On the prevalence of bridged macrocyclic pyrroloindolines formed in regiodivergent alkylations of tryptophan

Tristin E. Rose,[†] Brice H. Curtin,[†] Kenneth V. Lawson,[†] Adam Simon, K. N. Houk, Patrick G. Harran Department of Chemistry and Biochemistry, University of California Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569

Supporting Material

Table of Contents

А.	Supple	ementary Figures S1–S10	2	
В.	Compu	utational Results, Methods, & Supplementary Figures S11–S17	6	
C.	Genera	al Synthetic Considerations	13	
D.	D. Experimental Procedures			
	1.	Acyclic intermediates and macroclization products	15	
	2.	Synthesis of model endo-pyrroloindoline 21a and exo-pyrroloindoline 21b	68	
	3. Selective synthesis of pyrroloindoline 9d			
	4.	Reaction of trifunctional template 28 with Trp-Trp-Tyr	71	
	5.	Cartesian Coordinates and Energies	78	

A. Supplementary Figures

Figure S1. Phe-Trp(5Me)-Thr. Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 6.

Figure S2. Phe-Trp(5F)-Thr. Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 7.

Figure S3. Ala-GIn-His-Trp(5F)-Arg. Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 10.

Figure S4. Trp(5Br)-Ser-IIe-Ala. Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 12.

Figure S5. Ser-Trp(5Br)-Ile-Ala. Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 13.

Figure S6. Ser-Ile-Trp(5Br)-Ala. Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 14.

 Tf₂NH CH₃SO₃H 77 % 48 % Figure S7. Ser-Ile-Ala-Trp(5Br). Comparative performance of Tf₂NH and MeSO₃H in cyclization of linear precursor 15.

Figure S8. Nva-Asp-Val-Trp(5Br). Cyclization of S1 promoted by Tf₂NH forms diastereomeric pyridoindolines S2a&b.

Figure S9. Ac-Orn(H)-Ile-Pro-Trp(5F). Cyclization of S3 promoted by MeSO₃H did not yield an analogous pyrroloindoline.

Figure S10. Val-Gly-Trp(5Br)-Phe. Cyclization of S5 promoted by MeSO₃H did not yield an analogous pyrroloindoline.

B. Computational Results and Discussion

Figure S11. Free energy profile for the 1,2-rearrangement of exo- and endo-pyrroloindolines shown in Figure 3 (where R=Me). (ω B97x-D/6-311+G(d,p)–SMD (nitromethane) // ω B97x-D/6-31G(d,p)) The relative free energies are compared with endo-S8a and are reported in kcal/mol. The blue pathway represents the endo reaction profile, and the green pathway represents the exo reaction profile.

The free energy profile in Figure S11 was calculated for the cinnamyl 1,2-rearrangement shown in Figure 3 (where R=Me). The neutral pyrroloindolines are protonated at the acetyl oxygen to form *endo*-**S8a** and *exo*-**S8b**, shown in Figure S12. The protonation transition state was not determined. *Endo*-**S8a** is the lowest-energy intermediate of the free energy profile. The *exo*-pyrroloindolinium, *exo*-**S8b**, is higher in energy by 1.4 kcal/mol. The calculated geometries of intermediates **S8-S10**, and **S12** are shown in Figure S12. The protonated species proceed through the ring opening transition structures, *endo*-**TS-1a** and *exo*-**TS-1b**, shown in Figure S13.

Figure S12. Lowest-energy intermediates S8-S10, and S12 for the free energy profile in Figure S11. (ω B97x-D/6-311+G(d,p)–SMD (nitromethane) // ω B97x-D/6-31G(d,p)). The relative free energies are compared with *endo*-S8a and are reported in kcal/mol.

Figure S13. Lowest-energy transition structures *endo*-TS-1a and *exo*-TS-1b for the ring opening reaction of *endo*-S8a and *exo*-S8b. (ω B97x-D/6-311+G(d,p)–SMD (nitromethane) // ω B97x-D/6-31G(d,p)). The free energy of activation barrier for *endo*-TS-1a is compared to *endo*-S8a, and the free energy of activation barrier for *exo*-TS-1b is compared to *exo*-S8b. The free energies are reported in kcal/mol.

