1	Genetic restriction of antigen-presentation dictates allergic
2	sensitization and disease in humanized mice
3	
4	
5	Alina Neunkirchner ^{a,b} , Bernhard Kratzer ^{a,b,*} , Cordula Köhler ^{a,b,*} , Ursula Smole ^b ,
6	Lukas F. Mager ^b , Klaus G. Schmetterer ^{b,c} , Doris Trapin ^b , Victoria Leb-Reichl ^b ,
7	Edward Rosloniec ^{d,e,f} , Ronald Naumann ^g , Lukas Kenner ^{h,i,j} , Beatrice Jahn-Schmid
8	^k , Barbara Bohle, ^{a,k} , Rudolf Valenta ^k , and Winfried F. Pickl ^{a,b,} **
9	
10	
11	Short title: Humanized allergy mice
12	
13 14 15	 ^a Christian Doppler Laboratory for Immunomodulation, 1090 Vienna, Austria ^b Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria ^c Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
10 17 18	^d Department of Medicine, University of Tennessee Health Science Center, Memphis, 38163 TN, USA
19 20 21	 ^e Memphis Veterans Affairs Medical Center, 38104 TN, USA ^f Department of Pathology, University of Tennessee Health Science Center, Memphis, 38163 TN, USA
22 23	^g Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
24 25 26	^h Department of Laboratory Animal Pathology, Medical University of Vienna, 1090 Vienna,
20 27 28	ⁱ Department of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
29 30 31 32 33	¹ Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria ^k Department of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
34 35	* contributed equally to the work
36 37 38 39 40 41	** corresponding author: Winfried F. Pickl, MD, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Lazarettgasse 19, 1090 Vienna, Austria. Phone: (+431) 40160 33245. Fax: (+431) 40160 933245. Email address: winfried.pickl@meduniwien.ac.at. ORCID ID: orcid.org/0000-0003-0430-4952

43 Appendix A. Supplementary Data

- 44 Fig. S1. Illustration of the generation of TCR transgenic targeting constructs using
- 45 genomic TCR cassette vectors.
- 46 Fig. S2. Expression of HLA-DR1 on dendritic cells and elaboration of a mixed set of
- 47 cytokines of upon activation TCR-DR1 splenocytes.
- 48 Fig. S3. Treg paucity and antigen-specific activation of T lymphocytes in the four
- 49 mouse lines under study.
- 50 Fig S4. Art v 1-specific proliferation of CD4⁺ T cells as determined by CPD eFluor[®]
- 51 450 dilution.
- 52 Fig. S5. Preferential accumulation of inflammatory cells in the lungs of sole mugwort
- 53 aerosol challenged TCR-DR1 mice.
- 54 Fig. S6. Footpad swelling upon mugwort extract exposure in TCR-DR1 mice.
- 55 Fig. S7. Intranasal exposure to mugwort pollen extract of TCR-DR1 mice leads to an
- 56 increase in lung resistance.
- 57 Fig. S8. IL-2-αIL-2 complexes expand Treg *in vivo*.
- 58 Fig. S9. Effects of blocking *α*IL-10 mAbs on *in vitro* division of allergen-specific T
- 59 cells.
- 60 Fig. S10. Reduction of allergen-specific immunoglobulin levels in mice treated with IL-
- 61 2- α IL-2 complexes.
- 62 Table S1. List of monoclonal antibodies used for flow cytometric analyses of spleens,
- 63 thymi and peripheral blood leukocytes
- 64 Table S2. Total cell numbers and percentages of indicated cell types in spleen, thymus and
- 65 peripheral blood of WT, DR1, TCR and TCR-DR1 transgenic mice.
- 66
- 67

