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1st Editorial Decision 10th January 2018 

Thank you again for submitting your work to Molecular Systems Biology. We have now heard back 
from the three referees who agreed to evaluate your study. As you will see below, the reviewers 
appreciate that the presented approach seems potentially useful. They raise however a series of 
concerns, which we would ask you to address in a revision of the manuscript.  

The reviewers' recommendations are rather clear so I think that there is no need to repeat all the 
points listed below. Reviewer #1 refers to the need to include comparisons of the method to existing 
approaches. Importantly, all reviewers point out that the biological insights from the CLL analysis 
remain rather limited. As reviewer #3 recommends, additional analyses (not necessarily 
experimental), demonstrating the potential of the method to reveal new biological insights would 
significantly enhance the impact of the study. Of course all other issues raised by the referees would 
need to be thoroughly addressed.  

-------------------------------------------------------- 

REFERE REPORTS 

Reviewer #1: 

With the increasing availability of multi-omics datasets, the development of statistical methods to 
disentangle specific- and shared-components of variation in such datasets has numerous applications 
and will undoubtedly help to expose novel biology. The authors present Multi-Omics Factor 
Analysis (MOFA) which applies Group Factor Analysis to identify hidden factors that capture 
biological and technical sources of variability. The model builds on group factor analysis with the 
additional optimizations of (a) fast inference based on variational approximation, (b) inference of 
sparse solutions by inducing group-wise and feature-wise sparsity, (c) handling missing values and 
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(d) integration of different data likelihood models to integrate non-Gaussian data. The manuscript is 
well written, the method is evaluated with extensive simulations and further highlights the 
application of MOFA to CLL to identify and enhance clinical markers. However, the method and its 
application to CLL have several challenges that need to be further explored and dampen its impact. 
A major concern is that the method is not contrasted in practice to other group factor analysis 
methods that are closely related to MOFA (listed in Table 1 of Supplemental Methods), neither in 
the simulation study nor the real data analysis. While the iCluster method is widely used, it would be 
important to minimally see a comparison to the Hore et al (2016) method, which is the method most 
closely related to MOFA.  
 
1) The definition of "views" is not well articulated.  
2) While the extension of the method to non-Gaussian data performs reasonably well, it assumes the 
same distribution across data modalities. This is almost never the case in practice when performing 
multi-omics analyses, e.g. when modelling both binary SNP data and count gene expression data. It 
is thus not exactly clear what the advantage of the extension is.  
3) In the analysis of the chronic lymphocytic leukemia data, not much information is provided about 
the choice of K in the three-mean clustering of samples based on factor 1 (Figure 3A). Was there a 
formal test about the goodness-of-fit of a three- versus e.g. two-mean clustering? The IZ and HZ 
clusters do not show a large difference in gene expression values (Figure 3C) or Drug response 
(Figure 3E).  
4) Even though factors 8 was significantly associated with time to next treatment (Figure 5A) and it 
explains some proportion of the gene expression variability, the factor shows no enrichment based 
on the GSEA (Figure 2E). Moreover, there is not much information / knowledge about what this 
factor is correlated to besides the one line in the text 'Factor 8 is associated with differences in gene 
expression between pre-treated and untreated patients'. Can you elaborate more about Factor 8? For 
example provide a plot similar to Sup Figure 15?  
5) The CLL variable is time to next treatment. It is very likely that individuals currently or 
proximally treated will have important changes in gene expression and that simply knowing if a 
person is being actively treated or not plus a few other clinical variables could be very helpful in 
predicting the timing of the next treatment. Particularly in the context of how CLL and its therapy 
may be timed in practice. This is highlighted in the observation that the response, next treatment 
timing, is best predicted by factors correlated to whether the patient was chemo-immunotherapy 
treated before collected. The relationship of the predictors to clinical variables such as these is not 
adequately explored and ultimately it is difficult to assess whether the molecular approach is better 
than an alternative approach that uses a combination of clinical phenotypes (like cell counts or 
further accounts for accelerated treatment for increased disease severity).  
6) Is the data for the CLL example downloadable with MOFA?  
 
Minor:  
1) Figure S2c appears to show inflation of number of inferred factors when using binary data. Figure 
S3c is also inflated for Gauussian data. Can the authors comment on this?  
2) Page 3, second paragraph, add citations for the iCluster method after `Comparison of MOFA with 
the factor model that underlies the widely-used iCluster method (Shen et al 2009)` and other related 
approaches after `We contrast MOFA to related approaches in Methods and Supp. Table 1.`  
3) Page 3, second paragraph: ` We contrast MOFA to related approaches in Methods and Supp. 
Table 1`. The correct reference for this is "Supplemental Methods" and "Table 1 of Supplemental 
Methods" (not Supplemental Table 1 which refers to simulation analysis parameters).  
4) All figure reference in "Supplemental Methods" are off by one number. In section 2.1, it's Figure 
S1 that contains results for recovery of the number of factors and not Figure S2. In section 2.2, it's 
Figure S2 and Figure S3 that contain results for non-Gaussian data and not Figure S3 and Figure S4 
etc.  
5) Figure S5b doesn't appear to show R2 and colors on the same scale.  
6) For Figure S7b can the authors comment on the trend for Factor 1?  
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Reviewer #2:  
 
Argelaguet et al. present algorithms and code to implement group factor analysis for multi-omics 
data, which they term MOFA. They demonstrate the utility of MOFA on a public multi-omics data 
cohort, derived from leukaemia clinical samples.  
Different variants of factor analysis, canonical correlation analysis and principal components 
analysis are widely used in systems biology studies. However, the authors have addressed some of 
the computational issues involved in applying group factor analysis to multi-omics data, including: 
code for fast inference, inference of sparse solutions, handling missing values, and likelihood 
models for integrating Boolean and count data.  
The manuscript addresses issues encountered in applying group factor analysis to multi-omics data. 
The use of variational Bayes for fast inference, inference of sparse solutions and the handling of 
missing values have all been previously described. The use of Poisson and Negative Binomial 
likelihoods for factor analysis has been previously described. The analysis of CLL data is interesting 
and demonstrates the power of the approach, but these results are not followed up on in any way. 
The code is well written and well documented, and likely to be useful for bioinformatics 
practitioners with a strong statistical background. The manuscript is clearly written, the supplement 
provides an excellent primer on factor analysis for multi-omics, useful for readers with a strong 
mathematics background.  
Major:  
Although the code appears to be a careful implementation of group factor analysis for multi-omics 
data, and would likely be useful, it is not clear what the methodological advance of the study is. By 
their own admission, Table 1 Supp. 1.5, the advances of the study (as described in the introduction) 
have all been developed previously. Although not listed in that table, there are other 
implementations of Poisson and NB likelihoods too.  
The application of MOFA to CLL data is interesting, and very carefully executed. But, there has 
been no follow-up studies performed. Thus, it is difficult to say that this manuscript represents a 
vertical advance in the field of CLL research.  
Ultimately, the main contribution of the manuscript appears to be the code and the tutorial, which 
does seem very useful. I would ask the authors to consider either developing the CLL analysis 
through additional molecular assays, and refocus the paper on those results. Or, more clearly 
delineate how MOFA is a methodological advance over existing GFA approaches.  
Minor:  
The title "Multi-Omics factor analysis disentangles heterogeneity in blood cancer", suggests that this 
is a manuscript about blood cancers. However, the only result for blood cancer I can find in the 
abstract is: "... [we] discovered previously underappreciated drivers of variation, such as response to 
oxidative stress.", which is somewhat of a modest result from which no conclusions are drawn. The 
manuscript itself reads like a methods paper, and in my opinion would make a strong software note. 
But, the title should reflect the ultimate direction the authors choose for the manuscript.  
 
