Supplementary Information

Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures

Mohammed Ashrafi, Lilyann Novak-Frazer, Matthew Bates, Mohamed Baguneid, Teresa Alonso-Rasgado, Guoqing Xia, Riina Rautemaa-Richardson, Ardeshir Bayat^{*}

*SI correspondence to: ardeshir.bayat@manchester.ac.uk

Figure S1. *In vitro* **model of biofilm formation**. Aerial view of biofilms on coverslips showing viable bacteria stained green with the nucleic acid stain SYTO[®] 9 and dead cells and extracellular DNA stained red with the nucleic acid stain propidium iodide (PI). (**A**) Stereo-fluorescence microscopy. Scale bar: 250μm. (**B**) Wide-field fluorescence microscopy. Scale bar: 10μm is equal in all images.

Figure S2. Inter-model comparisons of metabolic activity of biofilms. Inter-model comparisons of metabolic activity of MSSA (A), PA (B) and SP (C) biofilms following XTT reduction assay. Mean \pm standard error of the mean (n=6), * P < 0.05, ** P < 0.01, *** P < 0.001, as determined by one-way analysis of variances with accompanying Tukey post hoc analyses.

Figure S3. Inter-model comparisons of biomass of biofilms. Inter-model comparisons of biomass of MSSA (A), PA (B) and SP (C) biofilms following Quant-iT PicoGreen dsDNA reagent assay. Mean \pm standard error of the mean (n=6), * P < 0.05, ** P < 0.01, *** P < 0.001, as determined by one-way analysis of variances with accompanying Tukey post hoc analyses.

Figure S4. **Haematoxylin and eosin stained microscopy of biofilms of** *ex vivo* **incisional wound model.** Wound tissue is stained pink and biofilm material blue or purple. Scale bar: 20 μm is equal in all images.

Figure S5. Haematoxylin and eosin stained microscopy of biofilms of *ex vivo* excisional wound model. Wound tissue is stained pink and biofilm material blue or purple. Scale bar: 20 μm is equal in all images.

Figure S6. Representative chromatograms at day 1 of (A) *ex vivo* excisional cutaneous wound explant control and (B) *ex vivo* excisional cutaneous wound explant inoculated with MSSA. 6 - 2-methyl-1-propanol; 10 - 3-methyl-1-butanol; CP – common peak. Snapshots of chromatograms up to 20 min after which there were no further peaks. Non-labelled peaks were shared between inoculated and control samples.

Figure S7. The presence of 2-methyl-1-propanol among bacterial species and in different wound models. (A) *in vitro*; (B) *ex vivo* incisional and (C) *ex vivo* excisional wound model. Relative abundance of 2-methyl-1-propanol on days 0, 1, 3 and 5 produced by MSSA (pink), PA (peach) and SP (green) biofilms. Mean \pm standard error of the mean (n=6), * P < 0.05, ** P < 0.01, *** P < 0.001, as determined by one-way analysis of variances with accompanying Tukey post hoc analyses.

Figure S8. The presence of 3-methyl-1-butanol among bacterial species and in different wound models. (A) *in vitro*; (B) *ex vivo* incisional; and (C) *ex vivo* excisional wound model. Relative abundance of 3-methyl-1-butanol on days 0, 1, 3 and 5 produced by MSSA (pink), PA (peach) and SP (green) biofilms. Mean \pm standard error of the mean (n=6). * P < 0.05, ** P < 0.01, *** P < 0.001, as determined by one-way analysis of variances with accompanying Tukey post hoc analyses.

Figure S9. The presence of 1-undecene among bacterial species and in different wound models (except MSSA). (A) *in vitro*; (B) *ex vivo* incisional; and (C) *ex vivo* excisional wound model. Relative abundance of 1-undecene on days 0, 1, 3 and 5 produced by PA (peach) and SP (green) biofilms. Mean \pm standard error of the mean (n=6), * P < 0.05, ** P < 0.01, *** P < 0.001, as determined by one-way analysis of variances with accompanying Tukey post hoc analyses.

Figure S10. Correlations between biofilm metabolic activity and abundance of VOCs across models on day 1 (red), 3 (blue) and 5 (green). Mean \pm SEM (n=6).

Figure S11. Correlations between biofilm biomass and abundance of VOCs across models on day 1 (red), 3 (blue) and 5 (green). Mean \pm SEM (n=6).

Table S1. Proposed chemical compound of the peaks identified by GC-MS based on National
Institute of Standards and Technology library spectral matching (spectra of all three species
combined).