The *endo* transition structure *endo*-**TS-1a** has a barrier of 17.4 kcal/mol, relative to *endo*-**S8a**. The *exo* transition structure *exo*-**TS-1b** has a barrier of 17.1 kcal/mol, relative to *exo*-**S8b**. Intermediates *endo*-**S9a** and *exo*-**S9b** are iminol tautomers, which tautomerize to amides *endo*-**S10a** and *exo*-**S10b**. The transition states for these tautomerizations were not calculated. The pyrroloindoliniums *endo*-**S10a** and *exo*-**S10b** undergo 1,2-rearrangement through a stepwise mechanism of disassociation, leading to a complex between the indolinium and cinnamyl group, followed by addition to indole C2. The transition structures *endo*-**TS-2a** and *exo*-**TS-2b** have barriers of 30.6 and 27.7 kcal/mol, respectively, and are shown in Figure S14. The dissociation transition structures lead to complexes *endo*-**S11a** and *exo*-**S11b**. These complexes undergo addition to indole C2 via transition structures *endo*-**TS-3a** and *exo*-**TS-3b** with barriers of 27.5 kcal/mol and 24.8 kcal/mol, respectively. These transition structures lead to cations *endo*-**S12a** and *exo*-**S12b**, which are deprotonated to form the neutral C2-cinnamyl indole **S13**.

Figure S14. Lowest-energy transition structures *endo*-TS-2a, *exo*-TS-2b, *endo*-TS-3a, and *exo*-TS-3b for the stepwise 1,2-rearrangement of *endo*-S10a and *exo*-S10b, and the complexes *endo*-S11a and *exo*-S11b interceding these transition structures (ω B97x-D/6-311+G(d,p)–SMD (nitromethane) // ω B97x-D/6-31G(d,p)). The free energy of activation barrier for *endo*-TS-2a and *endo*-TS-3a is compared to *endo*-S8a, and the free energy of activation barrier for *exo*-TS-2b and *exo*-TS-3b is compared to *exo*-S8b. The difference in free energy for *endo*-S11a is compared to *endo*-S8a, and *exo*-S11b is compared to *endo*-S11b is compared to *endo*-S11a is compared to *endo*-S8a, and *exo*-S11b is compared to *endo*-S8b. The free energy *endo*-S11a is compared to *endo*-S8a, and *exo*-S11b is compared to *endo*-S8b. The free energies are reported in kcal/mol.

It was found that the dissociation transition structures *endo*-**TS-2a** and *exo*-**TS-2b** are the highest-energy barriers and are ratedetermining. The difference in free energy of activation for the *exo*- and *endo*- processes is 2.9 kcal/mol, where the *exo*- is lower in energy. The difference in energy arises from two factors: (1) The greater stability of intermediate *endo*-**S8a** over *exo*-**S8b** by 1.4 kcal/mol. (2) The stability of the *exo*-**TS-2b** over *endo*-**TS-2a** by 1.5 kcal/mol. The *exo*- transition structure is lower in energy due to stabilizing electrostatic interactions between the carbonyl oxygen of the acetamide group and electropositive indolinium ring. This stabilizing electrostatic effect does not occur in *endo*-**TS-2a**, due to the configuration of the alanyl moiety.

Figure S15. Lowest-energy ground states for the neutral pyrroloindolines S14, S15, and C2-linked product S13. $(\omega B97x-D/6-311+G(d,p)-SMD$ (nitromethane) // $\omega B97x-D/6-31G(d,p)$). The relative free energies of *endo-S14a* and *exo-S14b* are compared to S13. The relative free energy of *N*,*N*-dimethylated variant *exo-S15b* is compared to *endo-S15a*. The relative free energies are reported in kcal/mol.

The neutral pyrroloindolines, shown in Figure S15, were calculated and it was found that the aromatized C2-cinnamyl indole S13 was the thermodynamic product. The *endo*-pyrroloindoline *endo*-S14a is 6.4 kcal/mol higher in energy than S13. The *exo*-S14b is 7.4 kcal/mol higher in energy than S13. Consistent with findings of Crich,¹ the *exo*-S14b is less stable compared to *endo*-S14a due primarily to 1,3-allylic strain. The 1.0 kcal/mol difference arises from the steric interactions between the N1-acetyl group and C2-acetamidyl group. As shown in Figure S15, the exocyclic dihedral angle between C9-N1-C2-C10 is 94° for *endo*-S14a and 86° for *exo*-S14b. To test whether the difference in energy was due to an intramolecular hydrogen bond we calculated a model where the acetamide group was *N*,*N*-dimethylated (the cinnamyl group was truncated to methyl). From this, the lowest-energy model pyrroloindolines *endo*-S15a and *exo*-S15b, shown in Figure S15. The *endo*-model S15a is 0.7 kcal/mol more stable than the *exo*-model S15b. The dihedral angles of the C9-N1-C2-C10 bonds are 69° for the *endo*-S15a and *55°* for the *exo*-S15b, consistent with the findings for *endo*-S14a and *exo*-S14b.

¹ D. Crich, M. Bruncko, S. Natarajan, B. Teo and D. Tocher, *Tetrahedron* 1995, **51**, 2215.