 
 
Reviewer #3:  
 
The manuscript presents an elegant Bayesian model "MOFA" based on group factor analysis to infer 
factors explaining variation across multiple omics datasets. There is a strong need for computational 
methods that allow integration of multiple data modalities such as expression, mutational and 
clinical data collected from the same system and this paper presents a principled methodology that 
provides interpretable factors for studying heterogeneity across samples from integration of datasets. 
The authors design a variational inference procedure that includes nice mean-field approximation 
for non-Gaussian data with two instructive examples for Bernoulli and Poisson data.  
The factor space can be used for analysis and visualization, identification of outliers and imputing 
missing data. The authors show the performance on both simulated and CLL data. They identify the 
drivers of variation in CLL and molecular signatures based on integration of features and data 
modalities. They show that the inferred factors explain differences in expression, mutations, 
methylation or treatment outcome, etc.  
This method is a very useful resource and tool for studying heterogeneity in a global scale through 
combination of matched data types. The model has the advantage to handle large amounts of clinical 
data, which is common.  
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I would very much like to see it published at MSB, but feel that some more analysis and 
interpretation is still needed, to make this into a better paper. See major comments below.  
 
Major comments  
• Based on inferred factors on CLL patient data, the authors show MOFA's Ability of detecting 
outlier samples as well as imputing missing data in drug response. The simulation experiments 
showing the performance in imputing missing drug response data was great. However, I wasn't fully 
convinced with the outlier detection analysis. If the authors believe that some patients were 
mislabeled based on IGHV status (and were not borderline cases), they should examine what other 
markers or mechanisms are better surrogates of CLL biology and validate that experimentally.  
• Why are factors 3 and 4 not discussed in the paper? Factor 3 is also active in the drug response 
view, what does it represent?  
• Supplementary Figure 11 shows Factor 1 when one view is masked, what are the biological signals 
that are missed with masking each view? Can you extend this to other factors?  
• Also, how would the results look like if only one view was used (and the rest were masked)? 
Which views were most informative of clinical outcome or CLL markers?  
• Overall, while the computational methodology is strong, the paper does not show MOFA's ability 
in inferring deep biological insight. Therefore, I suggest either performing deeper analysis and 
biological experiments or applying this method to a second system such as ENCODE datasets to 
show broader application and insight.  
 
Minor points  
• Supplementary methods: Section 1.1 refers to Figure S1 for plate model, should be Figure S17.  
• Figure 2E: Were no gene sets enriched for factor 1,2?  
• Figure 2F not cited in main text or explained. Some subfigures are not cited in order.  
• Figure 4b: Was the gene set enrichment done between the two factor clusters (marked in Figure 
4a)? The samples don't show discrete clusters for factor 5 unlike factor 1. What is the significance of 
clustering factor 5 into two clusters?  
• Page 5 second paragraph from bottom: reference should be to Fig 2f not Fig 2d.  
• Fig S9: Would be great to show the sample number breakdown by views, to see if factor clusters 
are associated with (or biased to) views.  
 
 
  



 

We thank the reviewers for their time and effort spent reviewing our work, and for their 
insightful comments.  

Reviewer #1:  
 
With the increasing availability of multi-omics datasets, the development of statistical 
methods to disentangle specific- and shared-components of variation in such datasets has 
numerous applications and will undoubtedly help to expose novel biology. The authors 
present Multi-Omics Factor Analysis (MOFA) which applies Group Factor Analysis to identify 
hidden factors that capture biological and technical sources of variability. The model builds 
on group factor analysis with the additional optimizations of (a) fast inference based on 
variational approximation, (b) inference of sparse solutions by inducing group-wise and 
feature-wise sparsity, (c) handling missing values and (d) integration of different data 
likelihood models to integrate non-Gaussian data. The manuscript is well written, the method 
is evaluated with extensive simulations and further highlights the application of MOFA to CLL 
to identify and enhance clinical markers. However, the method and its application to CLL 
have several challenges that need to be further explored and dampen its impact.  
 
A major concern is that the method is not contrasted in practice to other group factor 
analysis methods that are closely related to MOFA (listed in Table 1 of Supplemental 
Methods), neither in the simulation study nor the real data analysis. While the iCluster 
method is widely used, it would be important to minimally see a comparison to the Hore et al 
(2016) method, which is the method most closely related to MOFA.  
 
We agree with the reviewer that an appropriate comparison and benchmark of new methods 
is essential.  
 
In response, we have now extended the discussion of previous methods and provide 
additional data on how they relate to MOFA. Concerning the specific method proposed by 
Hore et al. (2016), we would like to point out that a direct comparison is not feasible. While 
based on a related mathematical formulation, this method has different aims and 
applications. Briefly, the Hore et al. model performs a tensor decomposition that assumes as 
input a 3D array containing genomic data assayed for various tissues and individuals. The 
dimensions of this tensor are (1) the individuals, (2) the tissues and (3) genes. Importantly, 
this decomposition makes strong assumptions about the structure of the datasets, namely 
that for each tissue (corresponding to a view in our model) and individual (sample) the same 
set of genes (features) is assayed. While this assumption is fulfilled and appropriate for the 
integration of multiple expression datasets as considered in Hore et al., it does not hold in 
the multi-omics setting, where different features are measured by each assay (e.g. genome, 
transcriptome, DNA methylation, drug responses). It is this latter setup that MOFA is 
designed for. 
 
More pertinent is the comparison of MOFA with the Group Factor Analysis (GFA) by 
Leppäaho et al. (2017), for which an implementation exists (R package GFA). We now 
compare MOFA to GFA using simulated and real data (See the new section Model validation 
and comparison on simulated data (page 4), Figure EV1, Appendix Figure S4-S5, S9 and 
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Methods). Briefly, although the generative models that underlie MOFA and GFA are related, 
our method and its implementation offers three main advantages: 
 

● MOFA supports more versatile noise models: MOFA allows for different likelihood 
models and combinations thereof, which is critical for integrating multi-omics assays 
with different data modalities. We illustrate this by considering the combination of 
Gaussian and non-Gaussian likelihoods in the CLL study and in an additional single-
cell data set. In contrast, existing group factor analysis methods (including the recent 
Leppäaho et al. (2017) GFA implementation) assume Gaussian noise. 
 

● MOFA is computationally more efficient: While both the Leppäaho et al. GFA 
implementation and MOFA scale linearly in the model dimensions (views, samples, 
factors and features), MOFA is implemented using a computationally more efficient 
variational approximation, compared to the Gibbs sampler used by Leppäaho et al. 
This leads to major speedups in relevant  applications (e.g., for the CLL data a 
MOFA model can be trained in 45 minutes compared to 33.6 hours with GFA using 
the same number of initial factors1). The largest gains in computational efficiency are 
observed for datasets with missing values (See discussion in Methods ‘Relationship 
to existing methods’ section). Increased computational speed facilitates the analysis 
of larger datasets, enables interactive and explorative use and renders resampling 
schemes much more practical (e.g. to enable the model selection across multiple 
restarts as in Appendix Figure S2-3, or to enable bootstrap to assess robustness as 
in Appendix Figure 7). 
 