69 Supplementary Materials:

70

71 Fig. S1. Illustration of the generation of TCR transgenic targeting constructs using genomic TCR cassette vectors. A. Schematic depiction of the TCR alpha 72 transgenic expression vector. The vector (22.2 kb) consists of 2.2 kb of genomic DNA 73 74 upstream of the murine TCR alpha leader, variable and joining sequence (0.6 kb) and 75 14.2 kb of downstream homologous murine TCR sequences including the J α 2, the 76 $C\alpha$ exon and the 3' enhancer elements according to Kouskoff et al. (Kouskoff et al., 77 1995) and based on Bluthmann et al. (Bluthmann et al., 1988). The position of the 5.2 78 kb prokaryotic vector sequences (pEMBL18) are indicated. Unique restriction sites, 79 Xma I and Not I, were used for inserting the genomic human TCR alpha leader, 80 variable and joining sequences, while Sal I sites were used to remove the prokaryotic 81 plasmid sequences to linearize the entire TCR gene (17.1 kb). B, Xma I/Not Idigested vector DNA was used to identify properly inserted TCR variable sequences 82

and comparisons between the undigested (lane 1) Xma I/Not I-digested (lane 2), Sal 83 I/BamH I-digested (lane 3) and Sal I/Not I-vector (lane 4) and vector DNA partially 84 digested with Not I and Xma I/Not I are shown. C, Schematic depiction of the TCR 85 86 beta transgenic expression vector. The vector (20.6 kb) consists of 4.5 kb of genomic 87 DNA upstream of the murine TCR beta leader, variable and joining sequence (0.8 kb) 88 and 12.4 kb of downstream homologous murine TCR beta sequences including the 89 J β 2.6, C β exon and 3' enhancer elements according to Kouskoff et al.(Kouskoff et al., 1995) and based on Bluthmann et al. (Uematsu et al., 1988). The position of the 2.9 90 91 kb prokaryotic vector sequences (PTZ18) are indicated. The unique restriction sites Xho I and Sac II for inserting the respective genomic human TCR beta leader, 92 variable, diversity and joining sequences are indicated as well as the Kpn I sites used 93 to remove the prokaryotic plasmid sequences for linearization of the entire TCR beta 94 95 gene (17.6 kb). D, Xho I/Sac II-digested vector DNA was used to identify properly inserted TCR variable sequences (lane 2) and was compared to undigested vector 96 97 DNA (lane 1), digest profile of Eco RI/Bam HI (lane 3) or Kpn I/Cla I (lane 4) digestion. Positions of DNA size markers (mixture of $\lambda Bst EII$ digest and pBR322 98 Msp I digest) are indicated. 99

102

Fig. S2. Expression of HLA-DR1 on dendritic cells and elaboration of a mixed
 set of cytokines of upon activation TCR-DR1 splenocytes. A, Shown is HLA-DR1
 expression by flow cytometry on CD11b⁺CD11c⁺ dendritic cells of spleens of TCR-

106	DR1 and WT mice. B , Splenocytes of TCR-DR1 mice were incubated with Art v 1 ₂₅₋₃₆
107	peptide, Bet V 1 ₁₄₂₋₁₅₃ peptide, medium alone of PMA plus ionomyclin. Art V 1 ₂₅₋₃₆
108	bigh lovels ($>$ 500 pg/ml por 2x10 ⁵ cells (well) of II 2, intermediate lovels (400,200
109	ng/ml) of IEN_{y} II -13 and II -17 and low lovels (199-10 ng/ml) of II -4 and II -6 while
110	pg/m) of $m \gamma_{\gamma}$ it is and it if and low levels (199-10 pg/m) of it 4 and it 0, while no indication for TNE- α II 5 and II 10 secretion was observed PMA/ionomycin
117	incubation used as positive control induced clear-cut levels (>10 pg/ml) of II -2 IEN-
112	\sim II -10 II -6 TNF- α II -4 and II -13 Data are representative of two independently
114	performed experiments.
115	
116	
117	
11,	
118	
110	
117	
120	
121	
121	
122	
123	
123	
124	
125	
125	
126	
107	
127	
128	
120	
129	
130	
101	
131	
132	

Fig. S3. Treg paucity and antigen-specific activation of T lymphocytes in thefour mouse lines under study.

