Supporting Information for

Essential Role of Hydride Ion in Ruthenium-based Ammonia Synthesis Catalysts

Masaaki Kitano,^a Yasunori Inoue,^b Hiroki Ishikawa,^b Kyosuke Yamagata,^b Takuya Nakao,^b

Tomofumi Tada,^a Satoru Matsuishi,^a Toshiharu Yokoyama,ac Michikazu Hara,bcd and Hideo*

*Hosonoabcd**

*^a*Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta,

Midori-ku, Yokohama 226-8503, Japan

*^b*Laboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku,

Yokohama 226-8503, Japan.

*^c*ACCEL, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

*^d*Frontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama

226-8503, Japan.

Experimental Section Materials.

Ca₂N:e⁻ powder was synthesized by solid-state reaction of Ca₃N₂ powder and Ca metal shot. Ca₃N₂ powder was first mixed with Ca metal shot at a molar ratio of 1:1 and the mixture was uniaxially pressed into a pellet form under pressure (20–30 MPa). The pellet was covered with molybdenum foil and sealed in an evacuated silica tube. The silica tube was heated at 800°C for 50 h in a vacuum, followed by quenching into water. The obtained sample was then ground into a powder under an Ar atmosphere. As a reference samples, Ca₂NH was synthesized by heating Ca₂N powder at 300°C in a flow of N₂ and H₂ (N₂:H₂ = 1:3, flow rate = 60 mL min⁻¹, pressure = 0.1 MPa), and CaNH was prepared by heating Ca_3N_2 at 600°C in a N_2 and H_2 gas mixture under the same flow conditions. XRD patterns of the obtained samples were consistent with the standard diffraction patterns (Fig. S8). CaH₂ was prepared by heating Ca metal at 400° C for 10 h in a H₂ atmosphere (2.0 MPa).

Ru-loading on $Ca_2N: e^-$, Ca_3N_2 , and CaNH was conducted by the following procedure. The sample powder and $Ru_3(CO)_{12}$ were sealed in an evacuated silica tube and heated under the following temperature program: 2° C min⁻¹ up to 40°C, hold for 1 h; up to 70°C over 2 h, hold for 1 h; up to 120°C over 2 h, hold for 1 h; and up to 250°C over 2.5 h, hold for 2 h; cooling down to ambient temperature.

Catalytic reaction.

Ammonia synthesis was conducted in a fixed bed flow system with a synthesis gas $(H_2:N_2 = 3:1)$ at a flow rate of 60 mL min⁻¹. The reaction temperature was varied from 200 to 340°C and the pressure was kept at 0.1 MPa. All kinetic experiments were conducted far from equilibrium conditions (for example, the conversion level was less than 30% of that at equilibrium). The reaction orders with respect to N_2 and H_2 were obtained at a constant flow rate (60 ml min⁻¹) using Ar gas as a diluent, and that for NH_3 was determined with $(3H_2+N_2)$ by changing the synthesis gas flow rate. The produced ammonia was trapped by in a 5 mM sulfuric acid solution and the amount of NH_4^+ generated in the solution was determined using ion chromatography (LC-2000 plus, Jasco). Ammonia synthesis from N_2 and D_2 was conducted using a U-shaped glass reactor connected to a closed gas circulation system. The mixture of N₂ and D₂ gases (total pressure: 60 kPa, N₂:D₂ = 1:3) was introduced into the glass system. The change in the composition of the circulating gas was monitored with a quadrupole mass spectrometer (M-101QA-TDM, Canon Anelva Corp.) and Ar was used as a carrier gas. The circulating pump placed in the system removes diffusional and adsorption/desorption limitations. The $m/z = 2$, 3, 4, 16, 17, 18, 19, 20, and 28 masses were monitored as a function of time to follow the reaction. ND₃ ($m/z = 20$) was hardly detectable because it overlaps with a fragment of Ar (m/z = 20). The fragmentation factor of m/z = 20, 40 for Ar is 0.12, 0.88, respectively.

Characterization.

N₂ adsorption-desorption isotherms were measured at -196°C using a specific surface area analyzer (Nova 4200e, Quantachrome) after evacuation of the sample at 300°C. The Ru dispersion, mean particle size, and the number of surface Ru atoms were determined by CO pulse chemisorption at 50°C with a He flow of 30 mL min-1 and 0.09 mL pulses of 9.88% CO in He using a catalyst analyzer (BELCAT-A, MicrotracBEL, Japan); a stoichiometry of $Ru/CO = 1$ was assumed. The