● Improved selection of model complexity (i.e., number of factors). MOFA 
implements a simple yet effective heuristic to determine the dimensionality of the 
latent space by means of the stepwise deactivation of unused factors, based on a 
minimum variance criterion (see Methods for details). We find that this approach is 
superior to existing approaches, including the criterion used by Leppäaho et al., and 
in particular leads to the inference of less spurious factors. 

 
In addition to these core performance parameters, we would like to highlight the improved 
usability of MOFA, as it comes as a well documented software with a suite of ‘downstream’ 
analysis methods, including tools for visualisation, automatic annotation of factors, the 
identification of outliers, clustering and imputation of missing values. 
 
1) The definition of "views" is not well articulated.  
We agree that the terminology ‘view’ was not sufficiently well defined in the previous version 
of the manuscript. We refer to ‘view’ as one of the input data matrices in MOFA, which in the 
CLL application is equivalent to an omic type. To avoid confusion we now limit the use of the 
word ‘view’ to the technical description of MOFA in Methods, where the term is defined 
explicitly. In the main text we now explicitly refer to the corresponding omic modality or 
assay. 
 
 

                                                 
1 Comparison based on 10 runs on a single CPU each, randomly allocated to Intel Xeon Processor 
E5-2670, E5-2680v3 and Dual AMD EPYC 7601 Processor 

https://www.servethehome.com/dual-amd-epyc-7601-processor-performance-and-review-part-1/


 

2) While the extension of the method to non-Gaussian data performs reasonably well, it 
assumes the same distribution across data modalities. This is almost never the case in 
practice when performing multi-omics analyses, e.g. when modelling both binary SNP data 
and count gene expression data. It is thus not exactly clear what the advantage of the 
extension is.  
We thank the reviewer for highlighting the importance of combining views with different 
likelihood models. MOFA is not limited to a single (possibly non-Gaussian) likelihood across 
views and instead can be configured to enable arbitrary combinations of likelihood models. 
For example, in the CLL application, we employ a Gaussian likelihood for the mRNA, 
methylation and drug response assays, combined with a Bernoulli likelihood for the mutation 
assay. We now state this flexibility more clearly in the main text (last paragraph of page 3 
and 4). Additionally, we now present a second application of MOFA to a single-cell 
multiomics dataset, where we model three non-Gaussian views (with Bernoulli likelihood) 
together with one Gaussian view. 
 
3) In the analysis of the chronic lymphocytic leukemia data, not much information is provided 
about the choice of K in the three-mean clustering of samples based on factor 1 (Figure 3A). 
Was there a formal test about the goodness-of-fit of a three- versus e.g. two-mean 
clustering? The IZ and HZ clusters do not show a large difference in gene expression values 
(Figure 3C) or Drug response (Figure 3E).  
While the Factors inferred by MOFA are inherently continuous, clustering of the samples in 
the factor space (or subspaces) can be considered during downstream analysis. To assess 
the choice of number of clusters we used, as suggested, the Bayesian Information Criterion 
(BIC) for the K-means clustering using the R package ClusterR. The lowest BIC is observed 
for K=3, consistent with our previous choice (See Appendix Figure S10). 
 
Regarding the gene expression and drug response profiles of IZ and HZ, it is true that these 
are relatively similar when compared to the LZ cluster. However, we still find that a 
considerable subset of the 20 genes and 10 concentration points shown in Figure 3 exhibit 
significant differences between the groups (10 genes and 7 concentration points, P<0.05, t-
test, see Figure below). Nevertheless, we agree that the differences between IZ and HZ are 
most prominent for the methylation data. These data most likely drive the observed factor 
clusters, which are in strong agreement with methylation clusters defined by others 
(Appendix Figure S11). 
 
 



 

 Cluster-wise comparison of the genes and drugs shown in Figure 3. 
Boxplots for gene expressions levels (a) and drug response (b) for the top-weighted genes 
and drugs shown in Figure 3. Drugs are shown separately for each concentration given in 
𝞵M. P-values are indicated for each comparison (t-test).  
 
4) Even though factors 8 was significantly associated with time to next treatment (Figure 5A) 
and it explains some proportion of the gene expression variability, the factor shows no 
enrichment based on the GSEA (Figure 2E). Moreover, there is not much information / 
knowledge about what this factor is correlated to besides the one line in the text 'Factor 8 is 
associated with differences in gene expression between pre-treated and untreated patients'. 



 

Can you elaborate more about Factor 8? For example provide a plot similar to Sup Figure 
15?  
 
We now discuss in more detail the set of genes that are most strongly associated with Factor 
8, which is primarily active in the mRNA data. Of note, already in the initial submission, we 
reported a small set of gene sets that were enriched  for genes linked to factor 8 (GSEA, 
Fig.2e), however these results were not discussed in the main text. We now elaborate on 
these findings, which link Factor 8 to Wnt signalling (P=5x10-05 ; FDR < 1%). See page 7, 
paragraph 3 and the new Appendix Figure S19. 
 
5) The CLL variable is time to next treatment. It is very likely that individuals currently or 
proximally treated will have important changes in gene expression and that simply knowing if 
a person is being actively treated or not plus a few other clinical variables could be very 
helpful in predicting the timing of the next treatment. Particularly in the context of how CLL 
and its therapy may be timed in practice. This is highlighted in the observation that the 
response, next treatment timing, is best predicted by factors correlated to whether the 
patient was chemo-immunotherapy treated before collected. The relationship of the 
predictors to clinical variables such as these is not adequately explored and ultimately it is 
difficult to assess whether the molecular approach is better than an alternative approach that 
uses a combination of clinical phenotypes (like cell counts or further accounts for 
accelerated treatment for increased disease severity).  
 
It is correct that clinical covariates, such as whether the patient was treated with chemo-
immunotherapy before or the leukocyte counts as well as the cell doubling time, are known 
predictors of the time to next treatment (TTT). Clearly, these variables should be taken into 
consideration for clinical decision making. The primary aim of our analysis was to explore the 
molecular basis of clinical endpoints and the utility of MOFA for identifying relevant 
molecular factors, rather than improving upon the prediction of clinical endpoints based on 
classical markers.  
 
Having said this, we agree that clinical variables are useful to provide context. We have now 
included this into the manuscript (paragraph 2, page 7), where we refer to an additional 
supplementary figure (Appendix Figure S21), comparing predictions based on MOFA 
factors with clinical covariates. This analysis supports the relevance of MOFA factors, for 
which we observe a similar predictive accuracy as for clinical covariates (cell doubling time 
and pretreatment) that are used to guide treatment decisions.  
 
 
6) Is the data for the CLL example downloadable with MOFA?  
 
The processed data as well as the trained MOFA model are contained in the vignette of the 
MOFAtools R package available in https://github.com/bioFAM/MOFA. The vignette illustrates 
the core functionalities provided by MOFA and enables reproducing the main findings 
reported in the paper. 
The unprocessed raw data as presented in the original study can be obtained from 
http://pace.embl.de/ (see Dietrich, Oles, Lu et al (JCI, 2018)). 
 
 

http://pace.embl.de/


 

Minor:  
1) Figure S2c appears to show inflation of number of inferred factors when using binary data. 
Figure S3c is also inflated for Gaussian data. Can the authors comment on this? 
 
