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1st Editorial Decision 10th January 2018 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your study. As you will see below, the reviewers 
appreciate that the presented approach seems potentially useful. They raise however a series of 
concerns, which we would ask you to address in a revision of the manuscript.  

The reviewers' recommendations are rather clear so I think that there is no need to repeat all the 
points listed below. Reviewer #1 refers to the need to include comparisons of the method to existing 
approaches. Importantly, all reviewers point out that the biological insights from the CLL analysis 
remain rather limited. As reviewer #3 recommends, additional analyses (not necessarily 
experimental), demonstrating the potential of the method to reveal new biological insights would 
significantly enhance the impact of the study. Of course all other issues raised by the referees would 
need to be thoroughly addressed.  

-------------------------------------------------------- 

REFERE REPORTS 

Reviewer #1: 

With the increasing availability of multi-omics datasets, the development of statistical methods to 
disentangle specific- and shared-components of variation in such datasets has numerous applications 
and will undoubtedly help to expose novel biology. The authors present Multi-Omics Factor 
Analysis (MOFA) which applies Group Factor Analysis to identify hidden factors that capture 
biological and technical sources of variability. The model builds on group factor analysis with the 
additional optimizations of (a) fast inference based on variational approximation, (b) inference of 
sparse solutions by inducing group-wise and feature-wise sparsity, (c) handling missing values and 
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(d) integration of different data likelihood models to integrate non-Gaussian data. The manuscript is 
well written, the method is evaluated with extensive simulations and further highlights the 
application of MOFA to CLL to identify and enhance clinical markers. However, the method and its 
application to CLL have several challenges that need to be further explored and dampen its impact. 
A major concern is that the method is not contrasted in practice to other group factor analysis 
methods that are closely related to MOFA (listed in Table 1 of Supplemental Methods), neither in 
the simulation study nor the real data analysis. While the iCluster method is widely used, it would be 
important to minimally see a comparison to the Hore et al (2016) method, which is the method most 
closely related to MOFA.  
 
1) The definition of "views" is not well articulated.  
2) While the extension of the method to non-Gaussian data performs reasonably well, it assumes the 
same distribution across data modalities. This is almost never the case in practice when performing 
multi-omics analyses, e.g. when modelling both binary SNP data and count gene expression data. It 
is thus not exactly clear what the advantage of the extension is.  
3) In the analysis of the chronic lymphocytic leukemia data, not much information is provided about 
the choice of K in the three-mean clustering of samples based on factor 1 (Figure 3A). Was there a 
formal test about the goodness-of-fit of a three- versus e.g. two-mean clustering? The IZ and HZ 
clusters do not show a large difference in gene expression values (Figure 3C) or Drug response 
(Figure 3E).  
4) Even though factors 8 was significantly associated with time to next treatment (Figure 5A) and it 
explains some proportion of the gene expression variability, the factor shows no enrichment based 
on the GSEA (Figure 2E). Moreover, there is not much information / knowledge about what this 
factor is correlated to besides the one line in the text 'Factor 8 is associated with differences in gene 
expression between pre-treated and untreated patients'. Can you elaborate more about Factor 8? For 
example provide a plot similar to Sup Figure 15?  
5) The CLL variable is time to next treatment. It is very likely that individuals currently or 
proximally treated will have important changes in gene expression and that simply knowing if a 
person is being actively treated or not plus a few other clinical variables could be very helpful in 
predicting the timing of the next treatment. Particularly in the context of how CLL and its therapy 
may be timed in practice. This is highlighted in the observation that the response, next treatment 
timing, is best predicted by factors correlated to whether the patient was chemo-immunotherapy 
treated before collected. The relationship of the predictors to clinical variables such as these is not 
adequately explored and ultimately it is difficult to assess whether the molecular approach is better 
than an alternative approach that uses a combination of clinical phenotypes (like cell counts or 
further accounts for accelerated treatment for increased disease severity).  
6) Is the data for the CLL example downloadable with MOFA?  
 
Minor:  
1) Figure S2c appears to show inflation of number of inferred factors when using binary data. Figure 
S3c is also inflated for Gauussian data. Can the authors comment on this?  
2) Page 3, second paragraph, add citations for the iCluster method after `Comparison of MOFA with 
the factor model that underlies the widely-used iCluster method (Shen et al 2009)` and other related 
approaches after `We contrast MOFA to related approaches in Methods and Supp. Table 1.`  
3) Page 3, second paragraph: ` We contrast MOFA to related approaches in Methods and Supp. 
Table 1`. The correct reference for this is "Supplemental Methods" and "Table 1 of Supplemental 
Methods" (not Supplemental Table 1 which refers to simulation analysis parameters).  
4) All figure reference in "Supplemental Methods" are off by one number. In section 2.1, it's Figure 
S1 that contains results for recovery of the number of factors and not Figure S2. In section 2.2, it's 
Figure S2 and Figure S3 that contain results for non-Gaussian data and not Figure S3 and Figure S4 
etc.  
5) Figure S5b doesn't appear to show R2 and colors on the same scale.  
6) For Figure S7b can the authors comment on the trend for Factor 1?  
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Reviewer #2:  
 
Argelaguet et al. present algorithms and code to implement group factor analysis for multi-omics 
data, which they term MOFA. They demonstrate the utility of MOFA on a public multi-omics data 
cohort, derived from leukaemia clinical samples.  
Different variants of factor analysis, canonical correlation analysis and principal components 
analysis are widely used in systems biology studies. However, the authors have addressed some of 
the computational issues involved in applying group factor analysis to multi-omics data, including: 
code for fast inference, inference of sparse solutions, handling missing values, and likelihood 
models for integrating Boolean and count data.  
The manuscript addresses issues encountered in applying group factor analysis to multi-omics data. 
The use of variational Bayes for fast inference, inference of sparse solutions and the handling of 
missing values have all been previously described. The use of Poisson and Negative Binomial 
likelihoods for factor analysis has been previously described. The analysis of CLL data is interesting 
and demonstrates the power of the approach, but these results are not followed up on in any way. 
The code is well written and well documented, and likely to be useful for bioinformatics 
practitioners with a strong statistical background. The manuscript is clearly written, the supplement 
provides an excellent primer on factor analysis for multi-omics, useful for readers with a strong 
mathematics background.  
Major:  
Although the code appears to be a careful implementation of group factor analysis for multi-omics 
data, and would likely be useful, it is not clear what the methodological advance of the study is. By 
their own admission, Table 1 Supp. 1.5, the advances of the study (as described in the introduction) 
have all been developed previously. Although not listed in that table, there are other 
implementations of Poisson and NB likelihoods too.  
The application of MOFA to CLL data is interesting, and very carefully executed. But, there has 
been no follow-up studies performed. Thus, it is difficult to say that this manuscript represents a 
vertical advance in the field of CLL research.  
Ultimately, the main contribution of the manuscript appears to be the code and the tutorial, which 
does seem very useful. I would ask the authors to consider either developing the CLL analysis 
through additional molecular assays, and refocus the paper on those results. Or, more clearly 
delineate how MOFA is a methodological advance over existing GFA approaches.  
Minor:  
The title "Multi-Omics factor analysis disentangles heterogeneity in blood cancer", suggests that this 
is a manuscript about blood cancers. However, the only result for blood cancer I can find in the 
abstract is: "... [we] discovered previously underappreciated drivers of variation, such as response to 
oxidative stress.", which is somewhat of a modest result from which no conclusions are drawn. The 
manuscript itself reads like a methods paper, and in my opinion would make a strong software note. 
But, the title should reflect the ultimate direction the authors choose for the manuscript.  
 
