribution q. Sometimes, when the expectations are

taken with respect to the same distribution many times, to avoid cluttered notation we will use
〈x〉.

– N (x |µ, σ): x follows a univariate normal distribution with mean µ and variance σ.
– G (x | a, b): x follows a gamma distribution with parameters a and b.
– diag(x) is the diagonal operator that takes as input a vector and outputs a diagonal matrix with

x in the diagonal.

2 Multi-Omics Factor Analysis model

Factor analysis models, also called latent variable models, are a probabilistic modelling approach which
aim to reduce the dimensionality of a (big) dataset into a small set of variables which are easier to
interpret and visualise. More formally, given a dataset Yof N samples and D features, latent variable
models attempt to explain dependencies between the features by means of a potentially smaller set of
K unobserved (latent) factors. MOFA is a generalisation of traditional Factor Analysis where the input
data consists of M matrices Ym = [ymnd] ∈ RN×Dm where each matrix m is called a view. Each view
consists of non-overlapping features which usually, but not necessarily, represent different assays. The
input data is then factorised as:

Ym = ZWmT + εm, (1)

where Z = [znk] ∈ RN×K is a single matrix that contains the low-dimensional latent variables, Wm =
[wmdk] ∈ RDm×K are loading matrices that relate the high-dimensional space to the low dimensional rep-
resentation, and εm = [εmd ] ∈ RDm denotes residual noise. We start by assuming Gaussian residuals εm,
similar to standard (group) factor analysis models, while allowing for heteroscedasticity across features:

p(εmd ) = N (εmd | 0, 1/τmd ) . (2)

This results in the following normal likelihood (for extensions to non-Gaussian settings see section 4):

p(ymnd) = N
(
ymnd | zn,:wmT

d,: , 1/τ
m
d

)
, (3)

where wm
d,: denotes the d-th row of the loading matrix Wm and zn,: the n-th row of the latent factor

matrix Z. For a fully probabilistic treatment we place prior distributions on the weights Wm, the latent
variables Z as well as on the precision of the noise τm. We use a standard Gaussian prior on the latent
variables and a conjugate Gamma prior for the precision:

p(zn,k) = N (zn,k | 0, 1) , (4)

p(τmd ) = G (τmd | aτ0 , bτ0) , (5)
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with aτ0 , b
τ
0 = 1e−14 to obtain uninformative priors.

A key determinant of the model is the regularization used on the weights Wm. MOFA encodes two
levels of sparsity: a view- and factor-wise sparsity and a feature-wise sparsity. The aim of the factor-
and view-wise sparsity is to identify which factors are active in which view, such that the weight vector
wm

:,k is shrunk to zero if the factor k does not drive any variation in view m. This is the general property
that allows the model to disentangle the sources of variability between different assays.
In addition, we place a second layer of feature-wise sparsity whichs puts zero weights on individual fea-
tures from active factors. This relies on the assumption that biological sources of variability are typically
sparse, i.e. only a small number of features are “active”, i. e., have non-zero weight. We achive both
levels of sparsity by placing appropriate priors on the weight matrices.

Specifically, we combine an Automatic Relevance Determination (ARD) prior [9] for the view- and factor-
wise sparsity with a spike-and-slab prior [10] for the feature-wise sparsity, similar to [7]. However, the
spike-and-slab prior

p(w) = (1− θ)10(w) + θN (w | 0, 1/α) (6)

contains a Dirac delta function, which makes the inference troublesome, here we use a re-parametrization
of the weights w as a product of a Gaussian random variable ŵ and a Bernoulli random variable s, [12,
4] resulting in the following prior:

p(ŵmd,k, s
m
d,k) = N (ŵmd,k | 0, 1/αmk ) Ber(smd,k | θmk ) (7)

In this formulation αmk controls the strength of factor k in view m and θmk controls the degree of contri-
bution from the spike term, determining the overall feature-wise sparsity levels of factor k in view m. In
order to automatically learn these parameters we use the following conjugate priors

p(θmk ) = Beta
(
θmk | aθ0, bθ0

)
(8)

p(αmk ) = G (αmk | aα0 , bα0 ) , (9)

with hyper-parameters aθ0, b
θ
0 = 1 and aα0 , b

α
0 = 1e−14 to get uninformative priors. A value of θmk close to

0 implies that most of the weights of factor k in view m are shrinked to 0, which is the definition of a
sparse factor. In contrast, a value of θmk close to 1 implies that most of the weights are non-zero, which
is the definition of a non-sparse factor.

In practice, the ARD prior yields a matrix α ∈ RM×K that defines four different types of factors:

• Factors that do not explain variation in any data set (inactive factors): all values in the cor-
responding columns of α are large. These factors are actively removed from the model during
training.

• Factors that explain variation in all data sets (fully shared factors): all M values in the corre-
sponding columns of α are small.

• Factors that explain variation in a single data set (unique factors): all values in the corresponding
columns of α are very large, except one.

• Factors that explain variation in a subset of data sets (partially shared factors): some values in the
corresponding columns of α are very large whereas others are small.
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Using these prior distributions, the joint probability density function is given by

p(Y,Ŵ,S,Z,Θ,α, τ ) =

M∏
m=1

N∏
n=1

Dm∏
d=1

N

(
ymnd |

K∑
k=1

smdkŵ
m
dkznk, 1/τd

)
M∏
m=1

Dm∏
d=1

K∏
k=1

N (ŵmdk | 0, 1/αmk ) Ber(smd,k|θmk )

N∏
n=1

K∏
k=1

N (znk | 0, 1)

M∏
m=1

K∏
k=1

Beta
(
θmk | aθ0, bθ0

)
M∏
m=1

K∏
k=1

G (αmk | aα0 , bα0 )

M∏
m=1

Dm∏
d=1

G (τmd | aτ0 , bτ0) .