Figure S16. Lowest-energy transition structures *endo*-TS-4a and *exo*-TS-4b for the concerted 1,2-rearrangement of *endo*-S10a and *exo*-S10b. (ω B97x-D/6-311+G(d,p)–SMD (nitromethane) // ω B97x-D/6-31G(d,p)). The free energy of activation barrier for *endo*-TS-4a is compared to *endo*-S8a, and the free energy of activation barrier for *exo*-TS-4b is compared to *exo*-S8b. The free energies are reported in kcal/mol.

In addition to the stepwise 1,2-rearrangement, a concerted pathway was also located, and is shown in Figure S16. The transition structures *endo*-**TS-4a** and *exo*-**TS-4b** were the lowest-energy structures located for the *exo* and *endo* pathways. Both transition structures are concerted 1,2-shifts of the cinnamyl group from indole C3 to C2. The free energy of activation barrier for *endo*-**TS-4a** is 33.8 kcal/mol, and 28.0 kcal/mol for *exo*-**TS-4b**. The stabilization of the *exo* transition structure over the *endo* is due to similar effects observed for the **TS-2** series, where there is a stabilizing electrostatic interaction in *exo*-**TS-4b** not present in *endo*-**TS-4a**. The activation barrier for *endo*-**TS-4a** is 3.2 kcal/mol higher than *endo*-**TS-2a**, and thus the *endo* pyrroloindolines react via stepwise 1,2-rearrangements. However, *exo*-**TS-4b** is only 0.3 kcal/mol higher in energy than *exo*-**TS-2b**. Thus, *exo*-pyrroloindolines can react through either stepwise or concerted 1,2-rearrangements.

Figure S17. Lowest-energy ground states of truncated macrocycles S16-S17. (ω B97x-D/6-311+G(d,p)–SMD (nitromethane) // ω B97x-D/6-31G(d,p)). These models are truncated, neutral variants of macrocyclic pyrroloindolines 18c (for S17) and 20 (for S16) where peptide side chains were replaced with methyl groups. The relative free energies of *endo*-S14a and *exo*-S14b are compared to S13. The relative free energy of *exo*-S15b is compared to *endo*-S15a. The relative free energies are reported in kcal/mol.

Truncated models of macrocyclic *endo*-pyrroloindoline **18c** and its open-chain iminol tautomer **20** – as well as diastereomers corresponding to *exo*-**18c** (not isolated) – were calculated to estimate the feasibility of stepwise 1,2-rearrangement in macrocyclic systems. Peptide side chains were replaced with methyl groups for calculation. *Endo*-**S16a** and *exo*-**S16b** are the lowest-energy calculated intermediates, analogous to *endo*-**S10a** and *exo*-**S10b**. It was found that *endo*-**S16a** is preferred over *exo*-**S16b** by 4.5 kcal/mol. The cinnamyl group in *endo*-**S16a** does not overlap with the indolinium ring. However, we located a conformation higher in energy by 5.4 kcal/mol, *endo*-**S16a**-2, where the cinnamyl group is proximal to the indolinium ring analogously to complexes **S11a**, *b*. *Exo*-**S16b** adopts a conformation where the cinnamyl group is proximal to the indolinium ring and is 4.5 kcal/mol higher in energy than *endo*-**S16a**. Thus, these conformations suggest that the dissociated complex geometry in the stepwise 1,2-rearrangement of model pyrroloindolines is also feasible in macrocyclic variants. For neutral pyrroloindolines, *endo*-**S17a** was found to be lower in energy than *exo*-**S17b** by 1.1 kcal/mol. This energy difference was found to arise from 1,3-allylic strain, similarly to the model substrates *endo*-**S14a** and *exo*-**S14b**.

Computational Methods

All quantum chemical calculations were performed with Gaussian 09.² Geometry optimizations and frequencies were calculated with the ω B97x-D³ (*in vacuo*) density functional with the 6-31G(d,p) basis set. Optimized geometries were verified by frequency calculations as minima (zero imaginary frequencies) or transition structures (a single imaginary frequency). Free energy corrections were determined using unscaled ω B97x-D/6-31G(d,p) vibrational frequencies assuming a standard state of 1 atm and 298.15 K. Errors in the treatment of low modes as harmonic oscillations were mitigated by use of the quasiharmonic approximation proposed by Truhlar and coworkers.⁴ Single point energy calculations were performed on optimized geometries with ω B97x-D/6-311+G(d,p). The free energies reported herein were determined by adding zero-point energy and thermal correction determined using ω B97x-D/6-31G(d,p) to electronic energies computed at the ω B97x-D/6-311+G(d,p) level of theory.

Monte Carlo conformational searches were performed on the intermediates using the OPLS-2005 force field⁵ in Maestro/Macromodel.⁶ Reactive conformations with the distance between the bond-forming atoms shorter than 4.0 Å were used as input geometries for transition structure optimizations.

² Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

³ J.-D. Chai, and M. Head-Gordon, Phys. Chem. Chem. Phys. 2008, **10**, 6615.

⁴ Y. Zhao, and D. G. Truhlar, *Phys. Chem. Chem. Phys.* 2008, **10**, 2813.

 ⁵ J. L. Banks, H. S. Beard, X. Y. Cao, A. E. Cho, W. Damm, R. Farid, A. K. Felts, T. A. Halgren, D. T. Mainz, J. R. Maple, R. Murphy, D. M. Philipp, M. P. Repasky, L. Y. Zhang, B. J. Berne, R. A. Friesner, E. Gallicchio, and R. M. Levy, *J. Comp. Chem.* 2005, 26, 1752.
⁶ Schrödinger Release 2015-3: MacroModel, version 10.9, Schrödinger, LLC, New York, NY, 2015.

C. General Considerations

Fmoc-5-bromo-L-tryptophan, Fmoc-5-fluoro-L-tryptophan, and Fmoc-5-methyl-L-tryptophan were synthesized by kinetic enzymatic resolution of their racemates according to published procedures.⁷ Triflimide was purchased from Oakwood and handled under a dry atmosphere of argon to prepare stock solutions in MeNO₂ (1 mg/mL). Methanesulfonic acid \geq 99.5% was purchased from Aldrich.

Nitromethane Purification

Pre-treatment of commercial grade nitromethane with either 3Å molecular sieves (7 days) or activated neutral alumina (Aldrich, 58 Å, activated Brockman I, 150 mesh, 12 hrs) is essential for optimal results in Friedel-Crafts cyclizations. Adding H₂O (up to 1000 ppm) to the resultant dry nitromethane has no deleterious effects. For further discussions see: Rose, T. E. Ph.D. Dissertation [Online], University of California, Los Angeles, 2015. pp. 158-160. <u>http://escholarship.org/uc/item/0mx7x1st</u> (Accessed Oct 2, 2015). UMI: 3706064.

HPLC Analysis and Purification

Purification of acidolysis products was performed on an Agilent 1100/1200 HPLC system equipped with G1361A preparative pumps, a G1314A autosampler, a G1314A VWD, and a G1364B automated fraction collector. Analytical HPLC was performed using an identical system, but with a G1312A binary pump. Mass spectra were recorded using an Agilent 6130 LC/MS system equipped with an ESI source. Stationary phase and gradient profile are noted for individual reactions below.

NMR Methods

NMR spectra were recorded on Bruker Advance (500 or 600 MHz) or DRX (500 MHz) spectrometers. 2D NMR data were acquired as previously detailed.⁸

D. Experimental Procedures

Peptide Synthesis

All peptides were synthesized via standard Fmoc solid phase peptide synthesis conditions using Rink Amide MBHA resin (polystyrene, 1% DVB, 0.7 mmol/g).⁹

Linear Precursors Synthesis

Template 1 was prepared as described.¹⁰

General procedure A – Acylation of peptide by template 1: A round bottom flask was charged with peptide (1.1 equiv.), DMF (10 mL), and *i*Pr₂NEt (4.0 – 6.0 eq.), followed by template **1** (1.0 eq.). Reaction progress was monitored by analytical HPLC-UV/MS. Reactions were worked up and purified by column chromatography, trituration, or by preparative HPLC ($25\% \rightarrow 78\%$ [7 min.] ACN + 0.1% TFA, 18 mL/min, Sunfire C₁₈ 19x250 mm) - see details for individual examples below.

General procedure B – Macrocyclization

Using Tf₂NH:

A flask was charged with linear precursor (1 eq.) and nitromethane (5 mM in substrate). The heterogeneous mixture was flushed with argon for 10 mins. A stock solution of Tf_2NH in $MeNO_2$ (4.0 – 6.0 eq., 1 mg/mL stock) was then quickly added. The heterogeneous slurry homogenized and became purple in color. The reaction was stirred for 1 minute (2 minutes for **10**). The reaction was quenched with excess *i*Pr₂NEt and concentrated *in vacuo*. The mixture was concentrated, further dried *in vacuo*, diluted with DMSO, and an aliquot was removed and spiked with an equal concentration of internal standard (starting linear precursor). This aliquot was analyzed by HPLC-UV (254 nm) and product peaks were integrated and divided by the internal standard area to provide a yield – uncharacterized products were *not* included towards total yield. Product mixtures were resolved by preparative HPLC purification — see details per example, below.

Using MeSO₃H:

Reactions were carried out in the same manner as for Tf_2NH but using instead MeSO₃H (75 mM in MeNO₂, 5 mM in substrate), and were stirred for 30 mins, then neutralized by the addition of *i*Pr₂NEt.