 
 
Reviewer #3:  
 
The manuscript presents an elegant Bayesian model "MOFA" based on group factor analysis to infer 
factors explaining variation across multiple omics datasets. There is a strong need for computational 
methods that allow integration of multiple data modalities such as expression, mutational and 
clinical data collected from the same system and this paper presents a principled methodology that 
provides interpretable factors for studying heterogeneity across samples from integration of datasets. 
The authors design a variational inference procedure that includes nice mean-field approximation 
for non-Gaussian data with two instructive examples for Bernoulli and Poisson data.  
The factor space can be used for analysis and visualization, identification of outliers and imputing 
missing data. The authors show the performance on both simulated and CLL data. They identify the 
drivers of variation in CLL and molecular signatures based on integration of features and data 
modalities. They show that the inferred factors explain differences in expression, mutations, 
methylation or treatment outcome, etc.  
This method is a very useful resource and tool for studying heterogeneity in a global scale through 
combination of matched data types. The model has the advantage to handle large amounts of clinical 
data, which is common.  
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I would very much like to see it published at MSB, but feel that some more analysis and 
interpretation is still needed, to make this into a better paper. See major comments below.  
 
Major comments  
• Based on inferred factors on CLL patient data, the authors show MOFA's Ability of detecting 
outlier samples as well as imputing missing data in drug response. The simulation experiments 
showing the performance in imputing missing drug response data was great. However, I wasn't fully 
convinced with the outlier detection analysis. If the authors believe that some patients were 
mislabeled based on IGHV status (and were not borderline cases), they should examine what other 
markers or mechanisms are better surrogates of CLL biology and validate that experimentally.  
• Why are factors 3 and 4 not discussed in the paper? Factor 3 is also active in the drug response 
view, what does it represent?  
• Supplementary Figure 11 shows Factor 1 when one view is masked, what are the biological signals 
that are missed with masking each view? Can you extend this to other factors?  
• Also, how would the results look like if only one view was used (and the rest were masked)? 
Which views were most informative of clinical outcome or CLL markers?  
• Overall, while the computational methodology is strong, the paper does not show MOFA's ability 
in inferring deep biological insight. Therefore, I suggest either performing deeper analysis and 
biological experiments or applying this method to a second system such as ENCODE datasets to 
show broader application and insight.  
 
Minor points  
• Supplementary methods: Section 1.1 refers to Figure S1 for plate model, should be Figure S17.  
• Figure 2E: Were no gene sets enriched for factor 1,2?  
• Figure 2F not cited in main text or explained. Some subfigures are not cited in order.  
• Figure 4b: Was the gene set enrichment done between the two factor clusters (marked in Figure 
4a)? The samples don't show discrete clusters for factor 5 unlike factor 1. What is the significance of 
clustering factor 5 into two clusters?  
• Page 5 second paragraph from bottom: reference should be to Fig 2f not Fig 2d.  
• Fig S9: Would be great to show the sample number breakdown by views, to see if factor clusters 
are associated with (or biased to) views.  
 
 
  



 

We thank the reviewers for their time and effort spent reviewing our work, and for their 
insightful comments.  

Reviewer #1:  
 
With the increasing availability of multi-omics datasets, the development of statistical 
methods to disentangle specific- and shared-components of variation in such datasets has 
numerous applications and will undoubtedly help to expose novel biology. The authors 
present Multi-Omics Factor Analysis (MOFA) which applies Group Factor Analysis to identify 
hidden factors that capture biological and technical sources of variability. The model builds 
on group factor analysis with the additional optimizations of (a) fast inference based on 
variational approximation, (b) inference of sparse solutions by inducing group-wise and 
feature-wise sparsity, (c) handling missing values and (d) integration of different data 
likelihood models to integrate non-Gaussian data. The manuscript is well written, the method 
is evaluated with extensive simulations and further highlights the application of MOFA to CLL 
to identify and enhance clinical markers. However, the method and its application to CLL 
have several challenges that need to be further explored and dampen its impact.  
 
A major concern is that the method is not contrasted in practice to other group factor 
analysis methods that are closely related to MOFA (listed in Table 1 of Supplemental 
Methods), neither in the simulation study nor the real data analysis. While the iCluster 
method is widely used, it would be important to minimally see a comparison to the Hore et al 
(2016) method, which is the method most closely related to MOFA.  
 
We agree with the reviewer that an appropriate comparison and benchmark of new methods 
is essential.  
 
In response, we have now extended the discussion of previous methods and provide 
additional data on how they relate to MOFA. Concerning the specific method proposed by 
Hore et al. (2016), we would like to point out that a direct comparison is not feasible. While 
based on a related mathematical formulation, this method has different aims and 
applications. Briefly, the Hore et al. model performs a tensor decomposition that assumes as 
input a 3D array containing genomic data assayed for various tissues and individuals. The 
dimensions of this tensor are (1) the individuals, (2) the tissues and (3) genes. Importantly, 
this decomposition makes strong assumptions about the structure of the datasets, namely 
that for each tissue (corresponding to a view in our model) and individual (sample) the same 
set of genes (features) is assayed. While this assumption is fulfilled and appropriate for the 
integration of multiple expression datasets as considered in Hore et al., it does not hold in 
the multi-omics setting, where different features are measured by each assay (e.g. genome, 
transcriptome, DNA methylation, drug responses). It is this latter setup that MOFA is 
designed for. 
 
More pertinent is the comparison of MOFA with the Group Factor Analysis (GFA) by 
Leppäaho et al. (2017), for which an implementation exists (R package GFA). We now 
compare MOFA to GFA using simulated and real data (See the new section Model validation 
and comparison on simulated data (page 4), Figure EV1, Appendix Figure S4-S5, S9 and 
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Methods). Briefly, although the generative models that underlie MOFA and GFA are related, 
our method and its implementation offers three main advantages: 
 

● MOFA supports more versatile noise models: MOFA allows for different likelihood 
models and combinations thereof, which is critical for integrating multi-omics assays 
with different data modalities. We illustrate this by considering the combination of 
Gaussian and non-Gaussian likelihoods in the CLL study and in an additional single-
cell data set. In contrast, existing group factor analysis methods (including the recent 
Leppäaho et al. (2017) GFA implementation) assume Gaussian noise. 
 