(10)

This completes the definition of the model, which is graphically illustrated in Appendix Figure S24.

3 Model Inference

3.1 Introduction to variational Bayes inference

To ensure scalable inference we use a variational approach with a mean-field approximation[3]. Briefly,
in variational inference the true intractable posterior distribution of the unobserved variables p(X|Y)
is approximated by a simpler distribution of factorized form q(X) =

∏
i q(Xi) that leads to an efficient

inference scheme. Here, X denotes all the hidden variables (including parameters) and Y denotes all the
observed variables.
Under this approximation, the true log marginal likelihood log p(Y) is lower bounded by:

L(X) =

∫
q(X)

(
log

p(X|Y)

q(X)
+ log p(Y)

)
dX

= log p(Y)−KL(q(X)||p(X|Y))

≤ log p(Y)

(11)

L(X) is called the Evidence Lower Bound (ELBO), which is equal to the sum of the model evidence
and the negative KL-divergence between the true posterior and the variational distribution. The key
observation here is that increasing the ELBO is equivalent to decreasing the KL-divergence between the
two distributions.
Variational learning involves optimising the functional L(X) with respect to the distribution q(X). If we
allow any possible choice of q(X), then the maximum of the lower bound L(X) will occur when the KL-
divergence vanishes, which occurs when q(X) equals the true posterior distribution p(X|Y). Nevertheless,
since the true posterior is intractable, this does not lead to any simplification of the problem. Instead,
it is necessary to consider a restricted family of variational distributions that are tractable to compute
and then seek the member of this family for which the KL divergence is minimised [2].

Mean-field approximation

The most common type of variational Bayes, known as mean-field approach, assumes that the variational
distribution factorises over M disjoint groups of variables:

q(X) =

M∏
i=1

q(xi)

Evidently, this family of distributions does not usually contain the true posterior because the unobserved
variables have dependencies, but this assumption allows the derivation of an analytical inference scheme
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[2].
It follows that the optimal distribution q̂i that maximises the lower bound L(X), for each variable xi,
can be calculated as follows:

log q̂i(xi) = E−i[log p(Y,X)] + const (12)

where E−i denotes an expectation with respect to the q distributions over all variables xj except for xi.
The additive constant is set by normalising the distribution q̂i(zi):

q̂i(xi) =
exp(E−i[log p(Y,X)])∫

exp(E−i[log p(Y,X)])dX

This is the general expression which yields the set of variational distributions that maximise the lower
bound of the log marginal likelihood, subject to the factorisation constraint. Or equivalently, the set
of distributions that minimise the KL divergence between the q(X) distribution and the true posterior
p(X).
For MOFA we adopt the following mean field approximation, which factorizes in all model variables
except for ŵmd,k, s

m
d,k, which are strongly connected by the re-parametrization wmd,k = ŵmd,ks

m
d,k:

q(Z,S,Ŵ,α, τ ,θ) = q(Z)q(α)q(θ)q(τ )q(S,Ŵ)

=

N∏
n=1

K∏
k=1

q(zn,k)

M∏
m=1

K∏
k=1

q(αmk )q(θmk )

M∏
m=1

Dm∏
d=1

q(τmd )

M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmd,k, s
m
d,k)

Variational Bayes expectation maximization algorithm

Note that in Equation (12), for a given variable xi, the expectation on the right-hand side is taken with
respect to the other variables’ variational distribution qj(xj) for j 6= i. Therefore, there are circular
dependencies between the different equations and there is no analytical solution for the parameters of
the variational distribution. This naturally suggests an iterative algorithm similar to the Expectation
Maximisation (EM) algorithm. In each step we update the moments and parameters of the variational
distribution of the latent variables qj(xj) using the current estimates of the variational distributions of
the parameters q−j(x−j) [2]. The algorithm is stopped when the change in the ELBO is small enough.

3.2 Update equations for Gaussian data

Latent variables

Variational distribution:

q(Z) =

K∏
k=1

N∏
n=1

q(znk) =

K∏
k=1

N∏
n=1

N (znk |µznk
, σznk

)

where

σ2
znk

=
( M∑
m=1

Dm∑
d=1

〈τmd 〉〈(smdkŵmdk)2〉+ 1
)−1

µznk
= σ2

znk

M∑
m=1

Dm∑
d=1

〈τmd 〉〈smdkŵmdk〉
(
ymnd −

∑
j 6=k

〈smdjŵmdj 〉〈znj〉
)

Spike and Slab weights

Variational distribution:

q(Ŵ,S) =

M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmdk, s
m
dk) =

M∏
m=1

Dm∏
d=1

K∏
k=1

q(ŵmdk|smdk)q(smdk)

Update for q(smdk):

γdkm = q(sdk = 1) =
1

1 + exp(−λdkm)
,
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where

λmdk = 〈log
θ

1− θ
〉+ 0.5 log

〈αmk 〉
〈τmd 〉

− 0.5 log
( N∑
n=1

〈z2nk〉+
〈αmk 〉
〈τmd 〉

)