Isomerization of macrocyclic pyrroloindoline 18c:

Purified **18c** was dissolved in a vigorously stirred solution of 1:4 TFA/CH₃NO₂ at room tempertature. Aliquots were removed, quenched with excess *i*Pr₂NEt, taken to dryness, reconstituted in DMSO (75 μ L) and analyzed by HPLC-UV (254 nm). Product yield and isomer distribution were determined by peak integration relative to starting **18c**. The pseudo-first order rate constant was determined by least-squares fitting of the time-course data to the first-order rate law.

^{7.} Porter, J.; Dykert, J.; Rivier, J. Int. J. Peptide Protein Res. 1987, 30, 13–21.

^{8.} Rose, T. E.; Lawson, K. V.; Harran, P. G. Chem. Sci. 2015, 6, 2219–2223

^{9.} Chan, W. C.; White, P. D. *Fmoc Solid Phase Peptide Synthesis: A Practical Approach*, Oxford University Press, Oxford, 2000 10. Lawson, K. V.; Rose, T. E.; Harran, P. G. *Proc. Natl. Acad. Sci. U. S. A.*, **2013**, *110*, E3753.

Determination of kinetic barriers for 1,2-rearrangement of pyrroloindoline endo-21a and exo-21b

Purified pyrroloindolines **21a** and **21b** were individual subjected to reactions in 20 vol% TFA solution in MeNO₂, as for macrocycle **18c**. Reaction temperature was maintained using a heated or cooled water bath, and solutions of substrate in MeNO₂ were pre-incubated before adding TFA, which had also been equilibrated to the reaction temperature. Aliquots (25 μ L) were removed periodically, chilled briefly in a dry ice acetone bath, and promptly concentrated *in vacuo*. The resulting dried residues were reconstituted in MeOH containing iPr₂EtN (0.1 vol%, 300 μ L) and analyzed by HPLC-UV. Pseudo-first order rate constants were determined by least-squares fitting of the time-course peak area data (254 nm) to the first-order rate law, and these data were used to construct the corresponding Eyring plots (below) of ln (k/T) versus 1/T. Activation parameters were calculated from m = - Δ H[‡]/R and b = ln(*K*_B/h) + Δ S[‡]/R.

	exo-21a	endo-21b
∆ H[‡] (kcal∙mol⁻¹)	20.8	20.6
∆ S[‡] (kcal•K ⁻¹ •mol ⁻¹)	1.2E-03	-6.0E-03
$\Delta \mathbf{G}^{\ddagger}$ (kcal•mol ⁻¹)	20.5	22.4

D.1. Acyclic precursors and macrocyclization products

Acyclic Cinnamyl Carbonate 6: Synthesized according to Procedure A. After completion of the reaction, the solution was diluted with 100 mL EtOAc and washed 3x50 mL NaHCO₃, 3x50 mL NH₄Cl, 1x50 mL brine. Dried with MgSO₄ and concentrated *in vacuo*. Chromatographed on SiO₂ with a gradient from 0% to 5% MeOH in CHCl₃. White Solid. 81% yield. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 10.70 (d, *J* = 1.8 Hz, 1H), 8.27 (d, *J* = 7.5 Hz, 1H), 8.09 (d, *J* = 8.2 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.36 (s, 1H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.21-7.12 (m, 10H), 7.04 (br s, 1H), 6.99 (d, *J* = 7.5 Hz, 1H), 6.88 (dd, *J* = 8.2, 1.1 Hz, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.32 (ddd, *J* = 15.9, 6.3, 6.2 Hz, 1H), 4.90 (d, *J* = 5.4 Hz, 1H), 4.66 (dd, *J* = 6.2, 0.8 Hz, 2H), 4.58 (ddd, *J* = 8.5, 7.5, 4.9 Hz, 1H), 4.52 (ddd, *J* = 10.0, 8.4, 3.9 Hz, 1H), 4.13 (dd, *J* = 8.6, 3.2 Hz, 1H), 4.07-4.04 (m, 1H), 3.18-3.14 (m, 1H), 3.03-2.95 (m, 2H), 2.70 (dd, *J* = 13.9, 10.3 Hz, 1H), 2.62 (apt t, *J* = 7.9 Hz, 2H), 2.38 (s, 3H), 2.45-2.24 (m, 2H), 1.43 (s, 9H), 1.00 (d, *J* = 6.3 Hz, 3H). ¹³C NMR (DMSO-*d*₆, 126 MHz): δ 172.0, 171.6, 171.4, 152.8, 141.7, 137.9, 135.8, 134.4, 133.4, 129.1, 128.6, 127.9, 127.6, 126.6, 126.4, 126.1, 124.1, 123.7, 123.2, 122.5, 118.0, 111.0, 109.3, 81.5, 66.9, 66.4, 57.9, 53.8, 53.7, 37.5, 36.7, 30.9, 27.4, 27.1, 21.3, 19.9. MS *m/z* 753.4 (calc'd: C₄₂H₅₁N₅O₈, [M+H]⁺, 753.4).