crystal structure was identified using XRD (D8 Advance, Bruker) with monochromated Cu Kα radiation (λ = 0.15418 nm). Raman spectra of the samples were measured with a spectrometer (HR-800, Horiba Jobin Yvon Co. Ltd., Japan) using a laser with a wavelength of 457.4 nm. TPA of H_2 measurements were conducted by heating $(1^{\circ}C \text{ min}^{-1})$ a sample (ca. 100 mg) in a stream of 4.8% $H₂/Ar$ mixture, and the consumption of $H₂$ was monitored with a thermal conductivity detector (TCD) and mass spectrometer (BELMass, MicrotracBEL, Japan). TPD of H_2 was performed using the same instrument as TPA experiment. Prior to the TPD measurements, the sample was heated under a mixture of H₂ and N₂, H₂:N₂ = 3:1, 60 mL min⁻¹, 0.1 MPa, 340°C, 10 h, which are the same reaction conditions as those used for ammonia synthesis. After cooling to room temperature, the sample was placed into a TPD glass reactor in an Ar-filled glovebox. The sample was then heated (1° C min⁻¹) in an Ar stream (30 mL min⁻¹), and the concentration of H₂ was monitored with a thermal conductivity detector (TCD) and a mass spectrometer (BELMass, MicrotracBEL, Japan).

Supplementary Results

Table S1 Orders of reaction for ammonia synthesis over various Ru catalysts.

Figure S1 Temperature dependence of the rate (R) of N_2 isotopic exchange reaction over Ru/Ca₂N:e⁻ at 26.7 kPa (¹⁵N₂: ¹⁴N₂ = 1:4). E_a is the apparent activation energy calculated from Arrhenius plots of the reaction rate in the temperature range of 260-340ºC. Before the reaction, Ru/Ca₂N:e⁻ was pretreated under under N₂ and H₂ flow (N₂: H₂ = 1:3) at 340^oC for 24 h.

The activation energy (59 kJ mol⁻¹) of $Ru/Ca₂N:e⁻$ is much smaller than that of conventional Ru catalysts (>130 kJ mol⁻¹) reported in the previous literature [S1] and is comparable to that of Ru/C12A7:e– (58 kJ mol-1).

Figure S2 Pressure dependence of the rate of ammonia synthesis over (a) $Ru/Ca₂N:e_z$ (b) Ru/C12A7: e^- , (c) Ru/CaNH. (Reaction conditions: catalyst, 0.1 g; WHSV, 36000 mL g_{cat}^{-1} h⁻¹; reaction temperature, 320ºC).

Figure S3 Raman spectra of Ru/Ca₂N:e⁻ after ammonia synthesis reaction at 340°C for 20 h together with the spectra of CaNH, $Ca₂N$, and $Ca₂NH$.

Figure S4 Mass spectra for ammonia synthesis over Ru/Ca₂N:e⁻. Reaction conditions: catalyst, 0.2 g; reaction temperature, 340°C; reaction gas, $N_2: D_2 = 1:3$; reaction pressure, 60 kPa.

Figure S5 Reaction time profiles of H₂ (m/z =2), D₂ (m/z =4) and HD (m/z =3) during ammonia synthesis from N_2 and D_2 over Ru/Ca₂N:e⁻. Before the reaction, Ru/Ca₂N:e⁻ was heated under N_2+H_2 flow (N₂:H₂ = 1:3) at 340°C for 10 h. Then, the obtained catalyst was heated under N₂ + D₂ atmosphere. (Reaction conditions: catalyst, 0.2 g; reaction temperature, 340°C; reaction gas, N₂:D₂ = 1:3; reaction pressure, 60 kPa).

Figure S6 Reaction time profiles of hydrogen exchange over Ru/Ca₂N:e⁻. Before the reaction, Ru/Ca₂N:e⁻ was heated under N₂+H₂ flow (N₂:H₂ = 1:3) at 340°C for 10 h. Then, the obtained catalyst was heated under D_2 atmosphere without N_2 , where the partial pressure of D_2 was adjusted to the same value as the case of $N_2 + D_2$ system (Fig. 4b) by adding Ar gas. (Reaction conditions: catalyst, 0.2 g; reaction temperature, 340°C; reaction gas, Ar: $D_2 = 1:3$; reaction pressure, 60 kPa).

Figure S7 H₂ TPD profiles of Ru/CaH₂ and CaH₂. The TPD experiment was performed (1°C min⁻¹) under Ar flow.

Figure S8 X-ray diffraction patterns of Ca₂NH and CaNH. Standard JCPDS diffraction patterns for CaNH (PDF: 75-0430) and Ca₂NH (PDF: 76-608) are provided for reference.