+
〈τmd 〉

2

(∑N
n=1 y

m
nd〈znk〉 −

∑
j 6=k〈smdjŵmdj 〉

∑N
n=1〈znk〉〈znj〉

)2
∑N
n=1〈z2nk〉+

〈αm
k 〉

〈τm
d 〉

Update for q(ŵmdk):

q(ŵmdk|smdk = 0) = N (ŵmdk | 0, 1/αmk ) ,

q(ŵmdk|smdk = 1) = N
(
ŵmdk |µwm

dk
, σ2
wm

dk

)
,

where

µwm
dk

=

∑N
n=1 y

m
nd〈znk〉 −

∑
j 6=k〈smdjŵmdj 〉

∑N
n=1〈znk〉〈znj〉∑N

n=1〈z2nk〉+
〈αm

k 〉
〈τm

d 〉

σwm
dk

=
〈τmd 〉−1∑N

n=1〈z2nk〉+
〈αm

k 〉
〈τm

d 〉

Taken together this means that we can update q(ŵmdk, s
m
dk) using:

q(ŵmdk|smdk)q(smdk) = N
(
ŵmdk | smdkµwm

dk
, smdkσ

2
wm

dk
+ (1− smdk)/αmk

)
(γmdk)s

m
dk(1− γmdk)1−sdk

ARD precision (alpha)

Variational distribution:

q(α) =

M∏
m=1

K∏
k=1

G(αmk |âαmk, b̂αmk)

where

âαmk = aα0 +
Dm

2

b̂αmk = bα0 +

∑Dm

d=1〈(ŵmd,k)2〉
2

Noise precision (tau)

Variational distribution:

q(τ ) =

M∏
m=1

Dm∏
d=1

q(τmd ) =

M∏
m=1

Dm∏
d=1

G(τmd |âτmd, b̂τmd)

where

âτmd = aτ0 +
N

2

b̂τmd = bτ0 +
1

2

N∑
n=1

〈(ymnd −
K∑
k

ŵmdks
m
dkzn,k)2〉

Spike and Slab sparsity parameter (theta)

Variational distribution:

q(θ) =

M∏
m=1

K∏
k=1

Beta(θmk |âθmk, b̂θmk),
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where

âθmk =

Dm∑
d=1

〈smdk〉+ aθ0

b̂θmk = bθ0 −
Dm∑
d=1

〈smdk〉+Dm

Evidence Lower bound

In order to monitor training and assess convergence we calculate the ELBO alongside with the other
updates. The ELBO can be decomposed into a likelihood term and terms for each model variable Xi :

L(X) =

∫
q(X)

(
log

p(X,Y)

q(X)

)
dX

= Eq log p(Y|X)〉+
∑
i

(Eq log p(Xi)− Eq log q(Xi)) ,

where the expectation is under the variational distribution of the current step. Each of the terms from
the last term is computed as follows:

Likelihood term

If using the gaussian likelihood:

−
M∑
m=1

NDm

2
log(2π) +

N

2

M∑
m=1

Dm∑
d=1

log(〈τmd 〉)−
M∑
m=1

Dm∑
d=1

〈τmd 〉
2

N∑
n=1

(
ymnd −

K∑
k=1

〈smdkŵmdk〉〈znk〉
)2

When not using the gaussian model, this expression is replaced by the corresponding likelihood.

W and S terms

Eq[log p(Ŵ,S)] =−
M∑
m=1

KDm

2
log(2π) +

M∑
m=1

Dm

2

K∑
k=1

log(αmk )−
M∑
m=1

αmk
2

Dm∑
d=1

K∑
k=1

〈(ŵmdk)2〉

+ 〈log(θ)〉
M∑
m=1

Dm∑
d=1

K∑
k=1

〈smdk〉+ 〈log(1− θ)〉
M∑
m=1

Dm∑
d=1

K∑
k=1

(1− 〈smdk〉)

Eq[log q(Ŵ,S)] =−
M∑
m=1

KDm

2
log(2π) +

1

2

M∑
m=1

Dm∑
d=1

K∑
k=1

log(〈smdk〉σ2
wm

dk
+ (1− 〈smdk〉)/αmk )

+

M∑
m=1

Dm∑
d=1

K∑
k=1

(1− 〈smdk〉) log(1− 〈smdk〉)− 〈smdk〉 log〈smdk〉

Z term

Eq[log p(Z)] = −NK
2

log(2π)− 1

2

N∑
n=1

〈z2nk〉

Eq[log q(Z)] = −NK
2

(1 + log(2π))− 1

2

N∑
n=1

K∑
k=1

log(σ2
znk

)

alpha term

Eq[log p(α)] =

M∑
m=1

K∑
k=1

(
aα0 log bα0 + (aα0 − 1)〈logαk〉 − bα0 〈αk〉 − log Γ(aα0 )

)
Eq[log q(α)] =

M∑
m=1

K∑
k=1

(
âαk log b̂αk + (âαk − 1)〈logαk〉 − b̂αk 〈αk〉 − log Γ(âαk )

)
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tau term

Eq[log p(τ)] =

M∑
m=1

Dma
τ
0 log bτ0 +

M∑
m=1

Dm∑
d=1

(aτ0 − 1)〈log τmd 〉 −
M∑
m=1

Dm∑
d=1

bτ0〈τmd 〉 −
M∑
m=1

DmlogΓ(aτ0)

Eq[log q(τ )] =

M∑
m=1

Dm∑
d=1

(
âτdm log b̂τdm + (âτdm − 1)〈log τmd 〉 − b̂τdm〈τmd 〉 − log Γ(âτdm)