	13C	1H	key correlation
1	29.8	3.56 (dd, J = 15.6, 6.9 Hz, 1H), 3.78 (dd, J = 15.6, 5.9 Hz, 1H)	HMBC 1->24,25
2	127.8	6.08 (apt dt, J = 15.7, 6.8 Hz, 1H)	COSY 2->1, HMBC 2->4
3	130.3	6.40 (d, J = 15.7 Hz, 1H)	
4	136.6	-	
5	123.9	7.09-7.12 (m, 1H) overlap	
6	127.8	7.14 (dd, J = 7.4, 7.4 Hz, 1H) overlap	
7	127.1	6.95 (br d, J = 7.4 Hz, 1H)	HMBC 7->5
8	141.0	-	
9	124.4	6.98-7.00 (m, 1H) overlap	
10	30.0	2.59-2.65 (m, 1H) overlap, 2.06-2.92 (m, 1H)	HMBC 10->8
11	35.8	2.00 (ddd, J = 14.0, 7.7, 3.1 Hz, 1H), 2.37-2.42 (m, 1H) overlap	
12	171.0	-	
13	-	8.08 (d, J = 8.8 Hz, 1H)	TOCSY 13->14,15, HMBC 13->12
14	52.5	4.79 (ddd, J = 9.4, 9.4, 3.8 Hz, 1H)	
15	38.2	2.61-2.66 (m, 1H) overlap, 2.97-3.02 (m, 1H) overlap	HMBC 15->16
16	137.6	-	
17	129.1	7.17-7.19 (m, 2H) overlap	HMBC 17->19
18	127.4	7.17-7.20 (m, 2H) overlap	HMBC 18->16
19	125.7	7.12-7.15 (m, 1H) overlap	HMBC 19->17
20	172.0	-	
21	-	8.62 (d, J = 7.6 Hz, 1H)	TOCSY 21->22,23, HMBC 21->20
22	54.2	4.67 (ddd, J = 10.6, 7.6, 4.6 Hz, 1H)	
23	26.0	3.02 (dd, J = 14.9, 10.6 Hz, 1H), 3.10 (dd, J = 14.9, 4.6 Hz, 1H) overlap	HMBC 23->24,25
24	105.3	-	
25	133.9	-	
26	-	10.64 (s, 1H)	HMBC 26->24,25,33
27	133.3	-	
28	109.9	7.11 (d, J = 8.3 Hz, 1H) overlap	HMBC 28->30,33
29	121.6	6.83 (dd, J = 8.3, 1.3 Hz, 1H)	HMBC 29->32,31
30	126.3	-	
31	21.1	2.39 (s, 3H)	HMBC 31->29,30,32
32	117.6	7.30 (br s, 1H)	HMBC 32->29,31
33	129.0	-	
34	171.9	-	
35	-	7.66 (d, J = 8.5 Hz, 1H)	HMBC 35->34
36	57.5	4.16 (dd, J = 8.5, 3.1 Hz, 1H)	HMBC 36->40
37	66.0	4.08-4.13 (m, 1H) overlap	
38	19.7	1.08 (d, J = 6.4 Hz, 3H)	HMBC 38->36,37
39	-	not observed	
40	171.8	-	
41	-	6.98-7.00 (m, 1H) overlap, 7.10-7.12 (m, 1H) overlap	HMBC 41->40, TOCSY 41->41'

