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S1 Overview

This supplemental report comprises the following parts: The first part (Section S2) details how
we obtained datasets and folds for comparisons. The second part (Section S3) describes the target
prediction methods we compared. The third part provides additional details on the results shown
in the main text (Section S4). The appendix presents descriptions of external tables.

S2 Data Collection and Clustering

In this section, we first provide details on how we generated the benchmark dataset for the target
prediction methods (Section S2.1). In particular, we present criteria for considering a measurement
to be active or inactive. Further, we describe how compounds were represented (Section S2.2) and
how we derived compound clusters and cross-validation folds from these compound representa-
tions (Section S2.3). Finally, we list some criteria for identifying assay pairs for the prediction
performance comparison between in-vitro assays and in-silico assays and we give further details
on the comparison procedure (Section S2.4).

S2.1 Extraction of a Benchmark Dataset from ChEMBL

Overall, the ChEMBL 20 database contains 1,456,020 compounds, 13,520,737 bioactivity mea-
surements, and 1,148,942 assays assigned to 10,774 targets. The distribution of measurements
across assays is highly unbalanced. There are assays with a large number of measurements (tens
of thousands), while for more than half of the assays there is only a single measurement avail-
able. Similarly, the distribution of assays across targets is unbalanced. For many targets there is
only a single assay in ChEMBL, while for others there are more than a hundred different assays.
ChEMBL also contains repeated measurements (i.e., compounds were measured multiple times
by the same assay). Because of this heterogeneity of assays and their outcomes, it is often unclear
what measurements can be considered active, inactive or unknown. Therefore, we defined a pro-
tocol for generating a benchmark dataset from ChEMBL in which binary labels (active/inactive)
are assigned to compound-measurement pairs:

1. Standard Activity comment: The ChEMBL table activities includes an
activity_comment field. If the activity_comment was either "Active" or "active",
we considered a measurement active; if the comment was either "inactive", "Not Active"
or "Not Active (inhibition < 50% 10 uM and thus dose-response curve not measured)"
we considered the measurement to be inactive. In these cases, we did not consider any fur-
ther details about the measurements.

2. Activity filter: Of the measurements that had no standard activity comments as described in
Step 1., we discarded those for which either standard_valuewas empty, standard_units
was unequal to "nM" or standard_relation was not in {">", ">=", "<", "<=", "=", "~"}

3. Assignment of labels: We considered density plots of active and inactive measurements
with given standard activity comments and determined thresholds for activity and inactivity.
These thresholds are given in Table S1; we considered a measurement to be indeterminate
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if it was neither clearly active nor clearly inactive according to our activity threshold. Addi-
tionally, for comparing the performance of Deep Learning with that of in-vitro assays (not
for method comparison), we allowed weak labels for the comparison of DNN predictions
and surrogate in-vitro assay predictions to their ground truth (not for training DNN mod-
els). To all measurements that passed the activity filter described in Step 2. and that had
no standard comment in Step 1., we assigned labels according to this table, depending on
standard_value and standard_relation (note that the negative logarithm changes the
direction of the inequality sign for the threshold).

Label Threshold in -log10(M) Relation Type
active ≥ 5.5 "<", "<=", "=", "~"
weak active > 5.0 and < 5.5 "<", "<=", "=", "~"
inactive ≤ 4.5 ">", ">=", "=", "~"
weak inactive > 4.5 and < 5.0 ">", ">=", "=", "~"
indeterminate > 4.5 or < 5.5 any

Table S1: Activity thresholds for measurements without standard activity comments

4. Removing contradicting measurements: We merged all measurements obtained in steps
1. and 3., and removed all measurements for which compounds were reported to be both
active and inactive in the same assays.

Applying this protocol created a cleaned-up ChEMBL dataset comprising 6,882,639 measure-
ments from 290,041 assays and 1,057,015 compounds. We further removed assays with fewer than
∼ 100 measurements to avoid the problem of an insufficient number of data points being available
either for training or for evaluation. Additionally, we had to ensure that each cross-validation fold
contained at least one active and one inactive compound to be able to calculate an ROC-AUC
evaluation value. Finally, we obtained a benchmark dataset with 1,310 assays and 4,743,712 assay
measurements of 456,331 compounds. The exact list of assays used is given in Table S10.