)
theta term

Eq [log p(θ)] =

M∑
m=1

K∑
k=1

Dm∑
d=1

(
(a0 − 1)× 〈log(πmd,k)〉+ (b0 − 1)〈log(1− πmd,k)〉 − log(B(a0, b0))

)
Eq [log q(θ)] =

M∑
m=1

K∑
k=1

Dm∑
d=1

(
(amk,d − 1)× 〈log(πmd,k)〉+ (bmk,d − 1)〈log(1− πmd,k)〉 − log(B(amk,d, b

m
k,d))

)

4 Modelling and inference with non-Gaussian data

To implement efficient variational inference in conjunction with a non-Gaussian likelihood we adapt prior
work from [11] using local variational bounds. The key idea is to dynamically approximate non-Gaussian
data by Gaussian pseudo-data based on a second-order Taylor expansion. To make the approximation
justifiable we need to introduce variational parameters that are adjusted alongside the updates to im-
prove the fit.
Denoting the parameters in the MOFA model as X = (Z,W,α, τ ,θ), recall that the variational frame-
work approximates the posterior p(X|Y) with a distribution q(X), which is indirectly optimised by op-
timising a lower bound of the log model evidence. The resulting optimization problem can be re-written
from Equation (11) as

min
q(X)
−L(X) = min

q(X)
Eq
[
− log p(Y|X)

]
+ KL[q(X)||p(X)].

Expanding the MOFA model to non-Gaussian likelihoods we now assume a general likelihood of the form
p(Y|X) = p(Y|C) with C = ZWT , that can write as

− log p(Y|X) =

N∑
n=1

D∑
d=1

fnd(cnd)

with fnd(cnd) = − log p(ynd|cnd). We dropped the view index m to keep notation uncluttered.
Extending [11] to our heteroscedastic noise model, we require fnd(cnd) to be twice differentiable and
bounded by κd, such that f ′′nd(cnd) ≤ κd ∀n, d. This holds true in many important models as for example
the Bernoulli and Poisson case. Under this assumption a lower bound on the log likelihood can be
constructed using Taylor expansion,

fnd(cnd) ≤
κd
2

(cnd − ζnd)2 + f ′(ζnd)(cnd − ζnd) + fnd(ζnd) := qnd(cnd, ζnd),

where ζ = ζnd are additional variational parameters that determine the location of the Taylor expansion
and have to be optimised to make the lower bound as tight as possible. Plugging the bounds into above
optimization problem, we obtain:

min
q(X),ζ

D∑
d=1

N∑
n=1

Eq[qnd(cnd, ζnd)] + KL[q(X)||p(X)]

The algorithm propsed in [11] then alternates between updates of ζ and q(Θ). The update for ζ is given
by

ζ ← E[W]E[Z]T

where the expctations are taken with respect to the corresponding q distributions.
On the other hand, the updates for q(X) can be shown to be identical to the variational Bayesian updates

with a conjugate Gaussian likelihood when replacing the observed data Y by a pseudo-data Ŷ and the
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precisions τnd (which were treated as random variables) by the constant terms κd introduced above.
The pseudodata is given by

ŷnd = ζnd − f ′(ζnd)/κd.

Depending on the log likelihoods f(·) different κd are used resulting in different pseudo-data updates.
Two special cases implemented in MOFA are the Poisson and Bernoulli likelihood described in the
following.

Bernoulli likelihood for binary data

When the observations are binary, y ∈ {0, 1}, they can be modelled using a Bernoulli likelihood:

Y|Z,W ∼ Ber(σ(ZWT )),

where σ(a) = (1 + e−a)−1 is the logistic link function and Z and W are the latent factors and weights
in our model, respectively.
In order to make the variational inference efficient and explicit as in the Gaussian case, we aim to
approximate the Bernoulli data by a Gaussian pseudo-data as proposed in [11] and described above
which allows to recycle all the updates from the model with Gaussian views. While [11] assumes a
homoscedastic approximation with a spherical Gaussian, we adopt an approach following [6], which
allows for heteroscedaticity and provides a tighter bound on the Bernoulli likelihood.
Denoting cnd = (ZWT )nd the Jaakkola upper bound [6] on the negative log-likelihood is given by

− log (p(ynd|cnd)) = − log (σ ((2ynd − 1)cnd))

≤ − log(ζnd)−
(2ynd − 1)cnd − ζnd)

2
+ λ(ζnd)

(
c2nd − ζ2nd

)
=: bJ(ζnd, cnd, ynd)

with λ given by λ(ζ) = 1
4ζ tanh

(
ζ
2

)
.

This can easily be derived from a first-order Taylor expansion on the function f(x) = − log(e
x
2 + e−

x
2 ) =

x
2 − log(σ(x)) in x2 and by the convexity of f in x2 this bound is global as discussed in [6].
In order to make use of this tighter bound but still be able to re-use the variational updates from the
Gaussian case we re-formulate the bound as a Gaussian likelihood on pseudo-data Ŷ.
As above we can plug this bound on the negative log-likelihood into the variational optimization problem
to obtain

min
q(X),ζ

D∑
d=1

N∑
n=1

EqbJ(ζnd, cnd, ynd) + KL[q(X)||p(X)].