A, Shows the percentages of CD3⁺CD4⁺Foxp3⁺ cells in spleens of WT, DR1, TCR 136 137 and TCR-DR1 mice. Each symbol represents an individual mouse. B, Shown is the 138 proliferation of splenocytes (2 x 10⁵/well) from WT, DR1, TCR and TCR-DR1 mice 139 incubated with full length rArt v 1-protein (3 μ M), Art v 1₂₅₋₃₆-peptide or negative control Bet v $1_{142-153}$ -peptide (10 μ M) in vitro. C, Shows additional positive 140 141 (PMA/ionomycin) and negative (medium) controls. D, Shown is the dose dependent 142 proliferation of splenocytes from TCR-DR1 mice upon incubation with Art v 1₂₅₋₃₆-143 peptide in comparison to negative control Bet v 1142-153-peptide. kcpm indicates kilo counts per minute of incorporated $[^{3}H]$ -thymidine. Data shown are mean values \pm 144 145 SEM of triplicate cultures of one experiment, which is representative of four independent experiments. *** p < 0.001, Kruskal-Wallis test and Mann-Whitney-U-146 test followed by post hoc Bonferroni correction. 147

Fig S4. Art v 1-specific proliferation of CD4⁺ T cells as determined by CPD 152 eFluor[®] 450 dilution. Flow cytometry analysis showing proliferation of CPD eFluor[®] 153 154 450-labeled CD3⁺CD4⁺TCR T cells, left either untreated (medium) or incubated with Art v 1₂₅₋₃₆-peptide. Bet v 1₁₄₂₋₁₅₃-peptide or PHA for 96 hours. A, Dot plots show 155 156 gating strategy, **B**, Histograms show cellular proliferation. Markers show cells, which 157 underwent proliferation. C, Shown are division indices of CPD-labeled CD3⁺CD4⁺ T cells calculated according to established methods as described (Asquith et al., 2006). 158 159 Data are representative (A, B) or show the summary (C) of three independent 160 experiments. ***, p < 0.001; Kruskal-Wallis test, followed by post hoc Bonferroni
161 correction.

163 Fig. S5. Preferential accumulation of inflammatory cells in the lungs of sole 164 mugwort aerosol challenged TCR-DR1 mice. A, Shown are HE-stained lung sections at high-power magnification, arrowheads show eosinophilic granulocytes. B, 165 and C, Shown are immunohistochemical CD4 (b) and CD45R/B220 (c) stainings of 166 lung tissues analyzed by light microscopy, size bars 50 μ m. Data are representative 167 168 of three experiments performed. D, Shown are two parameter contour plots of flow 169 cytometric analyses of lung tissues of WT, DR1, TCR and TCR-DR1 mice, 170 respectively. Only lung homogenates of TCR-DR1 mice show the appearance of high percentages of LY6C/G⁺SiglecF^{neg} neutrophils and of LY6C/G^{dim}SiglecF⁺ eosinophils. 171 Numbers show cells in respective guadrants. 172

- 173
- 174

Fig. S6. Footpad swelling upon mugwort extract exposure in TCR-DR1 mice. WT, DR1, TCR and TCR-DR1 mice were injected with 25 μ l of allergen extract preparation, corresponding to 375 μ g whole protein content intradermally into the right hind footpad. The contralateral left hinder food pad was challenged with PBS as control. A, Shown is a representative photograph of the hind footpads of a challenged TCR-DR1 mouse. **B**, Shown is the footpad swelling before and after challenge with mugwort extract using a digital thickness gauge. The changes in footpad swelling were determined as follows: Footpad swelling (mm) = footpad thickness after allergen provocation - footpad thickness before allergen provocation. Each symbol shows an individual mouse 72 hours after injection. Eight mice in the TCR-DR1 group were compared to four mice in all other groups. Data are representative of three independent experiments. **, p < 0.01; Kruskal-Wallis test followed by post hoc Bonferroni correction

204

A

205

206

207 Fig. S7. Intranasal exposure to mugwort pollen extract of TCR-DR1 mice leads 208 to an increase in lung resistance. Mice were exposed four times to 450 µg 209 mugwort pollen extract in PBS intranasally in bi-weekly intervals according to the 210 scheme shown in FIG 3, A. Shown is lung resistance (RI) determined one day after the last exposure on day 44 (Buxco, Finepoint software) by inhalation of increasing 211 212 doses of methacholine as indicated. Every symbol indicates mean lung resistance 213 levels of each group of mice (allergen exposed versus non-allergen exposed); vertical 214 lines show the standard error of mean (SEM). Data are representative of five allergen 215 exposed and four non-allergen exposed mice. * p < 0.05, allergen-exposed compared 216 to non-allergen-exposed mice by Mann-Whitney-U-test. 217