S2.2 Representation of Chemical Compounds

A very commonly used description of a chemical compound is the graph representation, which
is often given by an adjacency matrix. A further representation is given by strings, that describe
the molecule graph. Examples are SMILES [Weininger, 1988] or InChI [Heller et al., 2013]
representations.

However, a graph or string representation can only be processed by some algorithms, while
others expect a representation of the inputs as feature vectors. Therefore, we computed a number
of chemical descriptors using standard software [e.g., Cao et al., 2013, Hinselmann et al., 2011,
RDKit]. As in [Mayr et al., 2016] and as mentioned in the main text, we grouped types of chemical
descriptors into static features, which are typically identified by experts as promising properties
for predicting biological activity, and dynamic features, which are extracted on the fly from the
chemical structure of a compound in a prespecified way. The most obvious difference between
static and dynamic features is that the number of static features is fixed and equal for each com-
pound, while the number of dynamic features that describe a compound is compound-specific. We
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defined “semi-sparse” features as an additional category. We consider a feature to be semisparse
if it is predefined or fixed in size, as is typical of static features, but sparse like most dynamic fea-
tures. An example of semisparse features are MACCS descriptors. Further, we generated 2,200
toxicophore descriptors [Mayr et al., 2016] as a separate feature category.

In detail we used the following features categories:

Common static features (StaticF, static) as provided by [Cao et al., 2013]:

• Basak information indices

• Burden descriptors: eigenvalues of Burden matrices [Burden, 1989]

• Charge descriptors

• Charged partial surface area (CPSA) descriptors [Stanton and Jurs, 1990]

• Constitutional descriptors: number of atoms of type “C”, “N”, molecular weight, num-
ber of charges, number of aromatic rings, etc.

• Electrotopological state indices [Kier and Hall, 1990]

• Geary autocorrelation descriptors [Geary, 1954]

• Geometric descriptors

• Kappa shape descriptors [Hall and Kier, 1991]

• Molecular connectivity indices [Hall and Kier, 1991]

• Moran autocorrelation descriptors [Moran, 1950]

• Moreau-Broto autocorrelation [Broto et al., 1984]

• MoRSE descriptors [Schuur et al., 1996]

• Radial Distribution Function (RDF) descriptors [Hemmer et al., 1999]

• Topological descriptors

• MOE-type descriptors for surface area

• Molecular properties: molar refractivity, lipophilic contributions of atoms, etc.

• Weighted Holistic Invariant Molecular (WHIM) descriptors [Todeschini et al., 1994,
Todeschini and Gramatica, 1997]

Common semisparse features (SemiF, semispare):

• Chemically Advanced Template Search [CATS2D, Schneider et al., 1999, Renner
et al., 2006] as implemented in [Hinselmann et al., 2011]

• MACCS fingerprints: 166 common substructure features

• PubChem Substructure Fingerprints (PCFP): 881 binary substructure features

• Shannon Entropy Descriptors [SHED, Gregori-Puigjané and Mestres, 2006] as imple-
mented in [Hinselmann et al., 2011]

• Daylight-like fingerprint features as implemented in [RDKit]

Toxicophore features (ToxF, semispare): about 2,276 in-house toxicophore features which
comprise substructures previously reported as toxicophores
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ECFP features [dynamic, Rogers and Hahn, 2010] with counts and radii 2 (ECFP4) and 3
(ECFP6) and DFS features [dynamic, Swamidass et al., 2005] with counts and diameter 8
(DFS8) as implemented in [Hinselmann et al., 2011] using the option ELEMENT_SYMBOL for
encoding atom types for ECFP6 and DFS8 and DAYLIGHT_INVARIANT_RING for encoding
atom types for ECFP4.