This is minimized iteratively in the variational parameter ζnd and the variational distribution of Z,W:
Minimizing in the variational parameter ζ this leads to the updates given by

ζ2nd = E[c2nd]

as described in [6], [3].
For the variational distribution q(Z,W) we observe that the Jaakkola bound can be re-written as

bJ(ζnd, cnd, ynd) = − log

(
ϕ

(
ŷnd; cnd,

1

2λ(ζnd)

))
+ γ(ζnd),

where ϕ(·;µ, σ2) denotes the density function of a normal distribution with mean µ and variance σ2 and
γ is a term only depending on ζ. This allows us to re-use the updates for Z and W from a setting with
Gaussian likelihood by considering the Gaussian pseudo-data

ŷnd =
2ynd − 1

4λ(ζnd)

updating the data precision as τnd = 2λ(ζnd) using updates generalized for sample- and feature-wise
precision parameters on the data.
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Poisson likelihood for count data

When observations are a natural numbers, such as count data y ∈ N = {0, 1, · · · }, they can be modelled
using a Poisson likelihood:

p(y|c) = λ(c)ye−λ(c)

where λ(c) > 0 is the rate function and has to be convex and log-concave in order to ensure that the
likelihood is log-concave.
As done in [11], here we choose the following rate function: λ(c) = log(1 + ec).
Then an upper bound of the second derivative of the log-likelihood is given by

f ′′nd(cnd) ≤ κd = 1/4 + 0.17 ∗max(y:,d).

The pseudodata updates are given by

ŷnd = ζnd −
S(ζnd)(1− ynd/λ(ζnd))

κd
.

5 Implementation and practical considerations for training

5.1 Monitoring convergence

In contrast to sampling methods, variational approximations have the appealing property that conver-
gence is easily monitored by changes in the ELBO, which is required to increase monotonically [3]. In
practice, we set a default threshold for convergence corresponding to a change in ELBO smaller than
0.1%.

5.2 Handling of missing values

The model naturally accounts for missing values and no prior imputation is required. Non-observed data
points do not intervene in the likelihood and are ignored in the update equations. In practice, we use a
binary mask Om ∈ RN×Dm for each view m, such that On,d = 1 when feature d is observed for sample
n, 0 otherwise.

5.3 Data pre-processing

MOFA does not require the data to be centered or scaled. The first property is achieved by incorporating
a constant factor of ones that will capture any feature-wise intercept effect. This ensures that the rest
of the factors capture variation independent of the feature-wise means. The second property is achieved
by the factor- and view-wise ARD prior, which allows different scales of the weights for each view.
However, when using the Gaussian noise model, it is recommended to use methods for normalization
and variance stabilisation (e.g. as implemented in [8] for RNAseq data) prior to model training. This
ensures that the normality assumption of the model residuals is appropriate.

5.4 Consistency across random initilizations

The variational Bayes algorithm is not guaranteed to find the optimal solution [3] and the estimates
will depend on the parameter initialization. We suggest to adopt common practice [5] and assess the
consistency of factors by running MOFA multiple times (e.g. 10 trials) under different initialisations.
Subsequently, a single model with the highest ELBO should be selected for downstream analysis.
Appropriate functions for model selection are provided in the R package.

5.5 Determining the number of factors

The model can automatically learn the number of factors by removing inactive factors during training if
they do not explain significant variation in any view. This is achieved by the view- and factor-wise ARD
prior (Eq. (7)). In practice, factors are pruned during training using a minimum fraction of variance
explained threshold that needs to be specified by the user. Alternatively, the user can fix the number of
factors and the minimum variance criterion is ignored.
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5.6 Rotational invariance

An important consequence of the definition of MOFA (and most factor analysis models [1, 13]) is their
unidentifiability due to rotational and scaling invariance. This means that the factors and corresponding
loadings can only be identified up to an orthogonal rotation. In practice, this property implies that the
actual factor and weight values need to be interpreted in a relative manner, always within the same
model instance.
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Appendix Figure S1 | Model validation of MOFA using simulated data. (a) Comparison             

of the number of simulated and estimated factors. Boxplots show the distribution across 10              

model instances. ​(b-d) Recovery of the true number of latent factors (​K​=10) under different              

(b) number of features, ​(c) views and ​(d) fraction of missing values. Individual bars              

correspond to different model instances.  

  

 

 

 

 

 

6 Supplementary Figures
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Appendix Figure S2 | Validation of the Bernoulli likelihood model. ​On a simulated binary              

data 25 instances of a MOFA model were trained either considering a Bernoulli (red) or               

Gaussian (blue) likelihood, respectively. ​(a) Variational evidence lower bound (ELBO) for           

each model instance. ​(b) Reconstruction error for each model instance. ​(c) Number of             

estimated factors. The horizontal line denotes the true number of factors (​K​=10). Individual             

model instances are colored based on their respective ELBO value. The arrows mark the              

models with the highest ELBO that would be selected for downstream analysis. ​(d)             

Distribution of the reconstructed data, with the Bernoulli (red) or Gaussian (blue) likelihood             

model, respectively 
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Appendix Figure S3 | Validation of the Poisson likelihood model. ​On a simulated count              

data 25 instances of a MOFA model were trained either considering a Poisson (red) or               

Gaussian (blue) likelihood, respectively. ​(a) Variational evidence lower bound (ELBO) for           

each model instance. ​(b) Reconstruction error for each model instance. ​(c) Number of             

estimated factors. The horizontal line denotes the true number of factors (​K​=10). Individual             

model instances are colored based on their respective ELBO value. The arrows mark the              

models with the highest ELBO that would be selected for downstream analysis. ​(d)             

Distribution of the reconstructed data, with the Poisson (red) or Gaussian (blue) likelihood             

model, respectively 
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Appendix Figure S4 | Comparison of MOFA, GFA and iCluster on simulated data. ​(a)              

Estimated number of factors. The solid horizontal line denotes the true number of simulated              

factors (​K​=10). and the dashed horizontal line indicates the initial number of factors (​K​=20).              