FIGURE S8 В PBS L-2-αIL-2 3.5 32.4 Foxp3 A 2.0 28.5 **CD39** CD3 CD4 0.3 5.5 **KLRG1** CD25 С D CD25+CD39+ CD25+KLRG1+ % of CD3⁺CD4⁺ T cells 40 % of CD3+CD4+ T cells 5 *** *** 4 30 3 20 2 10 1 0 0 IL-2- α IL-2 PBS PBS IL-2- α IL-2

218

Fig. S8. IL-2-αIL-2 complexes expand Treg *in vivo*. A, Gating strategy for analysis 219 220 of Treg cells expanded by IL-2- α IL-2 complexes **B**, phenotypic appearance and 221 summary of CD3⁺CD4⁺CD25⁺ PB T cells co-expressing **C**, CD39 or **D**, KLRG1, 222 respectively, of sham (PBS) or IL-2-aIL-2 treated TCR-DR1 mice obtained on day 6. 223 Numbers indicate the percentages of cells in the double positive guadrant. Each 224 symbol represents an individual mouse. Data are representative (A, B) or show the summary (C, D) of stainings for 33 IL-2-aIL-2 (except 21 for CD25/KLRG1) and 30 225 226 PBS treated (except 19 for CD25/KLRG1) mice per group that were analyzed in five 227 independent experiments. ***, p < 0.001, Unpaired two-tailed Student's t-test (d) and ANOVA, followed by Tukey's multiple comparison test. 228

- 229
- 230
- 231 232

233 Fig. S9. Effects of blocking α IL-10 mAbs on *in vitro* division of allergen-234 **specific T cells.** FACS-sorted CD3⁺CD4⁺CD25⁻ effector T cells from allergen-naive TCR-DR1 mice were incubated with FACS-sorted CD3⁺CD4⁺CD25^{bright} Treg of IL-2-235 236 α -IL-2 complex treated TCR-DR1 mice at the indicated ratios. Either isotype control 237 or α IL-10 mAb (20µg/ml) were added to the culture together with 1 µM of Art v 1₂₃₋₃₆ 238 peptide along with DC2.4 DR1⁺ dendritic cells, serving as APCs. Proliferation of 239 effector T cells labelled with violet-CPD is represented as division index obtained 240 after 96 hours. Instead of Treq, soluble rIL-10 in the presence of α IL-10 or isotype 241 control mAb added to the cultures served as control. Shown are the mean ± SEM 242 division indices pooled from two independent experiments. * p < 0.05, *** p < 0.001. One-way ANOVA followed by Tukey's multiple comparison test. 243

- 245
- 246

Fig. S10. Reduction of allergen-specific immunoglobulin levels in mice treated with IL-2-alL-2 complexes.

Allergen-specific serum immunoglobulin **A**, and **C**, IgG1 and **B**, and **D**, IgG2 levels 249 250 upon prophylactic (A, B) or therapeutic (C, D) treatment of mice with IL-2-aIL-2 251 complexes. Serum immunoglobulin levels of mice treated with PBS were used as 252 control. Shown are Art v 1-specific IgG1 and IgG2 levels determined by ELISA and 253 expressed in arbitrary units (OD 405nm). Each symbol represents an individual 254 mouse. Data show the summary of 10 (A, B) or 20 (except 18 for PBS treated) (C, D) 255 mice per group analyzed in two (A, B) or three (C, D) independent experiments. ns, 256 not significant, * p < 0.05, ANOVA, followed by Student's t-test.

