Supporting Information for

Essential Role of Hydride Ion in Ruthenium-based Ammonia Synthesis Catalysts

Masaaki Kitano,^a Yasunori Inoue,^b Hiroki Ishikawa,^b Kyosuke Yamagata,^b Takuya Nakao,^b

Tomofumi Tada,^a Satoru Matsuishi,^a Toshiharu Yokoyama,^{ac} Michikazu Hara,^{bcd*} and Hideo

Hosono^{abcd*}

^aMaterials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta,

Midori-ku, Yokohama 226-8503, Japan

^bLaboratory for Materials and Structures, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku,

Yokohama 226-8503, Japan.

^cACCEL, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.

^dFrontier Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama

226-8503, Japan.

Experimental Section Materials.

Ca₂N:e⁻ powder was synthesized by solid-state reaction of Ca₃N₂ powder and Ca metal shot. Ca₃N₂ powder was first mixed with Ca metal shot at a molar ratio of 1:1 and the mixture was uniaxially pressed into a pellet form under pressure (20–30 MPa). The pellet was covered with molybdenum foil and sealed in an evacuated silica tube. The silica tube was heated at 800°C for 50 h in a vacuum, followed by quenching into water. The obtained sample was then ground into a powder under an Ar atmosphere. As a reference samples, Ca₂NH was synthesized by heating Ca₂N powder at 300°C in a flow of N₂ and H₂ (N₂:H₂ = 1:3, flow rate = 60 mL min⁻¹, pressure = 0.1 MPa), and CaNH was prepared by heating Ca₃N₂ at 600°C in a N₂ and H₂ gas mixture under the same flow conditions. XRD patterns of the obtained samples were consistent with the standard diffraction patterns (Fig. S8). CaH₂ was prepared by heating Ca metal at 400°C for 10 h in a H₂ atmosphere (2.0 MPa).

Ru-loading on Ca₂N:e⁻, Ca₃N₂, and CaNH was conducted by the following procedure. The sample powder and Ru₃(CO)₁₂ were sealed in an evacuated silica tube and heated under the following temperature program: 2°C min⁻¹ up to 40°C, hold for 1 h; up to 70°C over 2 h, hold for 1 h; up to 120°C over 2 h, hold for 1 h; and up to 250°C over 2.5 h, hold for 2 h; cooling down to ambient temperature.

Catalytic reaction.

Ammonia synthesis was conducted in a fixed bed flow system with a synthesis gas ($H_2:N_2 = 3:1$) at a flow rate of 60 mL min⁻¹. The reaction temperature was varied from 200 to 340°C and the pressure was kept at 0.1 MPa. All kinetic experiments were conducted far from equilibrium conditions (for example, the conversion level was less than 30% of that at equilibrium). The reaction orders with respect to N₂ and H₂ were obtained at a constant flow rate (60 ml min⁻¹) using Ar gas as a diluent, and that for NH₃ was determined with (3H₂+N₂) by changing the synthesis gas flow rate. The produced ammonia was trapped by in a 5 mM sulfuric acid solution and the amount of NH₄⁺ generated in the solution was determined using ion chromatography (LC-2000 plus, Jasco). Ammonia synthesis from N2 and D2 was conducted using a U-shaped glass reactor connected to a closed gas circulation system. The mixture of N₂ and D₂ gases (total pressure: 60 kPa, N₂:D₂ = 1:3) was introduced into the glass system. The change in the composition of the circulating gas was monitored with a quadrupole mass spectrometer (M-101QA-TDM, Canon Anelva Corp.) and Ar was used as a carrier gas. The circulating pump placed in the system removes diffusional and adsorption/desorption limitations. The m/z = 2, 3, 4, 16, 17, 18, 19, 20, and 28 masses were monitored as a function of time to follow the reaction. ND_3 (m/z = 20) was hardly detectable because it overlaps with a fragment of Ar (m/z = 20). The fragmentation factor of m/z = 20, 40 for Ar is 0.12, 0.88, respectively.

Characterization.