S2.3 Clustering the ChEMBL Database and Definition of Folds

As mentioned in the main text, we clustered all 1,456,020 compounds of the ChEMBL database
using single-linkage clustering, which is an algorithm that is able to find a clustering with guaran-
teed minimum distances minD between any two different clusters. This is an important property
for cluster-cross-validation, as it avoids that a compound in the training set is closer than minD to
a compound in the test set. In single-linkage clustering, the actual distanceD between two clusters
or sets of points Cluster1 and Cluster2 is defined by the minimum distance d between any two
points from the two sets:

D(Cluster1,Cluster2) = min
p1∈Cluster1,p2∈Cluster2

d(p1, p2).

For the distance d between compounds, we used the Jaccard distances on binarized ECFP4
compound representations. Any two identified different clusters of compounds Cluster1 and
Cluster2 finally fulfil the property D(Cluster1,Cluster2) ≥ minD, where minD can be con-
sidered as a hyperparameter for the clustering, as it is not only a bound for the distances between
any two clusters identified, but also determines whether sets of compounds should be merged in
the process of identifying clusters.

Note that for high values of minD, all compounds fall into one or a few large clusters, while
for small values very small clusters with only a few compounds emerge. As the number of clusters
can become very high, and an imbalanced clustering with some very large and many small clusters
may be found, we decided to finally merge the clusters to form three folds of approximately equal
size. Merging all compounds of a cluster to the same fold ensures that we have minimum distances
minD between compounds of different folds.

We computed clusterings for various minD values and checked the resulting cluster size dis-
tribution. We chose minD = 0.3, as around this threshold the large clusters seemed to fall apart.
Thus, we obtained 425,252 clusters of compounds with 103,287 and 9,134 compounds for the
largest and the second-largest clusters, respectively (see Table S2). We considered this to be a
good trade-off between an excessive number of clusters and a very degenerate clustering with one
or a few extremely large clusters. Since we merged clusters to form 3 different folds with about
500,000 compounds each, one cluster with about 100,000 compounds seemed acceptable. Table
S3 shows the actual sizes of the 3 folds, produced by merging clusters.

Cluster Nr. 1 2 3 4 5 6 7 8 9 10
Size 103287 9134 3701 3535 3425 3155 3045 2854 2761 2595

Table S2: Ten largest chemical clusters identified in ChEMBL, ordered by size
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Fold Nr. 1 2 3
Size 551173 455840 449007

Table S3: Sizes of the three folds

S2.4 Comparison of in-vitro Assays to in-silico Assays

S2.4.1 Search for Assay Pairs

In order to find assays that rely on different biotechnological principles, but are designed to mea-
sure the same effect, we considered assay pairs with the following properties: both share the same
target, and one of the two is described as a high-throughput assay, and the second is not explicitly
described as a high-throughput assay. Note that this does not necessarily mean that the second
assay is not a high-throughput assay. Further, we aimed at a minimal overlap between assays in
terms of compounds.

The exact criteria were:

identical biomolecular targets assigned to both assays;

at least 15 compounds measured in both assays;

one assay described as a high-throughput assay;

the other assay not described as a high-throughput assay.

Further, we checked the assay descriptions manually to determine whether the assays were
intended to measure the same biological effect. The assay pairs found in this manual check are
given in the main text and Table S14. The assay pairs, which were removed by the manual check
are listed in Table S15.

S2.4.2 Performance Comparison

We trained three multitask FNNs on all assays from our benchmark dataset that correspond to
the three folds of the benchmark dataset. Each FNN was trained on two folds of compounds
and the values for the compounds from the remaining fold were predicted with the trained FNNs.
The predictions from the three folds were aligned to one prediction matrix for all compounds and
assays of the benchmark dataset. Note that for an entry of this prediction matrix, the cluster of the
corresponding compound was excluded from the training data (but not the whole two assays).

To compare FNN predictions to a surrogate in-vitro assays in terms of prediction performance
for a selected in-vitro assay, that had to be predicted, we applied a proportion test that considered
FNN predictions against the in-vitro assay that serves as the ground truth assay as well as the
surrogate in-vitro assay with the same target as the ground truth assay against the ground truth
assay itself. For FNN predictions we had to find a threshold, to differentiate inactive compounds
from active compounds. Therefore, we randomly split the compounds of FNN predictions into a
set for optimising the threshold and a set to evaluate predictions against the ground truth assay.
Note, that we used the same threshold for all folds. Although in general it is not guaranteed, that
the same threshold can be used for each fold, it seemed to work here.
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S3 Methods

We considered several methods for predicting the outcomes of assays. A basic description can be
found in the main text. Here we provide further details for reproducibility reasons.