257

261 Table S1. List of monoclonal antibodies

262

263 Table S1A. List of monoclonal antibodies used for flow cytometric analyses of

264 spleens, thymi and peripheral blood leukocytes

Specificity	Clone name	Species	conjugated to	Source
CD3	500A2	hamster	FITC	eBioscience, San Diego, CA, USA
CD3	17A2	rat	eFluor450	eBioscience, San Diego, CA, USA
CD4	RM4-5	rat	eV450	eBioscience, San Diego, CA, USA
CD4	RM4-5	mouse	APC	eBioscience, San Diego, CA, USA
CD8	5H10	rat	APC	Invitrogen, Camarillo, CA, USA
CD14	rmC5-3	rat	PE	Becton Dickinson, Palo, Alto, CA
CD45R/B220	RA3-6B2	rat	FITC	eBioscience, San Diego, CA, USA
CD45R/B220	RA3-6B2	rat	PB	eBioscience, San Diego, CA, USA
CD90.2 (Thy1.2)	53-2.1	rat	APC	eBioscience, San Diego, CA, USA
Ly6C+6G	RB6-8C5	rat	FITC	Becton Dickinson, Palo, Alto, CA
HLA-CII	L243	mouse	FITC	BioLegend, San Diego, CA, USA
HLA-CII	L243	mouse	PerCP	BioLegend, San Diego, CA, USA
TRBV18	BA62.6	mouse	PE	Immunotech, Marseille, France
ΤCRγ/δ	GL3	hamster	FITC	BioLegend, San Diego, CA, USA
control	eBio299Arm	hamster	FITC	eBioscience, San Diego, CA, USA
control	P3.6.2.8.1	mouse	PE	eBioscience, San Diego, CA, USA
control	MOPC-21	mouse	PerCp	BioLegend, San Diego, CA, USA
control	MOPC-21	rat	APC	BioLegend, San Diego, CA, USA
control	RTK2758	rat	PO/PB	BioLegend, San Diego, CA, USA

265

266

267 Table S1B. List of monoclonal antibodies used for flow cytometric analysis

268

BALF

Specificity	Clone name	Species	conjugated to	Source
CD16/CD32	2.4G2	rat	-	Becton Dickinson, Palo, Alto, CA
CD45	30-F11	rat	Alexa Fluor 700	Becton Dickinson, Palo, Alto, CA
CD3	500A2	hamster	PE	eBioscience, San Diego, CA, USA
CD4	L3T4	rat	Pe-Cy7	Becton Dickinson, Palo, Alto, CA
CD11c	HL3	hamster	APC-Cy7	Becton Dickinson, Palo, Alto, CA

CD45R/B220	RA3-6B2	rat	РВ	BioLegend, San Diego, CA, USA
CD19	1D3	rat	V450	Becton Dickinson, Palo, Alto, CA
CCR3	83103	rat	Alexa Fluor 647	Becton Dickinson, Palo, Alto, CA
Siglec-F	E50-2440	rat	Alexa Fluor 647	Becton Dickinson, Palo, Alto, CA
Ly6C+6G	RB6-8C5	rat	FITC	Becton Dickinson, Palo, Alto, CA
Ly6C+6G	RB6-8C5	rat	Pacific Orange	Molecular Probes
CD117	2B8	rat	PE-CF594	Becton Dickinson, Palo, Alto, CA
IgE	R35-72	rat	FITC	Becton Dickinson, Palo, Alto, CA
NK-1.1	PK136	rat	PerCP-Cy5.5	Becton Dickinson, Palo, Alto, CA
HLA-DR	L243	mouse	PerCP	BioLegend, San Diego, CA, USA
MHC I-A/I-E	M5/114.15.2	rat	PerCP	BioLegend, San Diego, CA, USA
control	eBio299Arm	hamster	FITC	eBioscience, San Diego, CA, USA
control	P3.6.2.8.1	mouse	PE	eBioscience, San Diego, CA, USA
control	MOPC-21	mouse	PerCp	BioLegend, San Diego, CA, USA
control	MOPC-21	rat	APC	BioLegend, San Diego, CA, USA
control	RTK2758	rat	PO/PB	BioLegend, San Diego, CA, USA