Detail conditions for DFT calculations

Compound	Unit Cell	Space	Surface index	Kpoints	E^{cut}	Vaccum
		Group				width
$Ca2N.e-$	$18(Ca_2N)$	$R\bar{3}m$	(111)	$7 \times 7 \times 1$	520	20
$Ca2N.e-$	$18(Ca_2N)$	$R\overline{3}m$	(112)	$14 \times 2 \times 1$	520	20
Ca ₂ NH	$32(Ca_2NH)$	Fd3m	(100)	$3\times3\times1$	470	20
$Ca2NH1-1/16$	$32(Ca_2NH_{1-1/16})$	Fd3m	(100)	$3\times3\times1$	470	20
$Ca2NH1-2/16$	$32(Ca_2NH_{1-2/16})$	Fd3m	(100)	$3\times3\times1$	470	20
CaH ₂	24(CaH ₂)	Pnma	(010)	$2\times 4\times 1$	500	20
CaH ₂	$24(CaH_{2-1/12})$	Pnma	(010)	$2 \times 4 \times 1$	500	20
CaNH	12(CaNH)	Fm3m	(100)	$5 \times 5 \times 1$	500	
Ru	12Ru	$P6_{3}/$ mmc	(0001)	$8\times8\times1$	550	25
Ru/Ca ₂ NH	$Ru_6/16(Ca_2NH)$	$P6_{3}/$ mmc	(100)	$3\times3\times1$	470	20
$Ru/Ca_2NH_{1-n/16}$	$Ru_6/16(Ca_2NH_{1-n/16})$	$P6_3/mmc$	(100)	$3\times3\times1$	470	20
$Ru/Ca_2NH_{1-n/16}$	$Ru_{10}/16(Ca_2NH_{1-n/16})$	$P6_2/mmc$	(100)	$3\times3\times1$	470	20

Table S2 Computational conditions for DFT calculations.

Vienna ab initio simulation package (VASP) [S2,S3] was adopted for structural relaxation and calculations for total energies and work functions. The projector-augmented wave (PAW) [S4,S5] method was used, and the electron exchange-correlation was described in Perdew-Burke- Ernzerhof type [S6] generalized gradient approximation. *Ecut* means cutoff energies for wave functions. Monkhorst-Pack k-point grids [S7] for the first Brillouin zone sampling are listed in *Kpoints* column. Note that the space groups correspond to those in the bulk condition, and that the normal vector of each surface is defined as the c-vector in *Kpoints* colum. The convergence criteria of energy and force are respectively 1.0×10^{-6} eV and 1.0×10^{-2} eV/Å.

Table S3 Computational models for Ru-loaded Ca₂NH with/without H-vacancies and N₂ molecule, and calculated formation energies of H-vacancies with respect to the stoichiometric Ru-loaded Ca₂NH. $\Delta E(V_H)$ of compound AH_{1-x} is the total energy difference defined as $[E(AH_{1-x}) + xE(H_2)/2]$ $E(AH)$, where $E(AH)$, $E(AH_{1-x})$, and $E(H_2)$ are respectively the total energies of the stoichiometric AH, H-deficient AH1-*^x* , and hydrogen molecule.

Figure S9 Computational models for Ru₆-loaded Ca₂NH(100), Model 1 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster and the topmost layer of $Ca₂NH(100)$ are depicted in the top view. Hydrogen atom indicated with dotted circles in the top view is the surface hydrogen removed in Ru-loaded Ca_2NH_{1-x} (100). Note the normal vector the surface is defined as the c-vector in the drawing. Visualization of the models was performed with VESTA [S8].

Figure S10 Computational models for Ru₆-loaded Ca₂NH_{1-x}(100), Model 2 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_6 cluster and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S11 Computational models for Ru_6 -loaded N_2 -adsorbed $Ca_2NH_{1-x}(100)$, Model 4 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_6 cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S12 Computational models for Ru₆-loaded and N₂-adsorbed Ca₂NH_{1-x}(100), Model 5 in Supplementary Table 5; top view (top) and side views (bottom two). The Ru_6 cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S13 Computational models for Ru₆-loaded and N₂-adsorbed Ca₂NH_{1-x}(100), Model 6 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S14 Computational models for Ru₆-loaded and N₂-adsorbed Ca₂NH_{1-x}(100), Model 7 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_6 cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S15 Computational models for Ru_{10} -loaded and N_2 -adsorbed $Ca_2NH_{1-x}(100)$, Model 9 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_{10} cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S16 Computational models for Ru_{10} -loaded and N_2 -adsorbed $Ca_2NH_{1-x}(100)$, Model 10 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_{10} cluster, adsorbed N_2 molecule, and the topmost layer of $Ca₂NH_{1-x}$ (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

References in Supplementary Information

[S1] M. Kitano, et al., Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat Commun. 6, 6731, (2015).

[S2] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci., 6, 15-50 (1996).

[S3] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169-11186 (1996).

[S4] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953-17979 (1994).

[S5] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758-1775 (1999).

[S6] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865-3868 (1996).

[S7] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188-5192 (1976).

[S8] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272-1276 (2011).