16

	13C	1H	key correlation
1	32.0	3.82-3.91 (m, 2H)	
2	128.9	6.37 (dt, J = 16.0, 5.4 Hz, 1H)	HMBC 2->4,32, COSY 2->1
3	129.6	6.07 (d, J = 16.0 Hz, 1H)	HMBC 3->5,9
4	136.7	-	
5	123.0	7.02 (d, J = 8.0 Hz, 1H)	
6	127.7	7.09 (dd, J = 8.0, 8.0 Hz, 1H) overlap	HMBC 6->4,8
7	126.8	6.94 (d, J = 8.0 Hz, 1H) overlap	
8	141.1	-	
9	125.3	7.07 (br s, 1H) overlap	
10	29.7	2.54-2.59 (m, 1H) obscured, 2.91-2.97 (m, 1H) overlap	HMBC 10->7,9,12
11	35.9	2.09-2.15 (m, 1H), 2.33-2.39 (m, 1H) overlap	HMBC 11->8,12
12	170.6	-	
13	-	7.94 (d, J = 9.1 Hz, 1H)	HMBC 13->12
14	52.5	4.80-4.88 (m, 1H)	
15	37.9	2.66-2.72 (m, 1H), 2.92-2.97 (m, 1H) overlap	HMBC15->16,17
16	137.7	-	
17	128.8	7.23-7.24 (m, 2H) overlap	HMBC 17->15
18	127.5	7.23-7.25 (m, 2H) overlap	
19	125.6	7.14-7.19 (m, 1H)	
20	171.0	-	
21	-	8.44-8.48 (m, 1H)	HMBC 21->20
22	53.4	4.63-4.70 (m, 1H)	
23	29.5	3.14-3.19 (m, 1H), 3.39 (dd, J = 13.9, 9.9 Hz, 1H)	HMBC 23->24
24	109.5	-	
25	123.3	7.06-7.08 (m, 1H) overlap	HMBC 25->24,27,33
26	-	10.66 (br s, 1H)	COSY 26->25, HMBC 26->24,25,27,33
27	135.4	-	
28	109.2	7.12 (d, J = 8.3 Hz, 1H) overlap	HMBC 28->30,33
29	123.6	6.91 (d, J = 8.3 Hz, 1H)	HMBC 29->27,31,32
30	125.2	-	
31	18.4	2.34 (s, 3H)	HMBC 31->29,30,32
32	128.4	-	
33	126.0	-	
34	170.7	-	
35	-	7.59 (d, J = 8.4 Hz, 1H)	
36	57.6	4.13 (dd, J = 8.4, 3.0 Hz, 1H)	HMBC 36->40
37	65.8	4.04-4.09 (m, 1H)	
38	19.6	1.05 (d, J = 6.2 Hz, 1H)	COSY 38->37, HMBC 38->36,37
39	-	not observed	
40	171.6	-	
41	-	6.87 (br s, 1H), 6.95 (br s, 1H) overlap	

	13C	1H	key correlation
1	39.3	2.51-2.57 (m, 1H), 2.80 (dd, J = 13.7, 10.0 Hz, 1H)	HMBC 1->24,25
2	126.3	6.05-6.14 (m, 1H)	
3	132.1	6.63 (d, J = 15.8 Hz, 1H)	TOCSY 3->2,1 HMBC 3->4
4	136.9	- · · · · · · · · · · · · · · · · · · ·	
5	124.3	7.04 (br d, J = 7.6 Hz, 1H)	HMBC 5->3,7
6	128.2	7.15 (dd, J = 7.6, 7.6 Hz, 1H)	HMBC 6->4,8
7	126.8	6.99 (br d, J = 7.6 Hz, 1H)	HMBC 7->5
8	140.5	-	
9	125.0	7.18 (br s, 1H)	
10	30.6	2.62-2.69 (m, 1H), 2.82-2.90 (m, 1H)	
11	37.1	2.01-2.08 (m, 1H), 2.32-3.39 (m, 1H)	HMBC 11->8 TOCSY 11->10,10',11'
12	171.1	-	
13	-	7.96 (d, J = 8.8 Hz, 1H)	HMBC 13->12
14	49.8	5.34 (ddd, J = 8.8, 8.8, 4.8 Hz, 1H)	HMBC 14->20
15	38.3	2.89 (dd, J = 13.9, 8.8 Hz, 1H), 3.09 (dd, J = 13.9, 4.8 Hz, 1H)	HMBC 15->16,17 TOCSY 14->15,13
16	136.5	-	
17	129.8	7.39 (d, J = 7.4 Hz, 2H)	TOCSY 17->18,19
18	127.8	7.28 (dd, J = 7.4, 7.4 Hz, 2H)	HMBC 18->16
19	126.0	7.20-7.24 (m, 1H)	HMBC 19->17
20	171.3	-	
21	-	-	
22	61.6	4.43 (dd, J = 10.4, 5.7 Hz, 1H)	HMBC 22->23,24
23	40.2	2.00-2.07 (m, 1H), 2.50-2.57 (m, 1H)	
24	57.3	-	
25	81.4	6.11 (s, 1H)	HMBC 25->22,24
26	-	not detected	
27	144.9	-	
28	109.9	6.45 (d, J = 7.8 Hz, 1H)	HMBC 28->33
29	128.0	6.84 (dd, J = 7.8, 0.9 Hz, 1H)	HMBC 29->32
30	127.3	-	
31	20.4	2.21 (s, 1H)	HMBC 31->28,30,32
32	122.0	6.91-6.93 (m, 1H)	HMBC 32->27,29
33	135.5	-	
34	170.4	-	
35	-	7.51 (d, J = 7.8 Hz, 1H)	
36	57.2	3.84 (dd, J = 7.8, 2.5 Hz, 1H)	HMBC 36->40
37	65.2	3.91-3.97 (m, 1H)	HMBC 37->40
38	19.3	0.78 (d, J = 6.6 Hz, 3H)	COSY 38->37 TOCSY 38->35,36,37
39	-	not detected	
40	171.5	-	
41	-	6.68 (br s, 1H), 7.20 (br s, 1H)	HMBC 41->40 TOCSY 41->41'