● MOFA is computationally more efficient: While both the Leppäaho et al. GFA 
implementation and MOFA scale linearly in the model dimensions (views, samples, 
factors and features), MOFA is implemented using a computationally more efficient 
variational approximation, compared to the Gibbs sampler used by Leppäaho et al. 
This leads to major speedups in relevant  applications (e.g., for the CLL data a 
MOFA model can be trained in 45 minutes compared to 33.6 hours with GFA using 
the same number of initial factors1). The largest gains in computational efficiency are 
observed for datasets with missing values (See discussion in Methods ‘Relationship 
to existing methods’ section). Increased computational speed facilitates the analysis 
of larger datasets, enables interactive and explorative use and renders resampling 
schemes much more practical (e.g. to enable the model selection across multiple 
restarts as in Appendix Figure S2-3, or to enable bootstrap to assess robustness as 
in Appendix Figure 7). 
 

● Improved selection of model complexity (i.e., number of factors). MOFA 
implements a simple yet effective heuristic to determine the dimensionality of the 
latent space by means of the stepwise deactivation of unused factors, based on a 
minimum variance criterion (see Methods for details). We find that this approach is 
superior to existing approaches, including the criterion used by Leppäaho et al., and 
in particular leads to the inference of less spurious factors. 

 
In addition to these core performance parameters, we would like to highlight the improved 
usability of MOFA, as it comes as a well documented software with a suite of ‘downstream’ 
analysis methods, including tools for visualisation, automatic annotation of factors, the 
identification of outliers, clustering and imputation of missing values. 
 
1) The definition of "views" is not well articulated.  
We agree that the terminology ‘view’ was not sufficiently well defined in the previous version 
of the manuscript. We refer to ‘view’ as one of the input data matrices in MOFA, which in the 
CLL application is equivalent to an omic type. To avoid confusion we now limit the use of the 
word ‘view’ to the technical description of MOFA in Methods, where the term is defined 
explicitly. In the main text we now explicitly refer to the corresponding omic modality or 
assay. 
 
 

                                                 
1 Comparison based on 10 runs on a single CPU each, randomly allocated to Intel Xeon Processor 
E5-2670, E5-2680v3 and Dual AMD EPYC 7601 Processor 

https://www.servethehome.com/dual-amd-epyc-7601-processor-performance-and-review-part-1/


 

2) While the extension of the method to non-Gaussian data performs reasonably well, it 
assumes the same distribution across data modalities. This is almost never the case in 
practice when performing multi-omics analyses, e.g. when modelling both binary SNP data 
and count gene expression data. It is thus not exactly clear what the advantage of the 
extension is.  
We thank the reviewer for highlighting the importance of combining views with different 
likelihood models. MOFA is not limited to a single (possibly non-Gaussian) likelihood across 
views and instead can be configured to enable arbitrary combinations of likelihood models. 
For example, in the CLL application, we employ a Gaussian likelihood for the mRNA, 
methylation and drug response assays, combined with a Bernoulli likelihood for the mutation 
assay. We now state this flexibility more clearly in the main text (last paragraph of page 3 
and 4). Additionally, we now present a second application of MOFA to a single-cell 
multiomics dataset, where we model three non-Gaussian views (with Bernoulli likelihood) 
together with one Gaussian view. 
 
3) In the analysis of the chronic lymphocytic leukemia data, not much information is provided 
about the choice of K in the three-mean clustering of samples based on factor 1 (Figure 3A). 
Was there a formal test about the goodness-of-fit of a three- versus e.g. two-mean 
clustering? The IZ and HZ clusters do not show a large difference in gene expression values 
(Figure 3C) or Drug response (Figure 3E).  
While the Factors inferred by MOFA are inherently continuous, clustering of the samples in 
the factor space (or subspaces) can be considered during downstream analysis. To assess 
the choice of number of clusters we used, as suggested, the Bayesian Information Criterion 
(BIC) for the K-means clustering using the R package ClusterR. The lowest BIC is observed 
for K=3, consistent with our previous choice (See Appendix Figure S10). 
 
Regarding the gene expression and drug response profiles of IZ and HZ, it is true that these 
are relatively similar when compared to the LZ cluster. However, we still find that a 
considerable subset of the 20 genes and 10 concentration points shown in Figure 3 exhibit 
significant differences between the groups (10 genes and 7 concentration points, P<0.05, t-
test, see Figure below). Nevertheless, we agree that the differences between IZ and HZ are 
most prominent for the methylation data. These data most likely drive the observed factor 
clusters, which are in strong agreement with methylation clusters defined by others 
(Appendix Figure S11). 
 
 



 

 Cluster-wise comparison of the genes and drugs shown in Figure 3. 
Boxplots for gene expressions levels (a) and drug response (b) for the top-weighted genes 
and drugs shown in Figure 3. Drugs are shown separately for each concentration given in 
𝞵M. P-values are indicated for each comparison (t-test).  
 
4) Even though factors 8 was significantly associated with time to next treatment (Figure 5A) 
and it explains some proportion of the gene expression variability, the factor shows no 
enrichment based on the GSEA (Figure 2E). Moreover, there is not much information / 
knowledge about what this factor is correlated to besides the one line in the text 'Factor 8 is 
associated with differences in gene expression between pre-treated and untreated patients'. 



 

Can you elaborate more about Factor 8? For example provide a plot similar to Sup Figure 
15?  
 
We now discuss in more detail the set of genes that are most strongly associated with Factor 
8, which is primarily active in the mRNA data. Of note, already in the initial submission, we 
reported a small set of gene sets that were enriched  for genes linked to factor 8 (GSEA, 
Fig.2e), however these results were not discussed in the main text. We now elaborate on 
these findings, which link Factor 8 to Wnt signalling (P=5x10-05 ; FDR < 1%). See page 7, 
paragraph 3 and the new Appendix Figure S19. 
 
5) The CLL variable is time to next treatment. It is very likely that individuals currently or 
proximally treated will have important changes in gene expression and that simply knowing if 
a person is being actively treated or not plus a few other clinical variables could be very 
helpful in predicting the timing of the next treatment. Particularly in the context of how CLL 
and its therapy may be timed in practice. This is highlighted in the observation that the 
response, next treatment timing, is best predicted by factors correlated to whether the 
patient was chemo-immunotherapy treated before collected. The relationship of the 
predictors to clinical variables such as these is not adequately explored and ultimately it is 
difficult to assess whether the molecular approach is better than an alternative approach that 
uses a combination of clinical phenotypes (like cell counts or further accounts for 
accelerated treatment for increased disease severity).  
 