 N_2 adsorption-desorption isotherms were measured at -196°C using a specific surface area analyzer (Nova 4200e, Quantachrome) after evacuation of the sample at 300°C. The Ru dispersion, mean particle size, and the number of surface Ru atoms were determined by CO pulse chemisorption at 50°C with a He flow of 30 mL min⁻¹ and 0.09 mL pulses of 9.88% CO in He using a catalyst analyzer (BELCAT-A, MicrotracBEL, Japan); a stoichiometry of Ru/CO = 1 was assumed. The

crystal structure was identified using XRD (D8 Advance, Bruker) with monochromated Cu Ka radiation ($\lambda = 0.15418$ nm). Raman spectra of the samples were measured with a spectrometer (HR-800, Horiba Jobin Yvon Co. Ltd., Japan) using a laser with a wavelength of 457.4 nm. TPA of H₂ measurements were conducted by heating (1°C min⁻¹) a sample (ca. 100 mg) in a stream of 4.8% H₂/Ar mixture, and the consumption of H₂ was monitored with a thermal conductivity detector (TCD) and mass spectrometer (BELMass, MicrotracBEL, Japan). TPD of H₂ was performed using the same instrument as TPA experiment. Prior to the TPD measurements, the sample was heated under a mixture of H₂ and N₂, H₂:N₂ = 3:1, 60 mL min⁻¹, 0.1 MPa, 340°C, 10 h, which are the same reaction conditions as those used for ammonia synthesis. After cooling to room temperature, the sample was placed into a TPD glass reactor in an Ar-filled glovebox. The sample was then heated (1°C min⁻¹) in an Ar stream (30 mL min⁻¹), and the concentration of H₂ was monitored with a thermal conductivity detector (TCD) and a mass spectrometer (BELMass, MicrotracBEL, Japan).

Supplementary Results

Catalyst	α (N ₂)	$\beta(H_2)$	$\gamma(NH_3)$
Ru/Ca ₂ N	0.53	0.79	-1.03
Ru/CaNH	0.77	-0.19	-0.72
Ru/CaH ₂	0.55	0.87	-1.11
Ru/C12A7:e ⁻	0.46	0.97	-1.00
Ru/C12A7:O ²⁻	1.00	0	-0.25
Ru-Cs/MgO	1.0	-0.45	-0.37

Table S1 Orders of reaction for ammonia synthesis over various Ru catalysts.

Figure S1 Temperature dependence of the rate (*R*) of N₂ isotopic exchange reaction over Ru/Ca₂N:e⁻ at 26.7 kPa (${}^{15}N_2 : {}^{14}N_2 = 1 : 4$). *E_a* is the apparent activation energy calculated from Arrhenius plots of the reaction rate in the temperature range of 260-340°C. Before the reaction, Ru/Ca₂N:e⁻ was pretreated under under N₂ and H₂ flow (N₂: H₂ = 1:3) at 340°C for 24 h.

The activation energy (59 kJ mol⁻¹) of Ru/Ca₂N:e⁻ is much smaller than that of conventional Ru catalysts (>130 kJ mol⁻¹) reported in the previous literature [S1] and is comparable to that of Ru/C12A7:e⁻ (58 kJ mol⁻¹).

Figure S2 Pressure dependence of the rate of ammonia synthesis over (a) $Ru/Ca_2N:e^-$, (b) $Ru/C12A7:e^-$, (c) Ru/CaNH. (Reaction conditions: catalyst, 0.1 g; WHSV, 36000 mL g_{cat}^{-1} h⁻¹; reaction temperature, 320°C).

Figure S3 Raman spectra of $Ru/Ca_2N:e^-$ after ammonia synthesis reaction at 340°C for 20 h together with the spectra of CaNH, Ca₂N, and Ca₂NH.

Figure S4 Mass spectra for ammonia synthesis over Ru/Ca₂N:e⁻. Reaction conditions: catalyst, 0.2 g; reaction temperature, 340°C; reaction gas, $N_2:D_2 = 1:3$; reaction pressure, 60 kPa.