Each bar represents a different model realization of the simulated data. ​(b) Pearson             

correlation coefficient between pairs of inferred latent factors for individual trials. For each             

factor, shown is the maximum correlation coefficient with any of the remaining factors.             

Factors were simulated to be uncorrelated. ​(c) ​Pearson correlation coefficient between true            

and inferred factors (for the top ten factors in each fit). For each factor, shown is the                 

maximum correlation coefficient with any of the true factors. 
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Appendix Figure S5 | Assessment of MOFA, iCluster and GFA in terms of recovering              
the pattern of factor activity across views. ​Data were simulated using a Gaussian             

likelihood based on the true activity pattern of factors per view displayed on the left. ​(a)                

Number of true underlying factors ​K​=10. ​(b) ​Number of true underlying factor ​K​=15. In both               

cases, MOFA and GFA were trained starting with ​K​=25 factors whereas for iCluster the true               

number of factors was used. Shown is the fraction of variance explained for each factor and                

view. 
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Appendix Figure S6 | Assessment of model consistency across different trials. 25            

MOFA instances were trained on the CLL data. ​(a) The training curve for the number of                

active factors. ​(b) The number of estimated factors for each trial, colored by the              

corresponding evidence lower bound (ELBO). The arrow indicates the model with highest            

ELBO that was selected for downstream analysis. ​(c) Absolute value of the Pearson             

correlation coefficient between the weights of the mRNA data. Each block in the diagonal              

captures a weight vector consistently learnt across multiple trials. ​(d) Absolute value of the              

Pearson correlation coefficient between the factors. Each block in the diagonal captures a             

latent factor consistently learnt across multiple trials.  
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Appendix Figure S7 | Model robustness on the CLL data assessed using            
downsampling of samples​. Shown is ​(a) ​the number of factors and ​(b) the absolute              

Pearson correlation coefficient between factors estimated on downsampled data and the           

factors estimated on the full dataset. Shown are averages across 25 trials. Error bars denote               

plus or minus one standard error.  
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Appendix Figure S8 | MOFA trained on a subset of the available assays. (a) ​Absolute               

correlation between the MOFA factors (x-axis) recovered on the full data sets with the most               

associated factor recovered when using only one data modality (y-axis). Correlation is            

calculated on the ​n​=121 samples that were profiled in all assays. ​(b) ​Harrell’s C-index for               

prediction of time to next treatment for the ​n​=121 samples with data in all modalities using 10                 

factors obtained using MOFA on each single data modality as well as the full data. ​(c) Same                 

as in ​a for MOFA trained on all assays except one. ​(d) ​Same as in ​b for MOFA trained on all                     

assays except one. 
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Appendix Figure S9 | Performance of MOFA, GFA and iCluster on CLL data. ​(a)              

Consistency of inferred factors across multiple trials. Shown are absolute Pearson           

correlation coefficient between pairs of factors in different trials. Each diagonal block            

captures a factor that is consistently learnt across multiple trials. For the first trial of each                

model, shown is: ​(b) Fraction of variance explained (R​2​) by individual factors for each view.               

No variance measure can be estimated in the (binary) mutation data by the iCluster method.               

(c) Negative log FDR-adjusted p-values from the association analysis (t-test) between           

individual factors and IGHV status. The line denotes the statistical significance threshold of             

1% FDR. 
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Appendix Figure S10 | BIC for the ​K​-Means clustering on Factor 1 in the CLL data. 
Values of the Bayesian Information Criterion (BIC) for different values of K in the K-means               

clustering on Factor 1. A minimum is obtained for ​K​=3. 
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Appendix Figure S11 | Correspondence of patient clusters on Factor 1 with previously             
described CLL subgroups. Beeswarm plots of Factor 1 colored by previously described            

CLL subgroups (Oakes et al, 2016) (left) and 3-means clusters (right) as in ​Figure 3a​. The                

table below indicates the sample numbers that fall in each of these clusters as well as the                 

number of samples in each cluster with data available for the given omic type. 
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Appendix Figure S12 | Correlation between the continuous IGHV state inferred by            
MOFA (Factor 1) and individual molecular features. ​Scatterplots showing the correlation           

between the continuous Factor 1 inferred by MOFA and molecular features. To avoid             

circularity, models were re-trained holding out different data modalities in turn: ​(a) ​drug             

response, ​(b) gene expression and ​(c) methylation. Colors denote cluster assignments using            

the factor obtained from the full data set. Displayed are representative features with high              

absolute loading on the Factor 1 from the full model. 
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Appendix Figure S13 | Correlation between the continuous IGHV state inferred by            
MOFA (Factor 1) trained on different subset of data modalities. ​Scatterplots on the lower              

panels show the pairwise correlation between the continuous Factor 1 inferred by MOFA             

when training on all assays, without the drug response assay, mRNA assay and methylation              

assay, respectively. Colors are based on the clusters on Factor 1 inferred by the full model                

(trained on all data modalities). The panels on the diagonal show the densities of factor               

values of the 3 different clusters in each setting and the upper panels denote the overall and                 

within-cluster correlation. 
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Appendix Figure S14 | Characterization of Factor 4 in the CLL data. (a) ​Gene sets of the                 