Table S1C. List of monoclonal antibodies used for flow cytometric analyses of

Foxp3 expression in peripheral blood

Specificity	Clone name	Species	conjugated to	Source	
CD3	500A2	hamster	PerCP-Cy5.5	eBioscience, San Diego, CA, USA	
CD4	RM4-5	rat	BV510	Becton Dickinson, Palo, Alto, CA	
CD25	PC61	rat	BV421	Becton Dickinson, Palo, Alto, CA	
CD39	24DMS1	rat	PE-Cy7	eBioscience, San Diego, CA, USA	
Foxp3	FJK-16s	rat	APC	eBioscience, San Diego, CA, USA	
KLRG1	2F1	hamster	FITC	eBioscience, San Diego, CA, USA	
TRBV18	BA62.6	mouse	PE	Immunotech, Marseille, France	
control	eBio299Arm	hamster	PerCP-Cy5.5	eBioscience, San Diego, CA, USA	
control	P3.6.2.8.1	mouse	PE	eBioscience, San Diego, CA, USA	
control	eBio299Arm	mouse	FITC	BioLegend, San Diego, CA, USA	
control	MOPC-21	rat	APC	BioLegend, San Diego, CA, USA	
control	RTK2758	rat	PE-Cy7	BioLegend, San Diego, CA, USA	
control	R35-95	rat	BV510	Becton Dickinson, Palo, Alto, CA	
control	R35-95	rat	BV421	Becton Dickinson, Palo, Alto, CA	

Table S1D. List of monoclonal antibodies used for flow cytometric analyses of

transcription factors and cytokines in lung homogenates

Specificity	Clone name	Species	conjugated to	Source
CD3	500A2	hamster	FITC	eBioscience, San Diego, CA, USA
CD4	RM4-5	rat	Alexa Fluor 700	Becton Dickinson, Palo Alto, CA
T-bet	eBio4B10	mouse	PerCP-Cy5.5	eBioscience, San Diego, CA, USA
GATA3	L50-823	mouse	PE-Cy7	Becton Dickinson, Palo Alto, CA
Foxp3	FJK-16s	rat	APC	eBioscience, San Diego, CA, USA
IFN-γ	XMG1.2	rat	APC	eBioscience, San Diego, CA, USA
IL-13	eBio13A	rat	PE	eBioscience, San Diego, CA, USA
control	eBio299Arm	hamster	FITC	eBioscience, San Diego, CA, USA
control	R35-95	rat	Alexa Fluor 700	Becton Dickinson, Palo Alto, CA,
control	P3.6.2.8.1	mouse	PerCP-Cy5.5	eBioscience, San Diego, CA, USA
control	MOPC-21	mouse	PE-Cy7	Becton Dickinson, Palo Alto, CA
control	RTK2758	rat	APC	BioLegend, San Diego, CA, USA
control	R35-95	rat	PE	Becton Dickinson, Palo Alto, CA

277

Abbreviations: APC, allophycocyanine; PE, phycoerythrin; Cy, cyanine; PerCP, peridinin chlorophyll protein;

279 FITC, fluorescein isothiocyanate, PO/PB, pacific orange/pacific blue, BV, brilliant violet

280

281

Table S1E. List of monoclonal antibodies used for cytometric bead array-based analyses of secreted cytokines

Specificity	Clone name	Species	conjugated to	Source
IL-4	11B11	rat		eBioscience, San Diego, CA, USA
IL-5	TRFK5	rat		eBioscience, San Diego, CA, USA
IL-13	eBio13A	rat		eBioscience, San Diego, CA, USA
IFN-γ	AN-18	rat		eBioscience, San Diego, CA, USA
IL-4	BVD6-24G2	rat	biotin	eBioscience, San Diego, CA, USA
IL-5	TRFK4	rat	biotin	eBioscience, San Diego, CA, USA
IL-13	eBio1316H	rat	biotin	eBioscience, San Diego, CA, USA
IFN-γ	R4-6A2	rat	biotin	eBioscience, San Diego, CA, USA
Streptavidin			PE	eBioscience, San Diego, CA, USA

Table S2. Total cell numbers and percentages of indicated cell types in spleen,

thymus and peripheral blood of WT, DR1, TCR and TCR-DR1 transgenic mice.