S3.1 Deep Learning

S3.1.1 Overview

Formal Description of Deep Neural Networks A deep neural network can be considered a
function that maps the input vector x, which is the representation of a compound by its features, to
an output vector y that represents the activity prediction. This function has parameters, so-called
weights, that are organized in layers. Figure S2 shows a general deep neural network architecture.
A layer implements a linear mapping of its inputs to its outputs followed by a non-linear activation
function f (see Figure S1 for a visualization of the rectified linear unit [ReLU, Nair and Hinton,
2010, Glorot et al., 2011], the sigmoid, and the scaled exponential linear unit [SELU, Klambauer
et al., 2017] activation functions mentioned in the main text). Let wl

ji be the weight connecting
neuron i in layer l−1 to neuron j in layer l, and blj be the intercept of neuron j, then the following
formula computes the output y of a neural net with m layers:

h0 = x ;

hlj = f
( ∑

i

wl
ji h

l−1
i + blj

)
;

y = hm .

−7.0 −6.0 −5.0 −4.0 −3.0 −2.0 −1.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

−2.0

−1.0

1.0

2.0

3.0

4.0

5.0

x

y

sigmoid

ReLU

SELU

Figure S1: Comparison of SELU, ReLU and sigmoid activation functions

Objective Function In order to produce accurate predictions, a neural network aims to mini-
mize the errors of the predictions yk for the given training data tk of a task k as determined by
an appropriate error function. A typical error function for deep networks that perform a binary
prediction task is the cross entropy error function, which is to be minimized with respect to the
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Figure S2: Architecture of DNNs

neural network weights. In chemoinformatics, the activity information is usually sparse, which
means that compounds are measured only for a certain number of targets. For these targets k we
know whether the compound was active (tk = 1) or inactive (tk = 0). For all other compounds we
do not have such information. We therefore used a modified cross entropy function that considers
missing label information by using a binary mask mk, which is one if a sample has a label for task
k and zero otherwise. Our objective function to be minimized is therefore:

−
K∑
k=1

mk ( tk log(yk) + (1− tk) log(1− yk)) .

S3.1.2 Standard Feed-forward Neural Networks (FNNs)

Training of FNNs and software implementation We used Minibatch Stochastic Gradient De-
scent (SGD) with a batchsize of 128 to train the FNNs. The input features to the networks were
normalized to mean 0 and standard deviation 1. We had to apply feature selection for the dy-
namic features, since the whole set of features from a dynamic feature category (i.e. ECFP, DFS,
ECFP+ToxF) is extremely large (several 100,000s). Because of the sizes of the emerging matrices
and the number of networks to train, training networks with all features from a category would
be computationally infeasible. We therefore removed features that were sparse, i.e. which were
only present in a few compounds. In detail, for ECFP and ECFP+ToxF we removed features, that
occured in less than 0.25% of all compounds in the respective training sets, for DFS (which was
less sparse than ECFP) we removed features, that were present in less than 2%.
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Hyperparameter search We wanted to keep the hyperparameter search space small in order
to deal with the large computational effort per experiment. Therefore, we performed a number of
smaller experiments on a subset of the data to determine sensible ranges for some hyperparameters.
Finally, we performed a hyperparameter search for the activation function and the corresponding
network architecture, the number of hidden units per layer, the number of layers, the learning rate
and to decide whether Input Dropout should be used. Table S4 shows a list of these hyperparam-
eters and architecture design parameters that were used for the FNNs, together with their search
ranges. We considered all combinations of these hyperparameters, except 2 and 4 hidden layer
networks for 1024 and 4096 hidden units (in order to keep the search space smaller and with the
assumption that these combinations may be close to other combinations in the grid).