Figure S5 Reaction time profiles of H₂ (m/z =2), D₂ (m/z =4) and HD (m/z =3) during ammonia synthesis from N₂ and D₂ over Ru/Ca₂N:e⁻. Before the reaction, Ru/Ca₂N:e⁻ was heated under N₂+H₂ flow (N₂:H₂ = 1:3) at 340°C for 10 h. Then, the obtained catalyst was heated under N₂ + D₂ atmosphere. (Reaction conditions: catalyst, 0.2 g; reaction temperature, 340°C; reaction gas, N₂:D₂ = 1:3; reaction pressure, 60 kPa).

Figure S6 Reaction time profiles of hydrogen exchange over Ru/Ca₂N:e⁻. Before the reaction, Ru/Ca₂N:e⁻ was heated under N₂+H₂ flow (N₂:H₂ = 1:3) at 340°C for 10 h. Then, the obtained catalyst was heated under D₂ atmosphere without N₂, where the partial pressure of D₂ was adjusted to the same value as the case of N₂ + D₂ system (Fig. 4b) by adding Ar gas. (Reaction conditions: catalyst, 0.2 g; reaction temperature, 340°C; reaction gas, Ar:D₂ = 1:3; reaction pressure, 60 kPa).

Figure S7 H_2 TPD profiles of Ru/CaH₂ and CaH₂. The TPD experiment was performed (1°C min⁻¹) under Ar flow.

Figure S8 X-ray diffraction patterns of Ca₂NH and CaNH. Standard JCPDS diffraction patterns for CaNH (PDF: 75-0430) and Ca₂NH (PDF: 76-608) are provided for reference.

Detail conditions for DFT calculations

Compound	Unit Cell	Space	Surface index	Kpoints	E ^{cut}	Vaccum
		Group				width
Ca ₂ N:e-	18(Ca ₂ N)	R3m	(111)	7×7×1	520	20
Ca ₂ N:e-	18(Ca ₂ N)	R3m	(112)	14×2×1	520	20
Ca ₂ NH	32(Ca ₂ NH)	Fd3m	(100)	3×3×1	470	20
$Ca_2NH_{1-1/16}$	$32(Ca_2NH_{1-1/16})$	Fd3m	(100)	3×3×1	470	20
$Ca_2NH_{1-2/16}$	$32(Ca_2NH_{1-2/16})$	Fd3m	(100)	3×3×1	470	20
CaH ₂	24(CaH ₂)	Pnma	(010)	2×4×1	500	20
CaH ₂	24(CaH _{2-1/12})	Pnma	(010)	2×4×1	500	20
CaNH	12(CaNH)	Fm3m	(100)	5×5×1	500	—
Ru	12Ru	P6 ₃ /mmc	(0001)	8×8×1	550	25
Ru/Ca ₂ NH	Ru ₆ /16(Ca ₂ NH)	P6 ₃ /mmc	(100)	3×3×1	470	20
Ru/Ca ₂ NH _{1-n/16}	$Ru_{6}/16(Ca_{2}NH_{1-n/16})$	P6 ₃ /mmc	(100)	3×3×1	470	20
$Ru/Ca_2NH_{1-n/16}$	$Ru_{10}/16(Ca_2NH_{1-n/16})$	<i>P</i> 6 ₃ / <i>mmc</i>	(100)	$3 \times 3 \times 1$	470	20

 Table S2 Computational conditions for DFT calculations.

Vienna ab initio simulation package (VASP) [S2,S3] was adopted for structural relaxation and calculations for total energies and work functions. The projector-augmented wave (PAW) [S4,S5] method was used, and the electron exchange-correlation was described in Perdew-Burke- Ernzerhof type [S6] generalized gradient approximation. E^{cut} means cutoff energies for wave functions. Monkhorst-Pack k-point grids [S7] for the first Brillouin zone sampling are listed in *Kpoints* column. Note that the space groups correspond to those in the bulk condition, and that the normal vector of each surface is defined as the c-vector in *Kpoints* colum. The convergence criteria of energy and force are respectively 1.0×10^{-6} eV and 1.0×10^{-2} eV/Å.