It is true that in some cases, especially for non-Gaussian likelihoods, there is an inflation in 
the number of inferred factors. In general, identifying the correct number of factors is a 
challenging and still unsolved problem for factor models. In MOFA we approach this problem 
by combining the ARD prior with a variance threshold to inactivate factors during training 
(see Methods, Model training and selection). While this heuristic performs reasonably well 
and improves upon existing implementations of factor models (see the comparison with GFA 
in Appendix Figure S4 and Methods, Relationship to existing methods), we agree that this 
strategy is not free of limitations. Finding more general solutions to determine model 
complexity in factor models remains an interesting problem for future research.  
 
In MOFA much of the variation in the number of factors can be explained by the variational 
training converging to different local optima. Indeed, in the simulation study of non-gaussian 
likelihoods we observe that the inflated factor numbers correspond to poorer quality 
solutions. To address this, the MOFA implementation runs multiple restarts of our model, 
and the solution that maximises the evidence lower bound (ELBO) is selected. This training 
mode is used throughout the simulations as well as the applications, e.g. Appendix Figure 
S6.  
 
In the revised manuscript we have altered Appendix Figures S2 and S3 by including the 
ELBO statistics. This demonstrates that solutions that maximizes the ELBO corresponds to 
the correct model complexity (K=10 factors), both for Gaussian and non-Gaussian 
likelihoods. 
 
2) Page 3, second paragraph, add citations for the iCluster method after `Comparison of 
MOFA with the factor model that underlies the widely-used iCluster method (Shen et al 
2009)` and other related approaches after `We contrast MOFA to related approaches in 
Methods and Supp. Table 1.`  
 
We have added the references as suggested. 
 
3) Page 3, second paragraph: ` We contrast MOFA to related approaches in Methods and 
Supp. Table 1`. The correct reference for this is "Supplemental Methods" and "Table 1 of 
Supplemental Methods" (not Supplemental Table 1 which refers to simulation analysis 
parameters).  
 
We changed the reference, which is now Appendix Table S3.  
 
4) All figure reference in "Supplemental Methods" are off by one number. In section 2.1, it's 
Figure S1 that contains results for recovery of the number of factors and not Figure S2. In 
section 2.2, it's Figure S2 and Figure S3 that contain results for non-Gaussian data and not 
Figure S3 and Figure S4 etc.  
 
We apologize for this oversight and have fixed the references. 
 



 

5) Figure S5b doesn't appear to show R2 and colors on the same scale.  
 
We modified the colors so that R2 is shown on the same scale for all panels. 
 
6) For Figure S7b can the authors comment on the trend for Factor 1? 
 
We thank the reviewer for pointing this out. It was indeed an error, where Factor 1 
corresponded to the intercept factor, which is constant across all different model instances (it 
is a vector of ones). The analysis was repeated and Figure S7b (now Appendix Figures S7) 
was updated accordingly.  
 
 
  



 

Reviewer #2:  
 
Argelaguet et al. present algorithms and code to implement group factor analysis for multi-
omics data, which they term MOFA. They demonstrate the utility of MOFA on a public multi-
omics data cohort, derived from leukaemia clinical samples.  
Different variants of factor analysis, canonical correlation analysis and principal components 
analysis are widely used in systems biology studies. However, the authors have addressed 
some of the computational issues involved in applying group factor analysis to multi-omics 
data, including: code for fast inference, inference of sparse solutions, handling missing 
values, and likelihood models for integrating Boolean and count data.  
The manuscript addresses issues encountered in applying group factor analysis to multi-
omics data. The use of variational Bayes for fast inference, inference of sparse solutions and 
the handling of missing values have all been previously described. The use of Poisson and 
Negative Binomial likelihoods for factor analysis has been previously described. The 
analysis of CLL data is interesting and demonstrates the power of the approach, but these 
results are not followed up on in any way. The code is well written and well documented, and 
likely to be useful for bioinformatics practitioners with a strong statistical background. The 
manuscript is clearly written, the supplement provides an excellent primer on factor analysis 
for multi-omics, useful for readers with a strong mathematics background.  
 
Major:  
Although the code appears to be a careful implementation of group factor analysis for multi-
omics data, and would likely be useful, it is not clear what the methodological advance of the 
study is. By their own admission, Table 1 Supp. 1.5, the advances of the study (as described 
in the introduction) have all been developed previously. Although not listed in that table, 
there are other implementations of Poisson and NB likelihoods too.  
The application of MOFA to CLL data is interesting, and very carefully executed. But, there 
has been no follow-up studies performed. Thus, it is difficult to say that this manuscript 
represents a vertical advance in the field of CLL research.  
Ultimately, the main contribution of the manuscript appears to be the code and the tutorial, 
which does seem very useful. I would ask the authors to consider either developing the CLL 
analysis through additional molecular assays, and refocus the paper on those results. Or, 
more clearly delineate how MOFA is a methodological advance over existing GFA 
approaches.  
 
We thank the reviewer for these comments, which have helped to clarify the novelty of our 
paper. As suggested, we have shifted the focus of the manuscript to the methodological 
advances and practical advantages MOFA offers compared to existing methods. As part of 
these changes, we also present additional comparisons to existing group factor analysis 
models. 
 
Briefly, the key advantages of MOFA include first, a more flexible and configurable noise 
model and improved computational efficiency as well as an efficient heuristics to estimate 
the numbers of factors. These differences are discussed in detail in Model validation and 
comparison on simulated data (page 4) and Methods ‘Relationship to existing methods’ 
section, where we also present empirical comparisons using simulated and real data. See 
also our response to Reviewer 1. While implementations of non-Gaussian factor analysis 



 

have been proposed for single-view data, to our knowledge there is no group factor analysis 
model that can handle different data modalities. Among other multi-omics integration 
methods only iClusterPlus (Mo et al. 2012) is capable of handling non-Gaussian noise. We 
have included the iCluster methods into Appendix Table S1. 
 
Additionally, in order to demonstrate that MOFA is widely applicable to different problems, 
we have included a second application to a multi-omics single-cell dataset where RNA 
expression and DNA methylation were simultaneously profiled in a set of 87 mouse ES cells. 
On this dataset, MOFA factors captured differentiation trajectories and yielded connections 
between transcriptomic and epigenetic changes. 
 
 
Minor:  
The title "Multi-Omics factor analysis disentangles heterogeneity in blood cancer", suggests 
that this is a manuscript about blood cancers. However, the only result for blood cancer I can 
find in the abstract is: "... [we] discovered previously underappreciated drivers of variation, 
such as response to oxidative stress.", which is somewhat of a modest result from which no 
conclusions are drawn. The manuscript itself reads like a methods paper, and in my opinion 
would make a strong software note. But, the title should reflect the ultimate direction the 
authors choose for the manuscript.  
 