Hyperparameter Values considered
Architecture/Activation Function {ReLU, SELU}
Number of Hidden Units {1024, 2048, 4096}
Number of Hidden Layers {2, 3, 4}
Learning Rate {0.01, 0.1}
Input Dropout {0.2, 0.0}
Dropout {0.5}

Table S4: Hyperparameters considered for FNNs

S3.1.3 Graph Convolution Networks

Training of graph convolutional networks and software implementation We used a basic
graph convolutional network implementation [GC: GraphConvTensorGraph, Duvenaud et al.,
2015, Wu et al., 2018] and the Weave convolutional networks [Weave: WeaveTensorGraph, Kearnes
et al., 2016] from the DeepChem package [2016].

While the GC architectures use a sequence of Convolution and Pooling Layers (that are more
or less sequences of matrix multiplications and subsequent maximum operations), the core of the
Weave architectures is the usage of a sequence of Weave modules, that allow for pair features
and construct atom and pair output features from atom and pair input features. Therefore, several
(complex) operations, that preserve invariances are defined.

In the version, we used (DeepChem 1.3.1), it seemed, that some functionalities needed to
be modified (Batch Normalization), to allow networks to be trained efficiently. To train GC and
Weave Tensorgraph models, we used a batchsize of 128 and used the standard optimizer of Ten-
sorgraph models (Adam [Kingma and Ba, 2014]).

Hyperparameter search We basically used the suggested DeepChem default architectures, but
extended them a little, to allow more hyperparameters to define the final architecture. Table S5
shows a list of these hyperparameters and the values we considered.



12 S3 Methods

Hyperparameter Values considered
Size of Dense Layer {1024, 2048}
Size of Graph Layers {128}
Number of Graph Layers {2, 3, 4}
Learning Rate {0.001, 0.0001}
Dropout {0.0, 0.5}

Table S5: GC and Weave Hyperparameters considered for Graph Convolutional Networks

S3.1.4 SmilesLSTM

Training of SmilesLSTM and software implementation We used long short-term memory
(LSTM) recurrent neural networks [Hochreiter and Schmidhuber, 1997] based on the 1-hot en-
coded SMILES representation [Weininger, 1988] of chemical compounds. The full architecture
of this model “SmilesLSTM” consists of one or several 1D-convolutional layers with SELU acti-
vations [Klambauer et al., 2017] followed by mean- or max-pooling layers, then one or multiple
stacked LSTMs and a final fully-connected output layer. The architecture is depicted in Figure S3.
We implemented the SmilesLSTM in the Keras (version 2.1.2) [Chollet, 2015] library with Ten-
sorflow backend. All parameters of the network layers are left to default except the ones given in
Table S6. We used different optimizers, such as SGD and Adam [Kingma and Ba, 2014], with a
batchsize of 128 together with a momentum term to train the SmilesLSTM.

  

1-hot encoding

SMILES
representation

Embedding

1D Conv Block 1

LSTM1

LSTM2

Output layer
Fully connected 2

LSTM3

1D Conv Block 2

1D Conv Block 3

Fully connected 1

Figure S3: The principle architecture of SmilesLSTM: The one-hot encoded input sequence is
passed to 1D-convolutional layers with pooling layers. Then stacked LSTMs are applied and a
final fully-connected output layer is used.
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Hyperparameter Selection The hyperparameter space of this model is large, which makes grid-
search prohibitively expensive with respect to computational costs. The list of hyperparameters
with considered values is given in Table S6. Instead of grid-search we use manual hyperparameter
search [Goodfellow et al., 2016] on the inner fold of our nested cross-validation procedure.

S3.2 Support Vector Machines (SVMs)

Formal Description of SVMs Basically, SVMs classify samples using a prediction function of
the following form:

y = sign (〈w,x〉 + b) .

Here, b is the bias weight and w are the feature weights, which are determined by solving a
convex minimization problem. In this optimization problem the strength of the weights w is
minimized while ensuring correct classifications by constraints. The weights can be expressed
as a linear combination of the training feature vectors xs of sample s, where the labels ts (0 or
1) and the dual variables αs resulting from convex optimization, serve as scaling factors for the
corresponding sample feature vectors:

w =
∑
s

αstsxs.