It is correct that clinical covariates, such as whether the patient was treated with chemo-
immunotherapy before or the leukocyte counts as well as the cell doubling time, are known 
predictors of the time to next treatment (TTT). Clearly, these variables should be taken into 
consideration for clinical decision making. The primary aim of our analysis was to explore the 
molecular basis of clinical endpoints and the utility of MOFA for identifying relevant 
molecular factors, rather than improving upon the prediction of clinical endpoints based on 
classical markers.  
 
Having said this, we agree that clinical variables are useful to provide context. We have now 
included this into the manuscript (paragraph 2, page 7), where we refer to an additional 
supplementary figure (Appendix Figure S21), comparing predictions based on MOFA 
factors with clinical covariates. This analysis supports the relevance of MOFA factors, for 
which we observe a similar predictive accuracy as for clinical covariates (cell doubling time 
and pretreatment) that are used to guide treatment decisions.  
 
 
6) Is the data for the CLL example downloadable with MOFA?  
 
The processed data as well as the trained MOFA model are contained in the vignette of the 
MOFAtools R package available in https://github.com/bioFAM/MOFA. The vignette illustrates 
the core functionalities provided by MOFA and enables reproducing the main findings 
reported in the paper. 
The unprocessed raw data as presented in the original study can be obtained from 
http://pace.embl.de/ (see Dietrich, Oles, Lu et al (JCI, 2018)). 
 
 

http://pace.embl.de/


 

Minor:  
1) Figure S2c appears to show inflation of number of inferred factors when using binary data. 
Figure S3c is also inflated for Gaussian data. Can the authors comment on this? 
 
It is true that in some cases, especially for non-Gaussian likelihoods, there is an inflation in 
the number of inferred factors. In general, identifying the correct number of factors is a 
challenging and still unsolved problem for factor models. In MOFA we approach this problem 
by combining the ARD prior with a variance threshold to inactivate factors during training 
(see Methods, Model training and selection). While this heuristic performs reasonably well 
and improves upon existing implementations of factor models (see the comparison with GFA 
in Appendix Figure S4 and Methods, Relationship to existing methods), we agree that this 
strategy is not free of limitations. Finding more general solutions to determine model 
complexity in factor models remains an interesting problem for future research.  
 
In MOFA much of the variation in the number of factors can be explained by the variational 
training converging to different local optima. Indeed, in the simulation study of non-gaussian 
likelihoods we observe that the inflated factor numbers correspond to poorer quality 
solutions. To address this, the MOFA implementation runs multiple restarts of our model, 
and the solution that maximises the evidence lower bound (ELBO) is selected. This training 
mode is used throughout the simulations as well as the applications, e.g. Appendix Figure 
S6.  
 
In the revised manuscript we have altered Appendix Figures S2 and S3 by including the 
ELBO statistics. This demonstrates that solutions that maximizes the ELBO corresponds to 
the correct model complexity (K=10 factors), both for Gaussian and non-Gaussian 
likelihoods. 
 
2) Page 3, second paragraph, add citations for the iCluster method after `Comparison of 
MOFA with the factor model that underlies the widely-used iCluster method (Shen et al 
2009)` and other related approaches after `We contrast MOFA to related approaches in 
Methods and Supp. Table 1.`  
 
We have added the references as suggested. 
 
3) Page 3, second paragraph: ` We contrast MOFA to related approaches in Methods and 
Supp. Table 1`. The correct reference for this is "Supplemental Methods" and "Table 1 of 
Supplemental Methods" (not Supplemental Table 1 which refers to simulation analysis 
parameters).  
 
We changed the reference, which is now Appendix Table S3.  
 
4) All figure reference in "Supplemental Methods" are off by one number. In section 2.1, it's 
Figure S1 that contains results for recovery of the number of factors and not Figure S2. In 
section 2.2, it's Figure S2 and Figure S3 that contain results for non-Gaussian data and not 
Figure S3 and Figure S4 etc.  
 
We apologize for this oversight and have fixed the references. 
 



 

5) Figure S5b doesn't appear to show R2 and colors on the same scale.  
 
We modified the colors so that R2 is shown on the same scale for all panels. 
 
6) For Figure S7b can the authors comment on the trend for Factor 1? 
 
We thank the reviewer for pointing this out. It was indeed an error, where Factor 1 
corresponded to the intercept factor, which is constant across all different model instances (it 
is a vector of ones). The analysis was repeated and Figure S7b (now Appendix Figures S7) 
was updated accordingly.  
 
 
  



 

Reviewer #2:  
 
Argelaguet et al. present algorithms and code to implement group factor analysis for multi-
omics data, which they term MOFA. They demonstrate the utility of MOFA on a public multi-
omics data cohort, derived from leukaemia clinical samples.  
Different variants of factor analysis, canonical correlation analysis and principal components 
analysis are widely used in systems biology studies. However, the authors have addressed 
some of the computational issues involved in applying group factor analysis to multi-omics 
data, including: code for fast inference, inference of sparse solutions, handling missing 
values, and likelihood models for integrating Boolean and count data.  
The manuscript addresses issues encountered in applying group factor analysis to multi-
omics data. The use of variational Bayes for fast inference, inference of sparse solutions and 
the handling of missing values have all been previously described. The use of Poisson and 
Negative Binomial likelihoods for factor analysis has been previously described. The 
analysis of CLL data is interesting and demonstrates the power of the approach, but these 
results are not followed up on in any way. The code is well written and well documented, and 
likely to be useful for bioinformatics practitioners with a strong statistical background. The 
manuscript is clearly written, the supplement provides an excellent primer on factor analysis 
for multi-omics, useful for readers with a strong mathematics background.  
 
Major:  
Although the code appears to be a careful implementation of group factor analysis for multi-
omics data, and would likely be useful, it is not clear what the methodological advance of the 
study is. By their own admission, Table 1 Supp. 1.5, the advances of the study (as described 
in the introduction) have all been developed previously. Although not listed in that table, 
there are other implementations of Poisson and NB likelihoods too.  
The application of MOFA to CLL data is interesting, and very carefully executed. But, there 
has been no follow-up studies performed. Thus, it is difficult to say that this manuscript 
represents a vertical advance in the field of CLL research.  
Ultimately, the main contribution of the manuscript appears to be the code and the tutorial, 
which does seem very useful. I would ask the authors to consider either developing the CLL 
analysis through additional molecular assays, and refocus the paper on those results. Or, 
more clearly delineate how MOFA is a methodological advance over existing GFA 
approaches.  
 
We thank the reviewer for these comments, which have helped to clarify the novelty of our 
paper. As suggested, we have shifted the focus of the manuscript to the methodological 
advances and practical advantages MOFA offers compared to existing methods. As part of 
these changes, we also present additional comparisons to existing group factor analysis 
models. 
 