Table S3 Computational models for Ru-loaded Ca₂NH with/without H-vacancies and N₂ molecule, and calculated formation energies of H-vacancies with respect to the stoichiometric Ru-loaded Ca₂NH. $\Delta E(V_H)$ of compound AH_{1-x} is the total energy difference defined as $[E(AH_{1-x}) + xE(H_2)/2] - E(AH)$, where E(AH), $E(AH_{1-x})$, and $E(H_2)$ are respectively the total energies of the stoichiometric AH, H-deficient AH_{1-x}, and hydrogen molecule.

Model index	Unit Cell	$\Delta E(V_{\rm H})$ in eV
1	Ru ₆ /16(Ca ₂ NH)	—
2	$Ru_6/16(Ca_2NH_{1-1/16})$	0.673
3	Ru ₆ /N ₂ /16(Ca ₂ NH)	—
4	$Ru_6/N_2/16(Ca_2NH_{1-1/16})$	0.869
5	Ru ₆ /N ₂ /16(Ca ₂ NH _{1-1/16})	0.493
6	$Ru_6/N_2/16(Ca_2NH_{1-1/16})$	0.910
7	$Ru_6/N_2/16(Ca_2NH_{1-1/16})$	0.668
8	Ru ₁₀ /16(Ca ₂ NH)	—
9	$Ru_{10}/16(Ca_2NH_{1-1/16})$	0.431
10	Ru ₁₀ /N ₂ /16(Ca ₂ NH _{1-1/16})	0.663

Figure S9 Computational models for Ru₆-loaded Ca₂NH(100), Model 1 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster and the topmost layer of Ca₂NH(100) are depicted in the top view. Hydrogen atom indicated with dotted circles in the top view is the surface hydrogen removed in Ru-loaded Ca₂NH_{1-x} (100). Note the normal vector the surface is defined as the c-vector in the drawing. Visualization of the models was performed with VESTA [S8].

Figure S10 Computational models for Ru₆-loaded Ca₂NH_{1-x}(100), Model 2 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster and the topmost layer of Ca₂NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S11 Computational models for Ru₆-loaded N₂-adsorbed Ca₂NH_{1-x}(100), Model 4 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster, adsorbed N₂ molecule, and the topmost layer of Ca₂NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S12 Computational models for Ru₆-loaded and N₂-adsorbed Ca₂NH_{1-x}(100), Model 5 in Supplementary Table 5; top view (top) and side views (bottom two). The Ru₆ cluster, adsorbed N₂ molecule, and the topmost layer of Ca₂NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S13 Computational models for Ru₆-loaded and N₂-adsorbed Ca₂NH_{1-x}(100), Model 6 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster, adsorbed N₂ molecule, and the topmost layer of Ca₂NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S14 Computational models for Ru₆-loaded and N₂-adsorbed Ca₂NH_{1-x}(100), Model 7 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru₆ cluster, adsorbed N₂ molecule, and the topmost layer of Ca₂NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S15 Computational models for Ru_{10} -loaded and N_2 -adsorbed $Ca_2NH_{1-x}(100)$, Model 9 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_{10} cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

Figure S16 Computational models for Ru_{10} -loaded and N_2 -adsorbed $Ca_2NH_{1-x}(100)$, Model 10 in Supplementary Table 4; top view (top) and side views (bottom two). The Ru_{10} cluster, adsorbed N_2 molecule, and the topmost layer of Ca_2NH_{1-x} (100) are depicted in the top view. Note the normal vector the surface is defined as the c-vector in the drawing.

References in Supplementary Information

[S1] M. Kitano, et al., Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat Commun. 6, 6731, (2015).

[S2] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci., 6, 15-50 (1996).

[S3] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169-11186 (1996).

[S4] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50, 17953-17979 (1994).

[S5] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758-1775 (1999).

[S6] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865-3868 (1996).

[S7] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188-5192 (1976).

[S8] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44, 1272-1276 (2011).