Using this formula allows us to express the classification function without explicitly computing
the feature weights w. Therefore, the classification function can be rewritten as:

y = sign

(∑
s

αsts 〈xs,x〉 + b

)
.

The basic SVM classification function can be considered a linear classifier. To allow nonlinear
classification, the kernel trick can be applied, that is replacing the scalar product 〈., .〉 with a
more general kernel function k (., .) that should be positive definite. Mathematically, this can be
interpreted as projecting the samples to a higher dimensional space in which the scalar product is
computed. From an application point of view, we can consider the kernel function as a similarity
measure between samples.

Training and software implementation We used the LIBSVM implementation [Chang and
Lin, 2011] for computing the dual variables. Since run time complexity is quadratic in the number
of samples, we had to integrate the LIBSVM library into an OpenMP application that was run on
a supercomputer.

Kernel function As mentioned in the main text, we used the Minmax kernel. For compounds x
and z [Mayr et al., 2016] it is:

kMinmax_new(x, z) =

∑
P∈P: N(P,x)+N(P,z)>0

min(N(P,x),N(P,z))
max(N(P,x),N(P,z))∑

P∈P: N(P,x)+N(P,z)>0 1
.
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Hyperparameter Considered values Selected hyperp.
Number of FC layers {1, 2} 1
Number of units in second FC layer 2[9,11] –
L1 Weight Decay in FC layers {10−9, 10−8, 10−7, 0} 0
L2 Weight Decay in FC layers {10−9, 10−8, 10−7, 0} 10−9

Number of LSTM layers {1,2,3} 2
Number of units in LSTM3 2[2,10] –
Dropout rate in LSTM3 [0, 0.5] –
Number of units in LSTM2 2[2,9] 29

Dropout rate in LSTM2 [0, 0.5] 0.1
Number of units in LSTM1 2[2,9] 27

Dropout rate in LSTM1 [0, 0.5] 0.1

Convolutional block 3 {yes, no} no
Pooling type after convolutional block 3 {no, mean, max} –
Number of kernels in convolutional block 3 2[2,10] –
Stride in convolutional block 3 {1–3} –
Kernel size of convolutional block 3 {1–6} –
Dropout rate in convolutional block 3 [0, 0.75] –

Convolutional block 2 {yes, no} no
Pooling type after convolutional block 2 {no, mean, max} –
Number of kernels in convolutional block 2 2[2,10] –
Stride in convolutional block 2 {1–3} –
Kernel size of convolutional block 2 {1–6} –
Dropout rate in convolutional block 2 [0, 0.75] –

Convolutional block 1 {yes, no} yes
Pooling type after convolutional block 1 {no, mean, max} max
Number of kernels in convolutional block 1 2[2,10] 25

Stride in convolutional block 1 {1–3} 2
Kernel size of convolutional block 1 {1–6} 4
Dropout rate in convolutional block 1 [0, 0.75] 0.5

Embedding {yes, no} no
Embedding dimension 2[2,10] –

Input dropout rate [0, 0.2] 0.1

Learning Rate 10[−5,−1] 10−4

Optimizer {SGD, Momentum, Adam} Adam
Activation function for convolutional layers {ReLU, SELU} SELU
Early-stopping parameter (epochs) {1–300} 300

Table S6: Hyperparameters considered for SmilesLSTM. Manual hyperparameter selection was
performed on the inner fold of a nested cross-validation procedure to avoid the hyperparameter
selection bias.
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Here, N(P,x) quantifies feature P for compound x. In total, |P| features are considered.
Other definitions of Minmax kernels exist. The advantage of our version is, that it is scale invariant
with respect to the features. Additionally, we scale the kernel value with a parameter γ and apply
the exp function to it.

Hyperparameter search We applied hyperparameter selection over the cost parameter for mis-
classified samples as well as over γ for our kernel. Table S7 gives an overview of the hyperparam-
eters considered.