Briefly, the key advantages of MOFA include first, a more flexible and configurable noise 
model and improved computational efficiency as well as an efficient heuristics to estimate 
the numbers of factors. These differences are discussed in detail in Model validation and 
comparison on simulated data (page 4) and Methods ‘Relationship to existing methods’ 
section, where we also present empirical comparisons using simulated and real data. See 
also our response to Reviewer 1. While implementations of non-Gaussian factor analysis 



 

have been proposed for single-view data, to our knowledge there is no group factor analysis 
model that can handle different data modalities. Among other multi-omics integration 
methods only iClusterPlus (Mo et al. 2012) is capable of handling non-Gaussian noise. We 
have included the iCluster methods into Appendix Table S1. 
 
Additionally, in order to demonstrate that MOFA is widely applicable to different problems, 
we have included a second application to a multi-omics single-cell dataset where RNA 
expression and DNA methylation were simultaneously profiled in a set of 87 mouse ES cells. 
On this dataset, MOFA factors captured differentiation trajectories and yielded connections 
between transcriptomic and epigenetic changes. 
 
 
Minor:  
The title "Multi-Omics factor analysis disentangles heterogeneity in blood cancer", suggests 
that this is a manuscript about blood cancers. However, the only result for blood cancer I can 
find in the abstract is: "... [we] discovered previously underappreciated drivers of variation, 
such as response to oxidative stress.", which is somewhat of a modest result from which no 
conclusions are drawn. The manuscript itself reads like a methods paper, and in my opinion 
would make a strong software note. But, the title should reflect the ultimate direction the 
authors choose for the manuscript.  
 
Thank you for this suggestion. In order to better reflect the methodological focus of the 
paper, we have changed the manuscript title to:  “Multi-Omics factor analysis - a framework 
for unsupervised integration of multi-omic data sets”  
  



 

Reviewer #3: 
 
The manuscript presents an elegant Bayesian model "MOFA" based on group factor 
analysis to infer factors explaining variation across multiple omics datasets. There is a strong 
need for computational methods that allow integration of multiple data modalities such as 
expression, mutational and clinical data collected from the same system and this paper 
presents a principled methodology that provides interpretable factors for studying 
heterogeneity across samples from integration of datasets. The authors design a variational 
inference procedure that includes nice mean-field approximation for non-Gaussian data with 
two instructive examples for Bernoulli and Poisson data.  
The factor space can be used for analysis and visualization, identification of outliers and 
imputing missing data. The authors show the performance on both simulated and CLL data. 
They identify the drivers of variation in CLL and molecular signatures based on integration of 
features and data modalities. They show that the inferred factors explain differences in 
expression, mutations, methylation or treatment outcome, etc. 
This method is a very useful resource and tool for studying heterogeneity in a global scale 
through combination of matched data types. The model has the advantage to handle large 
amounts of clinical data, which is common. 
I would very much like to see it published at MSB, but feel that some more analysis and 
interpretation is still needed, to make this into a better paper. See major comments below.  
 
We thank the reviewer for the supportive comments on our manuscript.  
 
Major comments  
• Based on inferred factors on CLL patient data, the authors show MOFA's Ability of 
detecting outlier samples as well as imputing missing data in drug response. The simulation 
experiments showing the performance in imputing missing drug response data was great. 
However, I wasn't fully convinced with the outlier detection analysis. If the authors believe 
that some patients were mislabeled based on IGHV status (and were not borderline cases), 
they should examine what other markers or mechanisms are better surrogates of CLL 
biology and validate that experimentally.  
 
The reviewer raises an important point, and we have followed their suggestion and tested 
the prediction experimentally. To recap, MOFA revealed three samples whose underlying 
molecular status appeared to be inconsistent with the reported IGHV status. This could be 
due either to a mislabeling/swapping of these samples; or it could point to interesting 
biological phenomena where the ‘canonical’ relationship between the molecular state of the 
cells and the IGHV status, as currently called from the DNA-sequence, does not hold.  
 
We have generated additional data and extended our analysis to test the MOFA predictions 
for these three samples. We considered: 

(1) An independent drug response assay using a drug targeting the BCR pathway that 
was not contained in the dataset used for the training of MOFA (ONO-4509),  

(2) Whole exome sequencing (WES) data, at the locus of the IGHV genes.  
Regarding (1), the drug sensitivity of sample P0108 indicated low reliance on BCR 
signalling, as is typical for M-CLL, despite its annotation as U-CLL, and in agreement with 
the MOFA prediction. For the other two samples, the drug responses were intermediate and 



 

would be consistent both with their nominal IGHV status and the MOFA predictions. (Figure 
EV3e).  
Regarding (2), the mutation load in the IGHV loci for all three cases was in agreement with 
the prediction by MOFA, i.e. for the two nominal U-CLL samples we found many mutations in 
the IGHV genes, while for the nominal M-CLL sample we found none (Figure EV3f).  
In addition, we were able to commission an independent assessment of the IGHV status of 
sample P0108 from the attending clinician of the patient (Department of Haematology at 
University Hospital Mannheim; standard protocol for IGHV mutation analysis using PCR 
amplification and sequencing analysis of the IGHV region). They reported  93.3% nucleotide 
sequence homology in the V1-69 gene usage; given that the conventional cut-off is 98%, this 
report also supports the prediction of MOFA. 
 
Taken together, these additional data and analyses confirm that the outlying samples 
identified by MOFA stand out functionally and that MOFA justifiably identified them as 
outliers: For P0108 both assays as well as the independent IGHV label support a 
reassignment to the IGHV group predicted by MOFA. For P0437 drug response assays in 1. 
are inconclusive but WES is strongly supportive of the IGHV group inferred by MOFA. For 
P0432 the results from both assays are consistent with either IGHV group but the lack of any 
mutations in WES is more common in U-CLL samples. While we have not identified the root 
cause underlying the fact that these three samples were outliers, we speculate that they may 
have been due to sample swapping during the assessment of the clinical IGHV label or 
(manual) data entry errors. We included these results on page 7, paragraph 1 of the 
manuscript and Figure EV3. 
 
• Why are factors 3 and 4 not discussed in the paper? Factor 3 is also active in the drug 
response view, what does it represent?  
 
We agree that Factors 3 and 4 received little attention in the previous version of the 
manuscript and we now provide more details on these factors (page 6, second paragraph 
and Appendix Figure S14, S15). 
 
Factor 4 is mostly active in the mRNA data (9 % of variance explained) and the gene set 
enrichment analysis shows an enrichment of pathways related to immune response and T-
cell receptor signalling (Appendix Figure S14a). Among the top weights of this factor are 
genes involved in the immune response, including surface markers such as CD300E, CD8A, 
CD3E (Appendix Figure S14b,c). This suggest that this factor captures differences in cell 
type composition between the samples: While most cells in the samples are B-cells, other 
cell types, such as T-cells and monocytes, are contained in varying amounts. 
 