Thank you for this suggestion. In order to better reflect the methodological focus of the 
paper, we have changed the manuscript title to:  “Multi-Omics factor analysis - a framework 
for unsupervised integration of multi-omic data sets”  
  



 

Reviewer #3: 
 
The manuscript presents an elegant Bayesian model "MOFA" based on group factor 
analysis to infer factors explaining variation across multiple omics datasets. There is a strong 
need for computational methods that allow integration of multiple data modalities such as 
expression, mutational and clinical data collected from the same system and this paper 
presents a principled methodology that provides interpretable factors for studying 
heterogeneity across samples from integration of datasets. The authors design a variational 
inference procedure that includes nice mean-field approximation for non-Gaussian data with 
two instructive examples for Bernoulli and Poisson data.  
The factor space can be used for analysis and visualization, identification of outliers and 
imputing missing data. The authors show the performance on both simulated and CLL data. 
They identify the drivers of variation in CLL and molecular signatures based on integration of 
features and data modalities. They show that the inferred factors explain differences in 
expression, mutations, methylation or treatment outcome, etc. 
This method is a very useful resource and tool for studying heterogeneity in a global scale 
through combination of matched data types. The model has the advantage to handle large 
amounts of clinical data, which is common. 
I would very much like to see it published at MSB, but feel that some more analysis and 
interpretation is still needed, to make this into a better paper. See major comments below.  
 
We thank the reviewer for the supportive comments on our manuscript.  
 
Major comments  
• Based on inferred factors on CLL patient data, the authors show MOFA's Ability of 
detecting outlier samples as well as imputing missing data in drug response. The simulation 
experiments showing the performance in imputing missing drug response data was great. 
However, I wasn't fully convinced with the outlier detection analysis. If the authors believe 
that some patients were mislabeled based on IGHV status (and were not borderline cases), 
they should examine what other markers or mechanisms are better surrogates of CLL 
biology and validate that experimentally.  
 
The reviewer raises an important point, and we have followed their suggestion and tested 
the prediction experimentally. To recap, MOFA revealed three samples whose underlying 
molecular status appeared to be inconsistent with the reported IGHV status. This could be 
due either to a mislabeling/swapping of these samples; or it could point to interesting 
biological phenomena where the ‘canonical’ relationship between the molecular state of the 
cells and the IGHV status, as currently called from the DNA-sequence, does not hold.  
 
We have generated additional data and extended our analysis to test the MOFA predictions 
for these three samples. We considered: 

(1) An independent drug response assay using a drug targeting the BCR pathway that 
was not contained in the dataset used for the training of MOFA (ONO-4509),  

(2) Whole exome sequencing (WES) data, at the locus of the IGHV genes.  
Regarding (1), the drug sensitivity of sample P0108 indicated low reliance on BCR 
signalling, as is typical for M-CLL, despite its annotation as U-CLL, and in agreement with 
the MOFA prediction. For the other two samples, the drug responses were intermediate and 



 

would be consistent both with their nominal IGHV status and the MOFA predictions. (Figure 
EV3e).  
Regarding (2), the mutation load in the IGHV loci for all three cases was in agreement with 
the prediction by MOFA, i.e. for the two nominal U-CLL samples we found many mutations in 
the IGHV genes, while for the nominal M-CLL sample we found none (Figure EV3f).  
In addition, we were able to commission an independent assessment of the IGHV status of 
sample P0108 from the attending clinician of the patient (Department of Haematology at 
University Hospital Mannheim; standard protocol for IGHV mutation analysis using PCR 
amplification and sequencing analysis of the IGHV region). They reported  93.3% nucleotide 
sequence homology in the V1-69 gene usage; given that the conventional cut-off is 98%, this 
report also supports the prediction of MOFA. 
 
Taken together, these additional data and analyses confirm that the outlying samples 
identified by MOFA stand out functionally and that MOFA justifiably identified them as 
outliers: For P0108 both assays as well as the independent IGHV label support a 
reassignment to the IGHV group predicted by MOFA. For P0437 drug response assays in 1. 
are inconclusive but WES is strongly supportive of the IGHV group inferred by MOFA. For 
P0432 the results from both assays are consistent with either IGHV group but the lack of any 
mutations in WES is more common in U-CLL samples. While we have not identified the root 
cause underlying the fact that these three samples were outliers, we speculate that they may 
have been due to sample swapping during the assessment of the clinical IGHV label or 
(manual) data entry errors. We included these results on page 7, paragraph 1 of the 
manuscript and Figure EV3. 
 
• Why are factors 3 and 4 not discussed in the paper? Factor 3 is also active in the drug 
response view, what does it represent?  
 
We agree that Factors 3 and 4 received little attention in the previous version of the 
manuscript and we now provide more details on these factors (page 6, second paragraph 
and Appendix Figure S14, S15). 
 
Factor 4 is mostly active in the mRNA data (9 % of variance explained) and the gene set 
enrichment analysis shows an enrichment of pathways related to immune response and T-
cell receptor signalling (Appendix Figure S14a). Among the top weights of this factor are 
genes involved in the immune response, including surface markers such as CD300E, CD8A, 
CD3E (Appendix Figure S14b,c). This suggest that this factor captures differences in cell 
type composition between the samples: While most cells in the samples are B-cells, other 
cell types, such as T-cells and monocytes, are contained in varying amounts. 
 
Factor 3, on the other hand, is mainly active in the drug response data (11% of variance 
explained). Notably, we observed that most drugs had positive weights on this factor 
(Appendix Figure S15a) and the factor is positively associated with the mean sensitivity of 
a sample across all drugs and concentrations (Appendix Figure S15b). Overall this 
suggests that the factor captures variation in the overall drug susceptibility (Geeleher et al, 
2016). 
 
 



 

• Supplementary Figure 11 shows Factor 1 when one view is masked, what are the 
biological signals that are missed with masking each view? Can you extend this to other 
factors?  
 
In response to this comment, we have extended this analysis to all factors. Briefly, we 
trained MOFA excluding one of the views at a time. We then compared the factors inferred 
on the reduced dataset to those from the full dataset (using the maximal correlation 
coefficient across factors). This approach allowed for quantifying to what extent the reduced 
MOFA model captures original factors inferred on the full dataset (Appendix Figure S8c).  
 
Overall, we observed that a factor active in the masked view can still be recovered, provided 
that it is active in at least one other view. As already previously demonstrated Factor 1 is 
always recovered, which is consistent with its broad sharing across all views. A similar trend 
can be observed for Factor 2. Other factors are reliant on the mRNA and methylation data 
and hence cannot be identified without the corresponding assay. Surprisingly, we also find 
some factors that had strong activities in the drug response data (such as Factor 3 and 
Factor 5) to be heavily relying on the inclusion of other assays, such as mRNA or 
methylation. This could be due to a higher noise level in the drug response data that can be 
mitigated by combining with other assay or due to a low number of features, for which this 
factor explains variation in the drug response assay compared to other assays.   

 
 

• Also, how would the results look like if only one view was used (and the rest were 
masked)? Which views were most informative of clinical outcome or CLL markers?  
 
The reviewer touches upon an important point that has not received sufficient attention in the 
previous version of the manuscript. Running the MOFA model with a single view is 
equivalent to a Bayesian Sparse Factor analysis, which is intuitively related to a (sparse) 
Principal Component Analysis but with an explicit probabilistic formulation.  
 
In our application we observed that many of the factors can in principle also be inferred 
based on a single view, with the mRNA data being most informative overall (Appendix 
Figure S8a). A single view model, however, does not yield connections between the 
different views. A second advantage of the multi-view approach is that the full dataset can be 
leveraged. For example, on the CLL data MOFA is applied to 200 samples, whereas there 
are only 136 samples with mRNA data.   
 
In terms of information for clinical outcome, we again found that the mRNA data to be the 
most informative single view (Appendix Figure S8b). To ensure a fair comparison in this 
analysis, we only considered the subset of samples for which all data modalities were 
profiled. 
 