Hyperparameter Values considered
Cost {0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}
γ {no scaling and exponentiation, 0.1, 1.0, 10.0, 100.0}

Table S7: Hyperparameters considered for SVMs

S3.3 Random Forests (RFs)

For RF hyperparameters, we used a high number of trees to obtain a stable model with good
performance [Oshiro et al., 2012]. The critical parameter is the number of features considered at
each split [Louppe, 2014], which we adjusted in a nested cross-validation setting. We trained and
assessed models in our established framework using various hyperparameters (see Table S8) and
used the RF implementation “ranger” [Wright and Ziegler, 2015].

Hyperparameter Values considered
number of trees {1000}
number of features considered at each split {1, 2, 3} ×

√
total number of features

Table S8: Hyperparameters considered for RFs

S3.4 K-Nearest Neighbour

Distance function For comparability with the SVM results, we simply defined the distance to be
1− kMinmax_new(x, z) to determine the nearest neighbour. Further, we used the same similarities
as in the SVM case.

Hyperparameter search The natural hyperparameter is the number K of nearest neighbours. It
was selected from the set {1, 3, 5, 10, 50, 100}.

S3.5 Naive Bayes (NB) Statistics

Formal Description This approach computes Laplacian-adjusted probability estimates for the
features, which leads to individual feature weights that are finally summed to give the predictions.
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The method defines the probability of a compound x to be active by the ratio between the number
of active samples S+

k in the training set and the training set size Sk:

p (yk = 1) =
S+
k

Sk
.

It is assumed that a compound is described by a set of features P ∈ P . A Laplace-corrected
probability for a compound x to be active if a certain feature P is available is computed from the
number of compounds SP

k containing the feature and the number SP,+
k of active compounds from

those which contain P :

pcorr (yk = 1|P ) =
SP,+
k + p (yk = 1) α

SP
k + α

,

where α is defined as 1
p(yk=1) . Finally, a weight for feature P is computed as:

wk,P = log

(
pcorr (yk = 1|P )
p (yk = 1)

)
.

A prediction score for compound x, consisting of a set of features, is then obtained by summing
the corresponding feature weights.

Hyperparameter search and software implementation We reimplemented the approach as
described in [Xia et al., 2004], which does not introduce hyperparameters. A hyperparameter
search was therefore not necessary.

S3.6 Similarity Ensemble Approach (SEA)

Similarity measure For comparability with other results, we used the same Tanimoto kernel
function as for SVMs and K-nearest neighbour.

Hyperparameter search and Software implementation The approach introduces a correction
model for which the parameters are optimized on a background set. The procedure for deter-
mining these parameters was described by the authors. In particular, a threshold for cutting off
the Tanimoto similarity had to be determined. This hyperparameter selection as well as the SEA
prediction procedure and the correction model were reimplemented to be used on a multi-core
supercomputer as described in [Keiser and Hert, 2009], since this description seemed to be more
precise to us than the descriptions in [Keiser et al., 2007].
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S4 Results

S4.1 Method Performance Comparison

We performed Wilcoxon signed rank tests between all pairs of algorithms for target prediction to
determine, whether some methods significantly outperformed others. In Table S9 we exemplar-
ily show the results (p-values) of the tests, where we fixed the input feature category for algo-
rithms, that rely on compound descriptors, either to ECFP6 or a combination of ECFP6 and ToxF
(ECFP6+ToxF).

ECFP6

> FNN SVM RF KNN NB SEA GC Weave LSTM
FNN 1.000E+000 1.985E-007 8.491E-088 4.814E-128 3.882E-122 4.538E-167 5.519E-083 4.613E-130 3.154E-069

SVM 1.000E+000 1.000E+000 1.549E-090 1.002E-118 4.433E-102 4.376E-170 2.034E-048 4.057E-094 6.591E-035

RF 1.000E+000 1.000E+000 1.000E+000 2.109E-011 6.830E-017 1.278E-115 1.000E+000 1.154E-005 1.000E+000

KNN 1.000E+000 1.000E+000 1.000E+000 1.000E+000 5.437E-006 2.084E-109 1.000E+000 6.510E-001 1.000E+000

NB 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.356E-109 1.000E+000 1.000E+000 1.000E+000