Factor 3, on the other hand, is mainly active in the drug response data (11% of variance 
explained). Notably, we observed that most drugs had positive weights on this factor 
(Appendix Figure S15a) and the factor is positively associated with the mean sensitivity of 
a sample across all drugs and concentrations (Appendix Figure S15b). Overall this 
suggests that the factor captures variation in the overall drug susceptibility (Geeleher et al, 
2016). 
 
 



 

• Supplementary Figure 11 shows Factor 1 when one view is masked, what are the 
biological signals that are missed with masking each view? Can you extend this to other 
factors?  
 
In response to this comment, we have extended this analysis to all factors. Briefly, we 
trained MOFA excluding one of the views at a time. We then compared the factors inferred 
on the reduced dataset to those from the full dataset (using the maximal correlation 
coefficient across factors). This approach allowed for quantifying to what extent the reduced 
MOFA model captures original factors inferred on the full dataset (Appendix Figure S8c).  
 
Overall, we observed that a factor active in the masked view can still be recovered, provided 
that it is active in at least one other view. As already previously demonstrated Factor 1 is 
always recovered, which is consistent with its broad sharing across all views. A similar trend 
can be observed for Factor 2. Other factors are reliant on the mRNA and methylation data 
and hence cannot be identified without the corresponding assay. Surprisingly, we also find 
some factors that had strong activities in the drug response data (such as Factor 3 and 
Factor 5) to be heavily relying on the inclusion of other assays, such as mRNA or 
methylation. This could be due to a higher noise level in the drug response data that can be 
mitigated by combining with other assay or due to a low number of features, for which this 
factor explains variation in the drug response assay compared to other assays.   

 
 

• Also, how would the results look like if only one view was used (and the rest were 
masked)? Which views were most informative of clinical outcome or CLL markers?  
 
The reviewer touches upon an important point that has not received sufficient attention in the 
previous version of the manuscript. Running the MOFA model with a single view is 
equivalent to a Bayesian Sparse Factor analysis, which is intuitively related to a (sparse) 
Principal Component Analysis but with an explicit probabilistic formulation.  
 
In our application we observed that many of the factors can in principle also be inferred 
based on a single view, with the mRNA data being most informative overall (Appendix 
Figure S8a). A single view model, however, does not yield connections between the 
different views. A second advantage of the multi-view approach is that the full dataset can be 
leveraged. For example, on the CLL data MOFA is applied to 200 samples, whereas there 
are only 136 samples with mRNA data.   
 
In terms of information for clinical outcome, we again found that the mRNA data to be the 
most informative single view (Appendix Figure S8b). To ensure a fair comparison in this 
analysis, we only considered the subset of samples for which all data modalities were 
profiled. 
 
 

• Overall, while the computational methodology is strong, the paper does not show MOFA's 
ability in inferring deep biological insight. Therefore, I suggest either performing deeper 
analysis and biological experiments or applying this method to a second system such as 
ENCODE datasets to show broader application and insight. 



 

 
First, we would like to note that the revised manuscript now places stronger emphasis on the  
methodological advances of MOFA and less on a specific findings in CLL biology. This 
change addresses comments raised by reviewers 1 & 2, as well as editorial requests.  
 
Having said this, we agree that a compelling application of the method is important. In 
response to referee comments, we have extended the analysis on the CLL data, for which 
we provide further details (such as discussed in response to the comments 1 and 2, as well 
as Reviewer 1 comments 4 and 5). Second, in order to demonstrate the broad applicability 
of the model, we now present a second application of MOFA to a single cell multi-omics 
dataset where RNA expression and DNA methylation were simultaneously profiled in a set of 
87 mouse ES cells. Here, MOFA yielded insights into coordinated changes between the 
transcriptome and the epigenome along a differentiation trajectory (page 7-8, new Figure 5).   
 
 
Minor points  
• Supplementary methods: Section 1.1 refers to Figure S1 for plate model, should be Figure 
S17. 
 
Thanks for pointing this out, we changed the reference (now Appendix Figure S24). 
 
• Figure 2E: Were no gene sets enriched for factor 1,2?  
 
With the Reactome gene set, which we used in the current manuscript, no gene sets were 
enriched for Factors 1 and 2. Depending on the study of interest other gene sets can be 
used in the gene set enrichment analysis function implemented in MOFA. In our CLL 
application, using leukemia specific gene sets or positional gene sets for example would 
connect these two factors to B-cells activity and chromosome 12, respectively. In general, 
we leave the gene sets to be tested as a user choice in MOFA. 
 
• Figure 2F not cited in main text or explained. Some subfigures are not cited in order.  
 
We now refer to this Figure at the end of page 4, where we mention the relationship of 
Factor 1 and 2 with IGHV status and Trisomy 12. Panels were re-ordered to match the order 
in the manuscript.  
 
• Figure 4b: Was the gene set enrichment done between the two factor clusters (marked in 
Figure 4a)? The samples don't show discrete clusters for factor 5 unlike factor 1. What is the 
significance of clustering factor 5 into two clusters?  
 
The reviewer is right that the clustering of Factor 5 in two groups is arbitrary. In general, our 
analysis is always based on the continuous factors and their weights, e.g. for the gene set 
enrichment analysis we used the weights of the continuous factors (Methods). Only for 
visualization purposes did we sometimes opt for a discrete clustering. However, one of the 
advantages of MOFA is that no discrete clustering is required. Working with the continuous 
factor is in many cases a better representation of the underlying molecular phenotype than 
grouping samples in discrete subpopulations. Therefore, we updated Figure 4 (now Figure 
EV2) with a continuous representation of the samples along the factor.  



 

 
 
• Page 5 second paragraph from bottom: reference should be to Fig 2f not Fig 2d.  
 
We corrected this reference, supposed to refer to Figure 2e (gene set enrichment analysis). 
 
• Fig S9: Would be great to show the sample number breakdown by views, to see if factor 
clusters are associated with (or biased to) views. 
 
We added the sample number breakdown by views to Figure S9 (now Appendix Figure 
S11) and did not find any association of the sample numbers per view to the clusters. 
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2nd Editorial Decision 16th May 2018 

Thank you for sending us your revised manuscript. We have now heard back from the two reviewers 
who were asked to evaluate your manuscript. As you will see below, the reviewers mention that 
their concerns have been addressed and think that the study is now suitable for publication. 
Reviewer #1 mentions a couple of minor issues with the text, which we would ask you to fix.  
 
----------------------------------------------------------------------------  
 
REFEREE REPORTS. 
 
Reviewer #1:  
 
The authors have well addressed the comments.  
 