 

• Overall, while the computational methodology is strong, the paper does not show MOFA's 
ability in inferring deep biological insight. Therefore, I suggest either performing deeper 
analysis and biological experiments or applying this method to a second system such as 
ENCODE datasets to show broader application and insight. 



 

 
First, we would like to note that the revised manuscript now places stronger emphasis on the  
methodological advances of MOFA and less on a specific findings in CLL biology. This 
change addresses comments raised by reviewers 1 & 2, as well as editorial requests.  
 
Having said this, we agree that a compelling application of the method is important. In 
response to referee comments, we have extended the analysis on the CLL data, for which 
we provide further details (such as discussed in response to the comments 1 and 2, as well 
as Reviewer 1 comments 4 and 5). Second, in order to demonstrate the broad applicability 
of the model, we now present a second application of MOFA to a single cell multi-omics 
dataset where RNA expression and DNA methylation were simultaneously profiled in a set of 
87 mouse ES cells. Here, MOFA yielded insights into coordinated changes between the 
transcriptome and the epigenome along a differentiation trajectory (page 7-8, new Figure 5).   
 
 
Minor points  
• Supplementary methods: Section 1.1 refers to Figure S1 for plate model, should be Figure 
S17. 
 
Thanks for pointing this out, we changed the reference (now Appendix Figure S24). 
 
• Figure 2E: Were no gene sets enriched for factor 1,2?  
 
With the Reactome gene set, which we used in the current manuscript, no gene sets were 
enriched for Factors 1 and 2. Depending on the study of interest other gene sets can be 
used in the gene set enrichment analysis function implemented in MOFA. In our CLL 
application, using leukemia specific gene sets or positional gene sets for example would 
connect these two factors to B-cells activity and chromosome 12, respectively. In general, 
we leave the gene sets to be tested as a user choice in MOFA. 
 
• Figure 2F not cited in main text or explained. Some subfigures are not cited in order.  
 
We now refer to this Figure at the end of page 4, where we mention the relationship of 
Factor 1 and 2 with IGHV status and Trisomy 12. Panels were re-ordered to match the order 
in the manuscript.  
 
• Figure 4b: Was the gene set enrichment done between the two factor clusters (marked in 
Figure 4a)? The samples don't show discrete clusters for factor 5 unlike factor 1. What is the 
significance of clustering factor 5 into two clusters?  
 
The reviewer is right that the clustering of Factor 5 in two groups is arbitrary. In general, our 
analysis is always based on the continuous factors and their weights, e.g. for the gene set 
enrichment analysis we used the weights of the continuous factors (Methods). Only for 
visualization purposes did we sometimes opt for a discrete clustering. However, one of the 
advantages of MOFA is that no discrete clustering is required. Working with the continuous 
factor is in many cases a better representation of the underlying molecular phenotype than 
grouping samples in discrete subpopulations. Therefore, we updated Figure 4 (now Figure 
EV2) with a continuous representation of the samples along the factor.  



 

 
 
• Page 5 second paragraph from bottom: reference should be to Fig 2f not Fig 2d.  
 
We corrected this reference, supposed to refer to Figure 2e (gene set enrichment analysis). 
 
• Fig S9: Would be great to show the sample number breakdown by views, to see if factor 
clusters are associated with (or biased to) views. 
 
We added the sample number breakdown by views to Figure S9 (now Appendix Figure 
S11) and did not find any association of the sample numbers per view to the clusters. 
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2nd Editorial Decision 16th May 2018 

Thank you for sending us your revised manuscript. We have now heard back from the two reviewers 
who were asked to evaluate your manuscript. As you will see below, the reviewers mention that 
their concerns have been addressed and think that the study is now suitable for publication. 
Reviewer #1 mentions a couple of minor issues with the text, which we would ask you to fix.  
 
----------------------------------------------------------------------------  
 
REFEREE REPORTS. 
 
Reviewer #1:  
 
The authors have well addressed the comments.  
 
Minor issues:  
Two typos, both in section "Relationship to existing methods" p. 13 : (1) "iCluster: In contrast to 
MOFA, iCluster uses in *a* each view" -> "iCluster: In contrast to MOFA, iCluster uses in each 
view" and (2) "Group factor analysis: While the underlying model of MOFA is closely *connect* 
to" -> "Group factor analysis: While the underlying model of MOFA is closely *connected* to"  
 
 
Reviewer #3:  
 
The manuscript has significantly improved and all the main comments from all reviewers have been 
addressed. The addition of single-cell data (despite the small scale) makes a strong distinction 
between this method and previous methods such as iCluster in that MOFA provides model 
flexibility to accommodate both continuous and discrete states. The main novelty of the paper as a 
first flexible and configurable group Factor Analysis method for multiple data modalities is now 
clear. Adequate comparisons to previous factor analysis methods have been added in the revised 
manuscript.  
 
It would be interesting if the authors applied this method to single cell data showing hierarchical 
differentiation with multiple branching trajectories such as hematopoietic differentiation, though a 
large-scale application might be beyond the scope of this paper.  
 
The addition of validation data (drug response and WES) has strengthened the method, but still does 
not provide new biological insight. In this regard, repackaging the paper as a methodology paper 
rather than focusing on novel CLL insight is befitting.  
 
The flexibility of the noise model would expand the possible applications of this method. 
Furthermore, the supplementary provides a valuable resource (and a tutorial) for statistical 
computational biologists. 
 
  



 

Editorial comments: 

 

- Please include five keywords and a running title. 

multi-omics, data integration, factor analysis, dimensionality reduction, single-cell omics. 

 

- We noticed that you have not filled boxes 20 and 21 of the author checklist, could you 

please include an answer for these two boxes? 

Done. 

 

- In the main text: please include callouts to Figure panels 1A and 1B. 

Done. 

 

- In the Appendix PDF, we would ask you to rename the Figures from Supplementary Figure 

SX to Appendix Figure SX. 

Done. 

 

Reviewer comments: 

 

 

Reviewer #1: 
 
The authors have well addressed the comments. 
 
Minor issues: 
Two typos, both in section "Relationship to existing methods" p. 13 : (1) "iCluster: In contrast 
to MOFA, iCluster uses in *a* each view" -> "iCluster: In contrast to MOFA, iCluster uses in 
each view" and (2) "Group factor analysis: While the underlying model of MOFA is closely 
*connect* to" -> "Group factor analysis: While the underlying model of MOFA is closely 
*connected* to" 
Thank you for the positive comment. We have addressed all these comments and typos.  
 
Reviewer #3: 
 
The manuscript has significantly improved and all the main comments from all reviewers 
have been addressed. The addition of single-cell data (despite the small scale) makes a 
strong distinction between this method and previous methods such as iCluster in that MOFA 
provides model flexibility to accommodate both continuous and discrete states. The main 
novelty of the paper as a first flexible and configurable group Factor Analysis method for 
multiple data modalities is now clear. Adequate comparisons to previous factor analysis 
methods have been added in the revised manuscript. 
 
It would be interesting if the authors applied this method to single cell data showing 
hierarchical differentiation with multiple branching trajectories such as hematopoietic 
differentiation, though a large-scale application might be beyond the scope of this paper. 
 
The addition of validation data (drug response and WES) has strengthened the method, but 
still does not provide new biological insight. In this regard, repackaging the paper as a 
methodology paper rather than focusing on novel CLL insight is befitting. 
 