		Spleen		Thymus		Peripheral Blood	
			Absolute		Absolute		Absolute
		Deverates and	Absolute	Percentag	Absolute	Percentag	Absolute
		Percentages	- numbers	es	- numbers	es	
			(*10°/organ)		(*10°/organ)		(*10°/mm°)
T cells							
CD3	WT	25.1±3.8	24.4±9.8	96.7±0.7	147.1±33.6	27.0±4.4	3.6±0.2
(TRBV18+)		0.2± 0.2	0.2±0.1	0.0±0.0	0.3±0.0	0.0±0.0	0.2±0.0
CD3	DR1	24.9± 5.5	20.7±4.1	96.0±1.5	135.6±53.7	35.8±3.6	3.3±0.8
(TRBV18+)		0.2± 0.1	0.1±0	0.0±0.0	0.3±0.0	0.0±0.0	0.0±0.0
CD3	TCR	17.3± 2.5	20.7± 2.0	95.9±0.5	72.8±30.9	19.3±4.7	1.9±0.5
(TRBV18+)		7.6±3.7	9.0± 4.1	12.7±2.7	25.9±4.3	13.9±4.0	1.4±0.5
CD3	TCR/DR1	19.5±4.4	20.4±6.6	96.1±1.2	103.1±30.3	24.0±3.2	3.0±0.5
(TRBV18+)		14.6± 5.0	14.9±4.6	11.3±1.5	63.1±4.8	17.8±2.9	2.2±0.4
CD4	WT	14.4± 2.8	14.0± 5.8	9.8±0.9	15.0±4.0	14.1±2.8	2.0±0.1
(TRBV18+)		0.1± 0	0.1±0.0	0.1±0.1	0.2±0.1	0.0±0.0	0.0±0
CD4	DR1	19.1± 4.9	15.7±3.1	17.3±2.8	23.2±5.8	26.2±2.7	2.4±0.6
(TRBV18+)		0.1± 0.1	0.1±0.1	0.2±0.2	0.2±0.1	0.0±0.0	0.0±0.0
CD4	TCR	11.3± 1.4	13.5±0.4	8.9±2.7	6.9±4.4	11.6±2.6	1.1±0.3
(TRBV18+)		4.8±3.4	6.3±3.9	5.0 ± 3.1	4.0±2.7	8.0±4.3	0.8 ± 0.4
CD4	TCR/DR1	17.5±4.0	18.2±5.4	20.3±4.8	22.0±9.2	19.5±3.0	2.4 ± 0.5
(TRBV18+)		9.1±7	13.6±7.1	11.3+5.6	18.7±6.4	12.1.+8.1	1.6±1.1
		5.1-7	1.20.0-7.1	11.5 - 5.0	20.7 - 0.7	12.12-0.1	1.0-1.1
CD8	WT	87+10	87+43	4 2+0 4	64+18	88+14	1 1+0 2
(TRB\/18+)	**1	0.7 - 1.9	0.0+0.0	0.0+0.0	0.0+0.0	0.0+0.0	0.0+0.0
(T(DV10+)	DP 1	3 0+ 1 1	3 2+0 9	3 4+0 6	17+1 9	6 1+0 2	0.6+0.1
(TDBV/18)	DRI	J.J. 1.1	0.0+0.0	0.0+0.0		0.1-0.3	0.0±0.1
(<i>TRDV10+</i>)	TCD	0.0± 0.0	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0
	ICR	4.0± 1.6	4.0±1.0	1.2105	3.0±2.0	4.7±1.5	0.5±0.2
(<i>TRBV18+</i>)	TODIODA	1.1± 0.8	1.3±0.8	1.3±0.5	1.0±0.6	3.5±1.3	0.3±0.1
CD8	TCR/DR1	0.8± 0.5	0.8±0.4	2.8±0.9	3.1±1.6	0.8±0.5	0.1±0.1
(TRBV18+)		0.4± 0.3	0.4±0.2	1.9±0.8	2.2±1.3	0.6±0.3	0.1±0.0
B cells							
CD45R	WT	52.3±5.9	49.3±13.3	0.8±0.8	1.2±1.4	45.1±4.8	6.2±1.8