Minor issues:  
Two typos, both in section "Relationship to existing methods" p. 13 : (1) "iCluster: In contrast to 
MOFA, iCluster uses in *a* each view" -> "iCluster: In contrast to MOFA, iCluster uses in each 
view" and (2) "Group factor analysis: While the underlying model of MOFA is closely *connect* 
to" -> "Group factor analysis: While the underlying model of MOFA is closely *connected* to"  
 
 
Reviewer #3:  
 
The manuscript has significantly improved and all the main comments from all reviewers have been 
addressed. The addition of single-cell data (despite the small scale) makes a strong distinction 
between this method and previous methods such as iCluster in that MOFA provides model 
flexibility to accommodate both continuous and discrete states. The main novelty of the paper as a 
first flexible and configurable group Factor Analysis method for multiple data modalities is now 
clear. Adequate comparisons to previous factor analysis methods have been added in the revised 
manuscript.  
 
It would be interesting if the authors applied this method to single cell data showing hierarchical 
differentiation with multiple branching trajectories such as hematopoietic differentiation, though a 
large-scale application might be beyond the scope of this paper.  
 
The addition of validation data (drug response and WES) has strengthened the method, but still does 
not provide new biological insight. In this regard, repackaging the paper as a methodology paper 
rather than focusing on novel CLL insight is befitting.  
 
The flexibility of the noise model would expand the possible applications of this method. 
Furthermore, the supplementary provides a valuable resource (and a tutorial) for statistical 
computational biologists. 
 
  



 

Editorial comments: 

 

- Please include five keywords and a running title. 

multi-omics, data integration, factor analysis, dimensionality reduction, single-cell omics. 

 

- We noticed that you have not filled boxes 20 and 21 of the author checklist, could you 

please include an answer for these two boxes? 

Done. 

 

- In the main text: please include callouts to Figure panels 1A and 1B. 

Done. 

 

- In the Appendix PDF, we would ask you to rename the Figures from Supplementary Figure 

SX to Appendix Figure SX. 

Done. 

 

Reviewer comments: 

 

 

Reviewer #1: 
 
The authors have well addressed the comments. 
 
Minor issues: 
Two typos, both in section "Relationship to existing methods" p. 13 : (1) "iCluster: In contrast 
to MOFA, iCluster uses in *a* each view" -> "iCluster: In contrast to MOFA, iCluster uses in 
each view" and (2) "Group factor analysis: While the underlying model of MOFA is closely 
*connect* to" -> "Group factor analysis: While the underlying model of MOFA is closely 
*connected* to" 
Thank you for the positive comment. We have addressed all these comments and typos.  
 
Reviewer #3: 
 
The manuscript has significantly improved and all the main comments from all reviewers 
have been addressed. The addition of single-cell data (despite the small scale) makes a 
strong distinction between this method and previous methods such as iCluster in that MOFA 
provides model flexibility to accommodate both continuous and discrete states. The main 
novelty of the paper as a first flexible and configurable group Factor Analysis method for 
multiple data modalities is now clear. Adequate comparisons to previous factor analysis 
methods have been added in the revised manuscript. 
 
It would be interesting if the authors applied this method to single cell data showing 
hierarchical differentiation with multiple branching trajectories such as hematopoietic 
differentiation, though a large-scale application might be beyond the scope of this paper. 
 
The addition of validation data (drug response and WES) has strengthened the method, but 
still does not provide new biological insight. In this regard, repackaging the paper as a 
methodology paper rather than focusing on novel CLL insight is befitting. 
 
The flexibility of the noise model would expand the possible applications of this method. 
Furthermore, the supplementary provides a valuable resource (and a tutorial) for statistical 
computational biologists. 

crickerb
Typewritten Text
2nd Revision - authors' response						28th May 2018



 

Thank you for the positive comments. We agree that the results we present can be extended 

in a number of ways. In particular, applications to larger single-cell data sets will be fruitful 

directions in the future.  
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  the	
  journal’s	
  
authorship	
  guidelines	
  in	
  preparing	
  your	
  manuscript.	
  	
  

PLEASE	
  NOTE	
  THAT	
  THIS	
  CHECKLIST	
  WILL	
  BE	
  PUBLISHED	
  ALONGSIDE	
  YOUR	
  PAPER
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6.	
  To	
  show	
  that	
  antibodies	
  were	
  profiled	
  for	
  use	
  in	
  the	
  system	
  under	
  study	
  (assay	
  and	
  species),	
  provide	
  a	
  citation,	
  catalog	
  
number	
  and/or	
  clone	
  number,	
  supplementary	
  information	
  or	
  reference	
  to	
  an	
  antibody	
  validation	
  profile.	
  e.g.,	
  
Antibodypedia	
  (see	
  link	
  list	
  at	
  top	
  right),	
  1DegreeBio	
  (see	
  link	
  list	
  at	
  top	
  right).

7.	
  Identify	
  the	
  source	
  of	
  cell	
  lines	
  and	
  report	
  if	
  they	
  were	
  recently	
  authenticated	
  (e.g.,	
  by	
  STR	
  profiling)	
  and	
  tested	
  for	
  
mycoplasma	
  contamination.

*	
  for	
  all	
  hyperlinks,	
  please	
  see	
  the	
  table	
  at	
  the	
  top	
  right	
  of	
  the	
  document

8.	
  Report	
  species,	
  strain,	
  gender,	
  age	
  of	
  animals	
  and	
  genetic	
  modification	
  status	
  where	
  applicable.	
  Please	
  detail	
  housing	
  
and	
  husbandry	
  conditions	
  and	
  the	
  source	
  of	
  animals.

9.	
  For	
  experiments	
  involving	
  live	
  vertebrates,	
  include	
  a	
  statement	
  of	
  compliance	
  with	
  ethical	
  regulations	
  and	
  identify	
  the	
  
committee(s)	
  approving	
  the	
  experiments.

10.	
  We	
  recommend	
  consulting	
  the	
  ARRIVE	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  (PLoS	
  Biol.	
  8(6),	
  e1000412,	
  2010)	
  to	
  ensure	
  
that	
  other	
  relevant	
  aspects	
  of	
  animal	
  studies	
  are	
  adequately	
  reported.	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  
Guidelines’.	
  See	
  also:	
  NIH	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  MRC	
  (see	
  link	
  list	
  at	
  top	
  right)	
  recommendations.	
  	
  Please	
  confirm	
  
compliance.

11.	
  Identify	
  the	
  committee(s)	
  approving	
  the	
  study	
  protocol.

12.	
  Include	
  a	
  statement	
  confirming	
  that	
  informed	
  consent	
  was	
  obtained	
  from	
  all	
  subjects	
  and	
  that	
  the	
  experiments	
  
conformed	
  to	
  the	
  principles	
  set	
  out	
  in	
  the	
  WMA	
  Declaration	
  of	
  Helsinki	
  and	
  the	
  Department	
  of	
  Health	
  and	
  Human	
  
Services	
  Belmont	
  Report.

13.	
  For	
  publication	
  of	
  patient	
  photos,	
  include	
  a	
  statement	
  confirming	
  that	
  consent	
  to	
  publish	
  was	
  obtained.