SEA 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.000E+000 1.000E+000

GC 1.000E+000 1.000E+000 1.524E-008 2.190E-029 7.580E-039 7.017E-142 1.000E+000 7.243E-034 9.999E-001

Weave 1.000E+000 1.000E+000 1.000E+000 3.490E-001 1.634E-005 3.423E-109 1.000E+000 1.000E+000 1.000E+000

LSTM 1.000E+000 1.000E+000 1.087E-016 2.143E-045 1.476E-044 8.271E-146 1.294E-004 1.310E-056 1.000E+000

ECFP6+ToxF

> FNN SVM RF KNN NB GC Weave LSTM
FNN 1.000E+000 8.777E-011 2.759E-033 5.151E-140 2.892E-114 5.125E-101 3.286E-142 2.504E-097

SVM 1.000E+000 1.000E+000 3.249E-021 2.716E-132 3.214E-093 9.519E-073 1.887E-109 5.453E-062

RF 1.000E+000 1.000E+000 1.000E+000 1.066E-094 1.092E-066 2.606E-032 1.755E-074 4.278E-021

KNN 1.000E+000 1.000E+000 1.000E+000 1.000E+000 2.189E-003 1.000E+000 1.231E-003 1.000E+000

NB 1.000E+000 1.000E+000 1.000E+000 9.978E-001 1.000E+000 1.000E+000 8.926E-001 1.000E+000

GC 1.000E+000 1.000E+000 1.000E+000 8.724E-017 9.296E-021 1.000E+000 7.243E-034 9.999E-001

Weave 1.000E+000 1.000E+000 1.000E+000 9.988E-001 1.074E-001 1.000E+000 1.000E+000 1.000E+000

LSTM 1.000E+000 1.000E+000 1.000E+000 1.300E-030 1.015E-027 1.294E-004 1.310E-056 1.000E+000

Table S9: p-values from a Wilcoxon signed rank test with the alternate hypothesis that algorithms
in the row have a higher AUC than the algorithms in the column, using either ECFP6 feature
encoding or a combination of ECFP6 and ToxF features for algorithms, that rely on compound
descriptors

S4.2 AUC vs. Training and Test Set Sizes

We examined a matrix of scatter plots (Figure S4) to investigate the dependencies between training
set size, test set size and the AUC values obtained by FNNs on ECFP6+ToxF features. Since
training and test set sizes seem to correlate well, we conclude that the most likely cause for larger
(smaller) AUC values is a larger (smaller) training set size.
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Figure S4: Correlation of training set size with test set size and correlation with AUCs from FNNs
applied to ECFP6+ToxF features
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S5 Appendix

S5.1 External Tables

Table S10: ChEMBL targets used and fold sizes

The table is attached as an external file: Supplementary_Table_S10.csv
Each row represents a ChEMBL target with the ChEMBL identifier in the first column and infor-
mation on the corresponding training and test set sizes of the folds for each class (active/inactive)
in the columns.

Table S11: FNN assay-AUC Performance for ChEMBL Assays and Feature Categories

The table is attached as an external file: Supplementary_Table_S11.csv
Each row represents a ChEMBL target with the ChEMBL identifier in the first column and the pre-
diction performance (assay-AUC: mean AUC over folds) per feature category in the corresponding
columns.

Table S12: FNN ROC-AUC Performance for ChEMBL Assays and Feature Categories

The table is attached as an external file: Supplementary_Table_S12.csv
Each row represents a ChEMBL target with the ChEMBL identifier in the first column and the
prediction performance (ROC-AUC) per feature category and fold in the corresponding columns.

Table S13: FNN PR-AUC Performance for ChEMBL Assays and Feature Categories

The table is attached as an external file: Supplementary_Table_S13.csv
Each row represents a ChEMBL target with the ChEMBL identifier in the first column and the
prediction performance (PR-AUC) per feature category and fold in the corresponding columns.

Table S14: Selected Assay Pairs, where one assay was described to be a high-throughput assay
and the other was not explicitly described to be a high-throughput assay

The table is attached as an external file: Supplementary_Table_S14.csv
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Table S15: Manually removed Assay Pairs, where one assay was described to be a
high-throughput assay and the other was not explicitly described to be a high-throughput assay

The table is attached as an external file: Supplementary_Table_S15.csv
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