The flexibility of the noise model would expand the possible applications of this method. 
Furthermore, the supplementary provides a valuable resource (and a tutorial) for statistical 
computational biologists. 

crickerb
Typewritten Text
2nd Revision - authors' response						28th May 2018



 

Thank you for the positive comments. We agree that the results we present can be extended 

in a number of ways. In particular, applications to larger single-cell data sets will be fruitful 

directions in the future.  
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� common	  tests,	  such	  as	  t-‐test	  (please	  specify	  whether	  paired	  vs.	  unpaired),	  simple	  χ2	  tests,	  Wilcoxon	  and	  Mann-‐Whitney	  
tests,	  can	  be	  unambiguously	  identified	  by	  name	  only,	  but	  more	  complex	  techniques	  should	  be	  described	  in	  the	  methods	  
section;

� are	  tests	  one-‐sided	  or	  two-‐sided?
� are	  there	  adjustments	  for	  multiple	  comparisons?
� exact	  statistical	  test	  results,	  e.g.,	  P	  values	  =	  x	  but	  not	  P	  values	  <	  x;
� definition	  of	  ‘center	  values’	  as	  median	  or	  average;
� definition	  of	  error	  bars	  as	  s.d.	  or	  s.e.m.	  

1.a.	  How	  was	  the	  sample	  size	  chosen	  to	  ensure	  adequate	  power	  to	  detect	  a	  pre-‐specified	  effect	  size?

1.b.	  For	  animal	  studies,	  include	  a	  statement	  about	  sample	  size	  estimate	  even	  if	  no	  statistical	  methods	  were	  used.

2.	  Describe	  inclusion/exclusion	  criteria	  if	  samples	  or	  animals	  were	  excluded	  from	  the	  analysis.	  Were	  the	  criteria	  pre-‐
established?

3.	  Were	  any	  steps	  taken	  to	  minimize	  the	  effects	  of	  subjective	  bias	  when	  allocating	  animals/samples	  to	  treatment	  (e.g.	  
randomization	  procedure)?	  If	  yes,	  please	  describe.	  

For	  animal	  studies,	  include	  a	  statement	  about	  randomization	  even	  if	  no	  randomization	  was	  used.

4.a.	  Were	  any	  steps	  taken	  to	  minimize	  the	  effects	  of	  subjective	  bias	  during	  group	  allocation	  or/and	  when	  assessing	  results	  
(e.g.	  blinding	  of	  the	  investigator)?	  If	  yes	  please	  describe.

4.b.	  For	  animal	  studies,	  include	  a	  statement	  about	  blinding	  even	  if	  no	  blinding	  was	  done

5.	  For	  every	  figure,	  are	  statistical	  tests	  justified	  as	  appropriate?

Do	  the	  data	  meet	  the	  assumptions	  of	  the	  tests	  (e.g.,	  normal	  distribution)?	  Describe	  any	  methods	  used	  to	  assess	  it.

Is	  there	  an	  estimate	  of	  variation	  within	  each	  group	  of	  data?

Is	  the	  variance	  similar	  between	  the	  groups	  that	  are	  being	  statistically	  compared?

Yes

NA

No	  groups	  are	  compared

No	  groups	  are	  compared

YOU	  MUST	  COMPLETE	  ALL	  CELLS	  WITH	  A	  PINK	  BACKGROUND	  ê

NA

NA

We	  have	  not	  carried	  out	  additional	  selection	  of	  samples.	  see	  Methods,	  section	  Data	  processing

NA

NA

NA

NA

1.	  Data

the	  data	  were	  obtained	  and	  processed	  according	  to	  the	  field’s	  best	  practice	  and	  are	  presented	  to	  reflect	  the	  results	  of	  the	  
experiments	  in	  an	  accurate	  and	  unbiased	  manner.
figure	  panels	  include	  only	  data	  points,	  measurements	  or	  observations	  that	  can	  be	  compared	  to	  each	  other	  in	  a	  scientifically	  
meaningful	  way.
graphs	  include	  clearly	  labeled	  error	  bars	  for	  independent	  experiments	  and	  sample	  sizes.	  Unless	  justified,	  error	  bars	  should	  
not	  be	  shown	  for	  technical	  replicates.
if	  n<	  5,	  the	  individual	  data	  points	  from	  each	  experiment	  should	  be	  plotted	  and	  any	  statistical	  test	  employed	  should	  be	  
justified

the	  exact	  sample	  size	  (n)	  for	  each	  experimental	  group/condition,	  given	  as	  a	  number,	  not	  a	  range;

Each	  figure	  caption	  should	  contain	  the	  following	  information,	  for	  each	  panel	  where	  they	  are	  relevant:

2.	  Captions

The	  data	  shown	  in	  figures	  should	  satisfy	  the	  following	  conditions:

Source	  Data	  should	  be	  included	  to	  report	  the	  data	  underlying	  graphs.	  Please	  follow	  the	  guidelines	  set	  out	  in	  the	  author	  ship	  
guidelines	  on	  Data	  Presentation.

Please	  fill	  out	  these	  boxes	  ê	  (Do	  not	  worry	  if	  you	  cannot	  see	  all	  your	  text	  once	  you	  press	  return)

a	  specification	  of	  the	  experimental	  system	  investigated	  (eg	  cell	  line,	  species	  name).

C-‐	  Reagents

B-‐	  Statistics	  and	  general	  methods

the	  assay(s)	  and	  method(s)	  used	  to	  carry	  out	  the	  reported	  observations	  and	  measurements	  
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  being	  measured.
an	  explicit	  mention	  of	  the	  biological	  and	  chemical	  entity(ies)	  that	  are	  altered/varied/perturbed	  in	  a	  controlled	  manner.

a	  statement	  of	  how	  many	  times	  the	  experiment	  shown	  was	  independently	  replicated	  in	  the	  laboratory.

Any	  descriptions	  too	  long	  for	  the	  figure	  legend	  should	  be	  included	  in	  the	  methods	  section	  and/or	  with	  the	  source	  data.

	  

In	  the	  pink	  boxes	  below,	  please	  ensure	  that	  the	  answers	  to	  the	  following	  questions	  are	  reported	  in	  the	  manuscript	  itself.	  
Every	  question	  should	  be	  answered.	  If	  the	  question	  is	  not	  relevant	  to	  your	  research,	  please	  write	  NA	  (non	  applicable).	  	  
We	  encourage	  you	  to	  include	  a	  specific	  subsection	  in	  the	  methods	  section	  for	  statistics,	  reagents,	  animal	  models	  and	  human	  
subjects.	  	  

definitions	  of	  statistical	  methods	  and	  measures:

a	  description	  of	  the	  sample	  collection	  allowing	  the	  reader	  to	  understand	  whether	  the	  samples	  represent	  technical	  or	  
biological	  replicates	  (including	  how	  many	  animals,	  litters,	  cultures,	  etc.).
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6.	  To	  show	  that	  antibodies	  were	  profiled	  for	  use	  in	  the	  system	  under	  study	  (assay	  and	  species),	  provide	  a	  citation,	  catalog	  
number	  and/or	  clone	  number,	  supplementary	  information	  or	  reference	  to	  an	  antibody	  validation	  profile.	  e.g.,	  
Antibodypedia	  (see	  link	  list	  at	  top	  right),	  1DegreeBio	  (see	  link	  list	  at	  top	  right).