14.	
  Report	
  any	
  restrictions	
  on	
  the	
  availability	
  (and/or	
  on	
  the	
  use)	
  of	
  human	
  data	
  or	
  samples.

15.	
  Report	
  the	
  clinical	
  trial	
  registration	
  number	
  (at	
  ClinicalTrials.gov	
  or	
  equivalent),	
  where	
  applicable.

16.	
  For	
  phase	
  II	
  and	
  III	
  randomized	
  controlled	
  trials,	
  please	
  refer	
  to	
  the	
  CONSORT	
  flow	
  diagram	
  (see	
  link	
  list	
  at	
  top	
  right)	
  
and	
  submit	
  the	
  CONSORT	
  checklist	
  (see	
  link	
  list	
  at	
  top	
  right)	
  with	
  your	
  submission.	
  See	
  author	
  guidelines,	
  under	
  
‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  submitted	
  this	
  list.

17.	
  For	
  tumor	
  marker	
  prognostic	
  studies,	
  we	
  recommend	
  that	
  you	
  follow	
  the	
  REMARK	
  reporting	
  guidelines	
  (see	
  link	
  list	
  at	
  
top	
  right).	
  See	
  author	
  guidelines,	
  under	
  ‘Reporting	
  Guidelines’.	
  Please	
  confirm	
  you	
  have	
  followed	
  these	
  guidelines.

18:	
  Provide	
  a	
  “Data	
  Availability”	
  section	
  at	
  the	
  end	
  of	
  the	
  Materials	
  &	
  Methods,	
  listing	
  the	
  accession	
  codes	
  for	
  data	
  
generated	
  in	
  this	
  study	
  and	
  deposited	
  in	
  a	
  public	
  database	
  (e.g.	
  RNA-­‐Seq	
  data:	
  Gene	
  Expression	
  Omnibus	
  GSE39462,	
  
Proteomics	
  data:	
  PRIDE	
  PXD000208	
  etc.)	
  Please	
  refer	
  to	
  our	
  author	
  guidelines	
  for	
  ‘Data	
  Deposition’.

Data	
  deposition	
  in	
  a	
  public	
  repository	
  is	
  mandatory	
  for:	
  
a.	
  Protein,	
  DNA	
  and	
  RNA	
  sequences	
  
b.	
  Macromolecular	
  structures	
  
c.	
  Crystallographic	
  data	
  for	
  small	
  molecules	
  
d.	
  Functional	
  genomics	
  data	
  
e.	
  Proteomics	
  and	
  molecular	
  interactions
19.	
  Deposition	
  is	
  strongly	
  recommended	
  for	
  any	
  datasets	
  that	
  are	
  central	
  and	
  integral	
  to	
  the	
  study;	
  please	
  consider	
  the	
  
journal’s	
  data	
  policy.	
  If	
  no	
  structured	
  public	
  repository	
  exists	
  for	
  a	
  given	
  data	
  type,	
  we	
  encourage	
  the	
  provision	
  of	
  
datasets	
  in	
  the	
  manuscript	
  as	
  a	
  Supplementary	
  Document	
  (see	
  author	
  guidelines	
  under	
  ‘Expanded	
  View’	
  or	
  in	
  
unstructured	
  repositories	
  such	
  as	
  Dryad	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  Figshare	
  (see	
  link	
  list	
  at	
  top	
  right).
20.	
  Access	
  to	
  human	
  clinical	
  and	
  genomic	
  datasets	
  should	
  be	
  provided	
  with	
  as	
  few	
  restrictions	
  as	
  possible	
  while	
  
respecting	
  ethical	
  obligations	
  to	
  the	
  patients	
  and	
  relevant	
  medical	
  and	
  legal	
  issues.	
  If	
  practically	
  possible	
  and	
  compatible	
  
with	
  the	
  individual	
  consent	
  agreement	
  used	
  in	
  the	
  study,	
  such	
  data	
  should	
  be	
  deposited	
  in	
  one	
  of	
  the	
  major	
  public	
  access-­‐
controlled	
  repositories	
  such	
  as	
  dbGAP	
  (see	
  link	
  list	
  at	
  top	
  right)	
  or	
  EGA	
  (see	
  link	
  list	
  at	
  top	
  right).
21.	
  Computational	
  models	
  that	
  are	
  central	
  and	
  integral	
  to	
  a	
  study	
  should	
  be	
  shared	
  without	
  restrictions	
  and	
  provided	
  in	
  a	
  
machine-­‐readable	
  form.	
  	
  The	
  relevant	
  accession	
  numbers	
  or	
  links	
  should	
  be	
  provided.	
  When	
  possible,	
  standardized	
  
format	
  (SBML,	
  CellML)	
  should	
  be	
  used	
  instead	
  of	
  scripts	
  (e.g.	
  MATLAB).	
  Authors	
  are	
  strongly	
  encouraged	
  to	
  follow	
  the	
  
MIRIAM	
  guidelines	
  (see	
  link	
  list	
  at	
  top	
  right)	
  and	
  deposit	
  their	
  model	
  in	
  a	
  public	
  database	
  such	
  as	
  Biomodels	
  (see	
  link	
  list	
  
at	
  top	
  right)	
  or	
  JWS	
  Online	
  (see	
  link	
  list	
  at	
  top	
  right).	
  If	
  computer	
  source	
  code	
  is	
  provided	
  with	
  the	
  paper,	
  it	
  should	
  be	
  
deposited	
  in	
  a	
  public	
  repository	
  or	
  included	
  in	
  supplementary	
  information.

22.	
  Could	
  your	
  study	
  fall	
  under	
  dual	
  use	
  research	
  restrictions?	
  Please	
  check	
  biosecurity	
  documents	
  (see	
  link	
  list	
  at	
  top	
  
right)	
  and	
  list	
  of	
  select	
  agents	
  and	
  toxins	
  (APHIS/CDC)	
  (see	
  link	
  list	
  at	
  top	
  right).	
  According	
  to	
  our	
  biosecurity	
  guidelines,	
  
provide	
  a	
  statement	
  only	
  if	
  it	
  could.

NA

NA

NA

NA

As	
  described	
  in	
  the	
  manuscript,	
  the	
  software	
  is	
  available	
  in	
  https://github.com/bioFAM/MOFA	
  and	
  
the	
  code	
  for	
  the	
  analysis	
  is	
  available	
  at	
  https://github.com/PMBio/MOFA_CLL

NO

NA

NA

NA

NA

The	
  section	
  is	
  included	
  in	
  our	
  manuscript.

All	
  data	
  used	
  in	
  the	
  study	
  is	
  published	
  and	
  has	
  been	
  depoisted	
  in	
  the	
  primary	
  publication.	
  

NA

NA

NA

NA

NA

G-­‐	
  Dual	
  use	
  research	
  of	
  concern

F-­‐	
  Data	
  Accessibility

D-­‐	
  Animal	
  Models

E-­‐	
  Human	
  Subjects