HLA-DRB1*01:01+		0.1±0.1	0.1±0.1	0.0±0.0	0.0±0.0	0.1±0.0	0±0
CD45R	DR1	37.0±2.5	32.7±11.8	0.2±0.1	0.2±0.1	26.2±2.4	2.4±0.5
HLA-DRB1*01:01+		29.1±1.3	25.3±8.0	0.2±0.1	0.1±0.1	22.4±1.7	2.0±0.4
CD45R	TCR	69.7±13.5	69.7±13.5	2.2±0.7	1.6±0.8	46.2±3.8	4.5±0.8
HLA-DRB1*01:01+		0.2±0.0	0.2±0.0	0.0±0.0	0.0±0.0	0.2±0.0	0±0
CD45R	TCR/DR1	48.9±26.5	48.9±26.5	0.6±0.2	0.7±0.2	38.7±4.0	4.9±0.9
HLA-DRB1*01:01+		40.6±23.6	40.6±23.6	0.6±0.1	0.6±0.1	33.5±2.9	4.2±0.7
Lymphocytes						1	1
	WT	80.0±4.9	76.7±25.0	96.1±0.9	145.9±32.0	71.6±3.6	9.8±2.3
	DR1	75.0±2.3	65.7±22.1	95.0±1.4	134.0±52.9	62.9±1.8	5.7±1.1
	TCR	81.2±1.3	98.1±14.4	94.4±1.8	71.4±29.9	46.2±3.8	5.9±1.0
	TCR/DR1	73.9±2.5	79.8±32.5	95.9±0.7	102.9 ± 30.1	56.9±4.4	7.1±0.6
	,						
Monocytes							
CD14	WT	0.1±0.0	0.1±0.0	0.0±0.0	0.0±0.0	0.2±0	0.0±0
HIA-DRR1*01·01+		0.0+0.0	0.0±0.0	0.0+0.0	0.0±0.0	0.0+0	0.0±0
CD14	DR1	0.1+0.0	0.1+0.0	0.0+0.0	0.0+0.0	0.2+0	0.0+0
HIA-DRB1*01.01+	DRI	0.1±0.0	0.0+0.0	0.0±0.0	0.0±0.0	0.2+0	0.0+0
CD14	TCR	0.1+0.0	0.1+0.0	0.0+0.0	0.0+0.0	0.2+0	0.0+0
HIA_DDB1*01.01	ICK	0.1±0.0	0.0+0.0	0.0±0.0	0.0±0.0	0.2-0	0.0±0
CD14	TCD/DD1	0.0±0.0	0.1+0.0	0.0+0.0	0.0+0.0	0.2+0	0.0±0
	TCK/DKI	0.1±0.0	0.1±0.0	0.0±0.0		0.2±0	0.0±0
HLA-DRDI "UI:UI+		0.0±0.0	0.0±0.0	0.0±0.0	0.0±0.0	0.1±0	0.0±0
Cupuulo auto -							
Granulocytes							
Ly6C+Ly6G+	WT	9.6±2.2	9.4±4.7	2.1±0.3	3.3±1.0	19.9±3.4	2.7±0.4
	DR1	12.9±2.0	11.6±4.5	3.5±1.0	4.7±2.1	28.5±4.3	2.6±0.7
	TCR	8.2±1.0	9.8±1.8	3.4±1.1	2.8±2.0	29.7±6.4	2.8±0.6
	TCR/DR1	9.8±1.7	10.6±4.8	2.2±0.2	2.4±0.9	32.5±1.5	4.1±0.6
Leukocytes	WT		86.6±27.4		149.2±31.0		12.4±2.3
	DR1		77.7±24.5		138.2±49.9		8.4±1.5
	TCR		108.6±15.0		74.1±29.4		8.8±1.4
	TCR/DR1		92.1±34.5		105.0±28.6		11.4±1.1
						1	
			11	11	1	11	1
			1	1		11	
				1		1	
				1		1	1

- 289 Grey numbers indicate numbers and percentage of TCR V β 18⁺ or HLA-DR1+ cells,
- respectively. Data show the summary of five mice per group analyzed in five
- independent experiments. Mean \pm S.D. is shown.