7.	  Identify	  the	  source	  of	  cell	  lines	  and	  report	  if	  they	  were	  recently	  authenticated	  (e.g.,	  by	  STR	  profiling)	  and	  tested	  for	  
mycoplasma	  contamination.

*	  for	  all	  hyperlinks,	  please	  see	  the	  table	  at	  the	  top	  right	  of	  the	  document

8.	  Report	  species,	  strain,	  gender,	  age	  of	  animals	  and	  genetic	  modification	  status	  where	  applicable.	  Please	  detail	  housing	  
and	  husbandry	  conditions	  and	  the	  source	  of	  animals.

9.	  For	  experiments	  involving	  live	  vertebrates,	  include	  a	  statement	  of	  compliance	  with	  ethical	  regulations	  and	  identify	  the	  
committee(s)	  approving	  the	  experiments.

10.	  We	  recommend	  consulting	  the	  ARRIVE	  guidelines	  (see	  link	  list	  at	  top	  right)	  (PLoS	  Biol.	  8(6),	  e1000412,	  2010)	  to	  ensure	  
that	  other	  relevant	  aspects	  of	  animal	  studies	  are	  adequately	  reported.	  See	  author	  guidelines,	  under	  ‘Reporting	  
Guidelines’.	  See	  also:	  NIH	  (see	  link	  list	  at	  top	  right)	  and	  MRC	  (see	  link	  list	  at	  top	  right)	  recommendations.	  	  Please	  confirm	  
compliance.

11.	  Identify	  the	  committee(s)	  approving	  the	  study	  protocol.

12.	  Include	  a	  statement	  confirming	  that	  informed	  consent	  was	  obtained	  from	  all	  subjects	  and	  that	  the	  experiments	  
conformed	  to	  the	  principles	  set	  out	  in	  the	  WMA	  Declaration	  of	  Helsinki	  and	  the	  Department	  of	  Health	  and	  Human	  
Services	  Belmont	  Report.

13.	  For	  publication	  of	  patient	  photos,	  include	  a	  statement	  confirming	  that	  consent	  to	  publish	  was	  obtained.

14.	  Report	  any	  restrictions	  on	  the	  availability	  (and/or	  on	  the	  use)	  of	  human	  data	  or	  samples.

15.	  Report	  the	  clinical	  trial	  registration	  number	  (at	  ClinicalTrials.gov	  or	  equivalent),	  where	  applicable.

16.	  For	  phase	  II	  and	  III	  randomized	  controlled	  trials,	  please	  refer	  to	  the	  CONSORT	  flow	  diagram	  (see	  link	  list	  at	  top	  right)	  
and	  submit	  the	  CONSORT	  checklist	  (see	  link	  list	  at	  top	  right)	  with	  your	  submission.	  See	  author	  guidelines,	  under	  
‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  submitted	  this	  list.

17.	  For	  tumor	  marker	  prognostic	  studies,	  we	  recommend	  that	  you	  follow	  the	  REMARK	  reporting	  guidelines	  (see	  link	  list	  at	  
top	  right).	  See	  author	  guidelines,	  under	  ‘Reporting	  Guidelines’.	  Please	  confirm	  you	  have	  followed	  these	  guidelines.

18:	  Provide	  a	  “Data	  Availability”	  section	  at	  the	  end	  of	  the	  Materials	  &	  Methods,	  listing	  the	  accession	  codes	  for	  data	  
generated	  in	  this	  study	  and	  deposited	  in	  a	  public	  database	  (e.g.	  RNA-‐Seq	  data:	  Gene	  Expression	  Omnibus	  GSE39462,	  
Proteomics	  data:	  PRIDE	  PXD000208	  etc.)	  Please	  refer	  to	  our	  author	  guidelines	  for	  ‘Data	  Deposition’.

Data	  deposition	  in	  a	  public	  repository	  is	  mandatory	  for:	  
a.	  Protein,	  DNA	  and	  RNA	  sequences	  
b.	  Macromolecular	  structures	  
c.	  Crystallographic	  data	  for	  small	  molecules	  
d.	  Functional	  genomics	  data	  
e.	  Proteomics	  and	  molecular	  interactions
19.	  Deposition	  is	  strongly	  recommended	  for	  any	  datasets	  that	  are	  central	  and	  integral	  to	  the	  study;	  please	  consider	  the	  
journal’s	  data	  policy.	  If	  no	  structured	  public	  repository	  exists	  for	  a	  given	  data	  type,	  we	  encourage	  the	  provision	  of	  
datasets	  in	  the	  manuscript	  as	  a	  Supplementary	  Document	  (see	  author	  guidelines	  under	  ‘Expanded	  View’	  or	  in	  
unstructured	  repositories	  such	  as	  Dryad	  (see	  link	  list	  at	  top	  right)	  or	  Figshare	  (see	  link	  list	  at	  top	  right).
20.	  Access	  to	  human	  clinical	  and	  genomic	  datasets	  should	  be	  provided	  with	  as	  few	  restrictions	  as	  possible	  while	  
respecting	  ethical	  obligations	  to	  the	  patients	  and	  relevant	  medical	  and	  legal	  issues.	  If	  practically	  possible	  and	  compatible	  
with	  the	  individual	  consent	  agreement	  used	  in	  the	  study,	  such	  data	  should	  be	  deposited	  in	  one	  of	  the	  major	  public	  access-‐
controlled	  repositories	  such	  as	  dbGAP	  (see	  link	  list	  at	  top	  right)	  or	  EGA	  (see	  link	  list	  at	  top	  right).
21.	  Computational	  models	  that	  are	  central	  and	  integral	  to	  a	  study	  should	  be	  shared	  without	  restrictions	  and	  provided	  in	  a	  
machine-‐readable	  form.	  	  The	  relevant	  accession	  numbers	  or	  links	  should	  be	  provided.	  When	  possible,	  standardized	  
format	  (SBML,	  CellML)	  should	  be	  used	  instead	  of	  scripts	  (e.g.	  MATLAB).	  Authors	  are	  strongly	  encouraged	  to	  follow	  the	  
MIRIAM	  guidelines	  (see	  link	  list	  at	  top	  right)	  and	  deposit	  their	  model	  in	  a	  public	  database	  such	  as	  Biomodels	  (see	  link	  list	  
at	  top	  right)	  or	  JWS	  Online	  (see	  link	  list	  at	  top	  right).	  If	  computer	  source	  code	  is	  provided	  with	  the	  paper,	  it	  should	  be	  
deposited	  in	  a	  public	  repository	  or	  included	  in	  supplementary	  information.

22.	  Could	  your	  study	  fall	  under	  dual	  use	  research	  restrictions?	  Please	  check	  biosecurity	  documents	  (see	  link	  list	  at	  top	  
right)	  and	  list	  of	  select	  agents	  and	  toxins	  (APHIS/CDC)	  (see	  link	  list	  at	  top	  right).	  According	  to	  our	  biosecurity	  guidelines,	  
provide	  a	  statement	  only	  if	  it	  could.
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As	  described	  in	  the	  manuscript,	  the	  software	  is	  available	  in	  https://github.com/bioFAM/MOFA	  and	  
the	  code	  for	  the	  analysis	  is	  available	  at	  https://github.com/PMBio/MOFA_CLL
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The	  section	  is	  included	  in	  our	  manuscript.

All	  data	  used	  in	  the	  study	  is	  published	  and	  has	  been	  depoisted	  in	  the	  primary	  publication.	  
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