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Supplemental Table 1. CMIP5 general circulation models (GCMs) used to evaluate agreement among simulations. The first eight were 

used as individual simulations with RCP 4.5 and 8.5. In addition to a multi-model ensemble was calculated based on the first eight and 

the last seven GCMs listed.   

Use GCM Source
Focal simulations CanESM2 Canadian Centre for Climate, Canada   
 CCSM4 National Center for Atmospheric Research, USA   
 CNRM-CM5 Centre National de Recherches Meteorologiques, France  
 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA    
 HadGEM2-ES Met Office Hadley Centre, UK   
 INM-CM4 Institute for Numerical Mathematics, Russia    
 IPSL-CM5A-MR Institute Pierre-Simon Laplace, France    
 MPI-ESM-LR Max Planck Institute for Meteorology, Germany   
  
For Ensemble only ACCESS1.0 Commonwealth Scientific and Industrial Research Organization, Australia
 MIROC5 Atmosphere and Ocean Research Institute, Japan   
 CSIROMk3.6 Commonwealth Scientific and Industrial Research, Australia  
 MRI-CGCM3 Meteorological Research Institute, Japan     
 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Japan
 CESM1-CAM5 National Center for Atmospheric Research, USA   
 GISS-E2R NASA Goddard Institute for Space Studies, USA  

 



Supplemental Figure 1. Quartiles of all 18 alternative climate projections and scenario outputs 

for the forward climate velocity. Top nine map panels represent RCP 4.5; bottom 9 maps 

represent RCP 8.5.  

 



Supplemental Figure 2. Quartiles of all 18 alternative climate projections and scenario outputs 

for the backward climate velocity. Top nine map panels represent RCP 4.5; bottom 9 maps 

represent RCP 8.5.  

 



Supplemental Figure 3. Quartiles of all 18 alternative climate projections and scenario outputs 

for the local climate dissimilarity. Top nine map panels represent RCP 4.5; bottom 9 maps 

represent RCP 8.5.  

 



Supplemental Figure 4. Simplified depiction of methods used to assess simulation agreement. 

Each square represents one hypothetical example grid cell location. Three mapped climate 

metrics for the contiguous U.S. (forward velocity, backwards velocity, local climate 

dissimilarity) were classified into quartiles and assigned integer values 1 (lower quartile) to 4 

(upper quartile). Within each climate exposure metric, classified quartile maps representing 

estimates from 18 different future climate simulations (9 general circulation models × 2 

representative concentration pathways) were stacked. The mode of quartile and frequency of 

mode were calculated and used to produce maps of simulation agreement for each climate 

metric. 

 



Supplemental Figure 5.   

As a complement to the quadrant-based categorization described, we also applied an 

approach, distribution discounting, that reduces or discounts the estimated exposure of a site 

based on the level of uncertainty (e.g., the standard deviation between metrics based on 

alternative future climate projections) shown by metrics measured at that site1,2. Resultant 

conservation priority areas will then be located preferentially in areas of high agreement between 

alternative future projections. Because we were interested in assessing uncertainty of the three 

climate metrics when they were expressed as a conservation target (i.e., with positive values in 

areas of low climate exposure), we used a refugia index based on -1 times the log transform of 

the raw metrics3. We followed Carroll et al. (2010)3 in discounting the mean value of the metric 

across the 18 future projections by one-half of the standard deviation of the metric between 

future projections. A range of discounting coefficients have been used (e.g., 1.0 rather than 0.5 as 

used here2), corresponding to differing levels of risk aversion. 

Although regional patterns of uncertainty differed between the three metrics (with 

Pearson’s correlations of 0.38-0.46), all metrics showed highest uncertainty in the southeastern 

US and intermountain West. Standard deviation was moderately correlated with mean values for 

climate dissimilarity (Pearson’s correlation = 0.62) but not for either forward or backward 

velocity (Pearson’s correlation = 0.18 and 0.25, respectively). The standard deviation and 

frequency of climate modes, two estimates of simulation agreement, were not strongly correlated 

for any metric (forward velocity: r = -0.08; backward velocity: r = -0.15; local dissimilarity: r = -

0.13; although p-values were < 0.0001 for each correlation). Though areas with higher standard 

deviation among simulations were also characterized by lower frequency of climate modes.  



Because the relative uncertainty of environmental dissimilarity values was correlated 

with mean values, use of distribution discounting spread priorities more broadly as compared to 

priorities based on undiscounted mean values. Patterns of uncertainty for forward and backward 

velocity were more complex, but generally lowered priorities in the intermountain West and 

southeastern US. Discounted means could be used as a substitute for the ensemble or median or 

mean values in bivariate mapping efforts.  

  

 

Supplemental Figure 6.  

We summarized patterns of predicted climate change through the continuous US by EPA 

level 3 ecoregions5. We calculated the mean value of the three multivariate exposure metrics 



(forward velocity, backward velocity, and local climate dissimilarity) for all 18 climate 

projections (based on the combinations of GCM and RCP alternatives). We also calculated the 

predicted degree of change in the 11 climate variables used in the principal components analysis 

(see list below) that served as the basis for calculating the multivariate exposure metrics. For 

temperature variables, we calculated the arithmetic difference between future predictions and 

current observations. For precipitation and number of day variables, we calculated the percent 

change between current and future values.  

After calculating the mean values for each variable within each ecoregion, we plotted the 

data using box and whisker plots to summarize variability among ecoregions and alternative 

climate projections. The variability depicted by the box and whisker plots represent alternative 

predictions based on the 18 projections. We rank ordered these plots by the median value among 

the 18 simulation alternatives.  

Code Variable 

MAT mean annual temperature (°C) 

MWMT mean temperature of the warmest month (°C)

MCMT mean temperature of the coldest month (°C) 

TD difference between MCMT and MWMT, as a measure of continentality (°C) 

MAP mean annual precipitation (mm) 

MSP mean summer (May to Sep) precipitation (mm)

MWP mean winter (Oct to Apr) precipitation (mm) 

DD5 degree-days above 5°C (growing degree days)

NFFD the number of frost-free days 

Eref Hargreave's reference evaporation

CMD Hargreave's climatic moisture index. 
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