Peak	Proposed compound	Match	R. Match	RI	Prob (%)
1	3-methylbutanal	818	870	652	69.0
2	ethanol	831	901	427	93.3
3	pentanal	858	881	699	35.2
4	2-butanol	671	724	598	8.3
5	hydrogen cyanide	857	961	300	99.0
6	2-methyl-1-propanol	819	852	625	88.5
7	5-methyl-2-hexanamine	657	827		44.1
8	5-methyl-2-heptanamine	669	715		7.28
9	1-undecene	873	874	1091	7.8
10	3-methyl-1-butanol	912	918	736	67.0
11	2-nonanone	915	917	1092	76.4
12	2-undecanone	914	922	1294	80.7

R. Match – reverse match; RI – retention index; Prob – probability

VOC	D0 vs. D1	D0 vs. D3	D0 vs. D5	D1 vs. D3	D1 vs. D5	D3 vs. D5	
MSSA							
3-methylbutanal	> 0.05	< 0.001	< 0.001	< 0.001	< 0.001	> 0.05	
pentanal	0.001	< 0.001	< 0.001	< 0.001	<0.001	> 0.05	
2-methyl-1-propanol	> 0.05	0.006	< 0.001	> 0.05	0.005	> 0.05	
3-methyl-1-butanol	> 0.05	< 0.001	0.002	< 0.001	0.001	> 0.05	
РА							
hydrogen cyanide	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-methyl-1-propanol	> 0.05	0.007	0.001	> 0.05	> 0.05	> 0.05	
5-methyl-2-hexanamine	< 0.001	< 0.001	< 0.001	0.004	< 0.001	< 0.001	
5-methyl-2-heptanamine	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
1-undecene	< 0.001	< 0.001	< 0.001	> 0.05	0.001	0.009	
3-methyl-1-butanol	> 0.05	0.01	> 0.05	> 0.05	> 0.05	> 0.05	
2-nonanone	< 0.001	< 0.001	< 0.001	0.012	> 0.05	> 0.05	
SP							
ethanol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	> 0.05	
2-butanol	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	> 0.05	
2-methyl-1-propanol	0.001	< 0.001	0.03	> 0.05	> 0.05	0.022	
1-undecene	> 0.05	< 0.001	< 0.001	< 0.001	0.016	> 0.05	
3-methyl-1-butanol	< 0.001	0.013	> 0.05	> 0.05	0.001	0.025	

Table S2. VOCs identified from biofilms of different bacterial species in the *in vitro* model indicating the statistical differences between time point measurements

P values (one-way analysis of variances with accompanying Tukey post hoc analyses); D0 -

planktonic phase; D 1, 3 and 5 – biofilm phase (days)

VOC	D0 vs. D1	D0 vs. D3	D0 vs. D5	D1 vs. D3	D1 vs. D5	D3 vs. D5	
MSSA							
3-methylbutanal	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
pentanal	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-methyl-1-propanol	> 0.05	> 0.05	0.015	0.021	0.003	> 0.05	
3-methyl-1-butanol	> 0.05	0.019	0.001	0.001	< 0.001	> 0.05	
РА							
hydrogen cyanide	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-methyl-1-propanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	
5-methyl-2-hexanamine	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
5-methyl-2-heptanamine	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
1-undecene	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
3-methyl-1-butanol	0.001	0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-nonanone	< 0.001	< 0.001	< 0.001	0.009	0.001	> 0.05	
2-undecanone	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
SP							
ethanol	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-butanol	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-methyl-1-propanol	> 0.05	> 0.05	> 0.05	> 0.05	0.01	> 0.05	
1-undecene	0.03	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	
3-methyl-1-butanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	

Table S3. VOCs identified from biofilms of different bacterial species in the *ex vivo* human cutaneous incisional model indicating the statistical differences between time points

P values (one-way analysis of variances with accompanying Tukey post hoc analyses); D0 -

planktonic phase; D 1, 3 and 5 – biofilm phase (days)

VOC	D0 vs. D1	D0 vs. D3	D0 vs. D5	D1 vs. D3	D1 vs. D5	D3 vs. D5	
MSSA							
3-methylbutanal	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
pentanal	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-methyl-1-propanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	
3-methyl-1-butanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	
РА							
hydrogen cyanide	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	0.024	
2-methyl-1-propanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	
5-methyl-2-hexanamine	< 0.001	< 0.001	< 0.001	0.017	0.039	> 0.05	
5-methyl-2-heptanamine	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
1-undecene	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
3-methyl-1-butanol	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
2-nonanone	< 0.001	< 0.001	< 0.001	0.028	< 0.001	< 0.001	
2-undecanone	< 0.001	< 0.001	< 0.001	> 0.05	> 0.05	> 0.05	
SP							
ethanol	0.001	> 0.05	< 0.001	< 0.001	< 0.001	< 0.001	
2-butanol	< 0.001	0.011	< 0.001	< 0.001	< 0.001	< 0.001	
2-methyl-1-propanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	
1-undecene	0.004	> 0.05	< 0.001	> 0.05	> 0.05	0.003	
3-methyl-1-butanol	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	> 0.05	

Table S4. VOCs identified from biofilms of different bacterial species in the *ex vivo* human cutaneous excisional model indicating the statistical differences between time points

P values (one-way analysis of variances with accompanying Tukey post hoc analyses); D0-

planktonic phase; D 1, 3 and 5 – biofilm phase (days)