Reactome pathways enriched in the mRNA data (t-test, ​Methods, dashed line represents a             

FDR of 1%). ​(b) Heatmap of the mRNA data in the top ten features for Factor 4. Samples                  

are ordered along their value on the respective factor as shown on top of the heatmap. ​(c)                 

Scatterplot of the normalized expression of important surface markers of T-cells (CD8A,            

CD8B, CD3D) and monocytes (CD300E) versus the values on Factor 4.  
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Appendix Figure S15 | Characterization of Factor 3 in the CLL data. (a) ​Loadings of all                

drugs and concentrations on Factor 3. ​(b) Scatterplot of Factor 3 versus a general level of                

drug sensitivity calculated as the mean viability of a sample across all drugs and              

concentrations. 
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Appendix Figure S16 | Prediction of drug response curves in the CLL data. ​Prediction              

of drug response curves for two samples clinically annotated as M-IGHV (H050, dashed line)              

and U-IGHV (H052, solid line), respectively, for four representative drugs known to be             

affected by IGHV status. Scatterplots show the predicted drug response curve as cellular             

viability versus concentration when training a MOFA model removing all drugs from the             

corresponding patients (red) and removing only the four drugs (green). The true response             

curve is shown in blue.  
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Appendix Figure S17 | Comparison of the accuracy of MOFA and GFA for imputing              
missing values in the drug response assay of the CLL data. ​GFA and MOFA models               

were trained with different numbers of factors. Shown are averages of the mean squared              

error (MSE) across 5 imputation experiments for different fractions of missing data,            

considering ​(a) values missing at random (top panel: 5%; bottom pannel: 50%) and ​(b) entire               

assay missing for samples at random (top panel: N=10; bottom panel: N=50). Error bars              

denote plus or minus two standard error. 
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Appendix Figure S18 | Characterisation of Factor 7 in the CLL data. (a) Beeswarm plot               

with Factor 7 values for each sample. Colors denote the presence or absence of the deletion                

del17p13. ​(b) Heatmap of methylation (M-value) for CpG sites with the largest loading             

(matched to overlapping genes). ​(c) Absolute loadings of top features in the somatic             

mutation data, ​(d)​ Absolute loadings of the top features in the drug response data.  
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Appendix Figure S19 | Characterization of Factor 8 in the CLL data. (a) Variance              

explained by Factor 8 in the four assays. ​(b) ​Gene sets enriched the for the Reactome                

pathways in the mRNA data at a FDR of 1% (t-test, ​Methods​). ​(c) ​Absolute values for the                 

weights of ​top 20 genes in the mRNA data, sign indicating the direction of their effect. ​(d)                 
Heatmap of the normalized expression values for the genes shown in ​c​, samples are              

ordered along their values on Factor 8.  
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Appendix Figure S20 | Prediction accuracy of time to next treatment using MOFA             
factors and raw features of the assays in the CLL data. Considered are L​2​-penalized Cox               

models trained on the features of individual assays as well as their superset (​all​). For               

comparison the result using a Cox model trained on the 10 MOFA factors is shown as in                 

Figure 4​. The y-axis shows Harrell’s C index as a measure of prediction performance. The               

average value over 5-fold cross-validation is shown with error bars indicating the standard             

error. Assays with missing values were imputed using the feature-wise mean.  
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Appendix Figure S21 | Comparison of MOFA factors with clinical covariates in the CLL              
data. (a) ​Association of MOFA factors and clinical covariates with time to next treatment              

using a univariate Cox models for ​n​=76 samples, for which the clinical information was              

available. Error bars denote 95% confidence intervals. Numbers on the right denote p-values             

for each predictor. ​(b) Prediction accuracy of time to treatment using multivariate Cox             

regression trained using the 10 factors derived using MOFA as well as the selected clinical               

predictors in panel ​a​. Shown are average values of Harrell’s C index from 5-fold              

cross-validation. Error bars denote standard error of the mean.  
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Appendix Figure S22 | Characterisation of Factor 3 in the scMT data. ​Scatterplot             

depicting the correlation between Factor 3 and the Cellular Detection Rate, a known             

technical factor in single-cell RNA-seq data that corresponds to the fraction of expressed             

genes.  
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Appendix Figure S23 | Multi-omics clustering applied to scMT data set. (a) Similarity             

matrix and dendogram obtained using Similarity Network Fusion (Wang et al. 2014). ​(b)             

Dendrogram obtained using ​iClusterPlus (Mo et al. 2013) with two clusters (​K​=1, model             

selection by optimal BIC). The cells at the leaves are colored by culture condition. 
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Appendix Figure S24 | Graphical model representation of MOFA. Grey-filled nodes           

denote observed variables whereas white-filled nodes denote unobserved variables that are           

inferred by the model. denotes the observed data matrices, denotes latent factors and    Y      Z      

denotes the model weights with a spike-and-slab prior, implemented as the product ofS °W
︿

              

a Bernoulli variable and a Gaussian variable . represents the sparsity parameter of   S      W
︿

 θ      

the spike-and-slab prior and corresponds to the view- and factor-wise Automatic    α         

Relevance Determination prior. represents the precision of the normally-distributed noise.   τ        

N is the number of samples, M is the number of views, D is the number of features in the                    

m-th view and K is the number of latent factors. 
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7 Supplementary Tables

1. Simulation settings to validate the ability to learn the number of active factors (Appendix Figure S1)

likelihood # factors # features # views # samples Missingness (%)

gaussian (5,10,...,60) 5000 3 100 0

gaussian 10 (100,500,...,10000) 3 100 0

gaussian 10 5000 (1,3,...,21) 100 0

gaussian 10 5000 3 100 (0,5,10,...,90)

2. Simulation settings to validate non-gaussian likelihoods (Appendix Figure S2-3)

likelihood # factors # features # views # samples Missingness (%)

bernoulli 10 5000 3 100 0

poisson 10 5000 3 100 0

3. Simulations settings for the GFA and iCluster comparison (Appendix Figure S4-5)

Likelihoods # factors # features # views # samples Missingness (%)

gaussian, bernoulli and poisson 10 5000 3 100 5

Appendix Table S1 | Parameters for simulation settings
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Immune Response

Interleukin-6 signaling
Interleukin-7 signaling
Cytokine Signaling in Immune system
Adaptive Immune System
Innate Immune System
Immune System
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell
TCR signaling
Downstream TCR signaling
Phosphorylation of CD3 and TCR zeta chains
Translocation of ZAP-70 to Immunological synapse
Interleukin-1 signaling
Signaling by Interleukins
Interleukin-2 signaling
Interleukin-3, 5 and GM-CSF signaling
Diseases of Immune System
Interleukin-6 family signaling
Interleukin-10 signaling
Interleukin-4 and 13 signaling
IL-6-type cytokine receptor ligand interactions
Interleukin receptor SHC signaling

Cellular Stress/Senescence

Telomere Maintenance
Packaging Of Telomere Ends
Polymerase switching on the C-strand of the telomere
Processive synthesis on the C-strand of the telomere
Telomere C-strand (Lagging Strand) Synthesis
Activation of ATR in response to replication stress
Extension of Telomeres
Cellular responses to stress
Oxidative Stress Induced Senescence
Senescence-Associated Secretory Phenotype (SASP)
Cellular Senescence
Formation of Senescence-Associated Heterochromatin Foci (SAHF)
Oncogene Induced Senescence
DNA Damage/Telomere Stress Induced Senescence
Regulation of HSF1-mediated heat shock response
HSF1 activation
Cellular response to heat stress
Attenuation phase
HSF1-dependent transactivation
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RNA regulation

RNA Polymerase II HIV Promoter Escape
SIRT1 negatively regulates rRNA Expression
ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression
NoRC negatively regulates rRNA expression
Regulation of mRNA stability by proteins that bind AU-rich elements
RNA Polymerase I, RNA Polymerase III, and Mitochondrial Transcription
Positive epigenetic regulation of rRNA expression
B-WICH complex positively regulates rRNA expression
Negative epigenetic regulation of rRNA expression
Transcriptional regulation by small RNAs
RNA Polymerase II Pre-transcription Events
RNA Polymerase I Promoter Opening
RNA Polymerase I Transcription Initiation
RNA Polymerase I Promoter Escape
RNA Polymerase II Promoter Escape
RNA Polymerase I Chain Elongation
RNA Polymerase II Transcription Pre-Initiation And Promoter Opening
RNA Polymerase III Chain Elongation
RNA Polymerase I Promoter Clearance
RNA Polymerase II Transcription Termination
RNA Polymerase II Transcription
RNA Polymerase I Transcription Termination
RNA Polymerase I Transcription
RNA Polymerase III Transcription Termination
RNA Polymerase III Transcription
RNA Polymerase III Abortive And Retractive Initiation
RNA Polymerase II Transcription Initiation
RNA Polymerase II Transcription Elongation
RNA Polymerase II Transcription Initiation And Promoter Clearance
RNA Polymerase III Transcription Initiation
RNA Polymerase III Transcription Initiation From Type 1 Promoter
RNA Polymerase III Transcription Initiation From Type 2 Promoter
RNA Polymerase III Transcription Initiation From Type 3 Promoter

Appendix Table S2 | Coarse-grain categories of gene set used in Figure 2
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Publication Inference
Group-wise
sparsity

Feature-wise
sparsity

Missing
values

Likelihood
Noise
model

Shen et al,
2009

EM,
grid search

different
L1- penalties

L1-penalty No Gaussian
Hetero-
scedastic

Mo et al,
2013

EM,
grid search

different
L1- penalties

L1-penalty No

Gaussian,
Poisson,
Bernoulli
Multinomial

Hetero-
scedastic

Virtanen et al,
2012

VB ARD None No Gaussian
Homo-
scedastic

Klami et al,
2014

VB ARD None No Gaussian
Homo-
scedastic

Bunte et al,
2016

Gibbs ARD Spike and Slab No Gaussian
Homo-
scedastic

Hore et al,
2016

VB None Spike and Slab Yes Gaussian
Hetero-
scedastic

Remes et al,
2016

VB ARD None No Gaussian
Homo-
scedastic

Zhao et al,
2015

Gibbs ARD
Three-
parameter
beta prior

No Gaussian
Hetero-
scedastic

Leppäaho et al.,
2017

Gibbs ARD Spike and Slab Yes Gaussian
Homo-
scedastic

MOFA VB ARD Spike and Slab Yes
Gaussian,
Poisson,
Bernoulli

Hetero-
scedastic

Appendix Table S3 | Overview of GFA and iCluster methods
Abbreviations used: VB (variational Bayes inference), Gibbs (Gibbs sampling based inference),
ARD (Automatic Relevance Determination), EM (Expectation-Maximization)
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