Acyclic Cinnamyl Carbonate 7: Synthesized according to Procedure A. Workup and chromatography conditions were the same as for linear precursor **6**. White Solid. 62% yield. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 10.97 (d, *J* = 2.2 Hz, 1H), 8.29 (d, *J* = 7.8 Hz, 1H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.8 (d, *J* = 8.6 Hz, 1H), 7.41 (dd, *J* = 10.2, 2.4 Hz, 1H), 7.32 (dd, *J* = 8.8, 4.5 Hz, 1H), 7.29 (d, *J* = 2.2 Hz, 1H), 7.26 (br. d, *J* = 7.8 Hz, 1H), 7.23 (br. s, 1H), 7.21 (br. s, 1H), 7.2 (br. s, 1H), 7.14-7.18 (m, 4H), 7.09 (br. s, 1H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.9 (ddd, *J* = 9.0, 9.0, 2.3 Hz, 1H), 6.63 (d, *J* = 15.7 Hz, 1H), 6.33 (dt, *J* = 15.9, 6.2 Hz, 1H), 4.67 (dd, *J* = 6.3, 1.1 Hz, 2H), 4.63 (ddd, *J* = 8.6, 8.0, 4.9 Hz, 1H), 4.54 (ddd, *J* = 9.9, 8.4, 4.0 Hz, 1H), 4.16 (dd, *J* = 8.7, 3.2 Hz, 1H), 4.08 (dddd, *J* = 6.2, 6.2, 6.2, 3.4 Hz, 1H), 3.17 (dd, *J* = 15.0, 4.6 Hz, 1H), 3.02 (dd, *J* = 15.3, 9.3 Hz, 1H), 2.97 (dd, *J* = 13.7, 4.0 Hz, 1H), 2.71 (dd, *J* = 13.9, 16.0 Hz, 1H), 2.65 (app t, *J* = 7.9 Hz, 2H), 2.23-2.38 (m, 2H), 1.4 (s, 9H), 1.02 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (DMSO-*d*₆, 126 MHz): δ 172.0, 171.5, 171.4, 171.3, 157.6, 155.8, 152.8, 141.7, 137.9, 135.8, 133.4, 132.7, 129.1, 128.6, 127.9, 127.6, 127.5, 126.4, 126.1, 125.9, 124.1, 123.2, 112.14, 112.06, 110.2, 110.2, 109.0, 108.8, 103.3, 103.1, 81.5, 66.9, 66.3, 58.0, 53.7, 53.5, 37.4, 36.7, 30.9, 27.3, 19.9. MS *m*/z 758.8 (calc'd: C₄₁H₄₈FN₅O₈, [M+H]⁺, 758.4).

	13C	1H	key correlation
1	46.6	4.95 (ddd, J = 16.4, 4.7, 1.6 Hz, 1H), 4.83 (dd, J = 16.4,6.9 Hz, 1H)	TOCSY1->2,3 HMBC 1->2,3,25
2	125.5	6.07 (ddd, J = 15.8, 7.1, 4.5 Hz, 1H)	HMBC 2->1,3,4
3	131.0	6.22 (br d, J = 15.9 Hz, 1H)	
4	135.7	-	
5	124.7	7.11 (m, 1H) overlap	HMBC 5->9,7
6	127.8	7.15 (m, 1H) overlap	HMBC 6->4,8
7	128.2	6.96 (m, 1H) overlap	
8	142.0	-	
9	124.5	6.92 (m, 1H) overlap	HMBC 9->7
10	29.1	2.46 (m, 1H) overlap, 2.95 (m, 1H) overlap	HMBC 10->7,8,9,11,12
11	35.5	2.08 (ddd, J = 15.1, 7.2, 2.4 Hz, 1H), 2.40 (ddd, J = 15.2, 11.6, 2.3 Hz, 1H)	TOCSY 11->10
12	170.6	-	
13	-	7.68 (d, J = 8.5 Hz, 1H)	HMBC 13->12 TOCSY 13->14,15
14	52.6	4.71 (m, 1H) overlap	
15	38.9	2.70 (dd, J = 13.6, 8.0 Hz, 1H), 3.02 (dd, J = 13.6, 4.1 Hz, 1H)	HMBC 15->14,16,17,20
16	137.6	-	
17	129.4	7.08 (m, 1H) overlap	HMBC 17->15
18	127.8	7.15 (m, 1H) overlap	HMBC 18->16
19	126.4	7.11 (m, 1H) overlap	HMBC 19->17
20	170.6	-	
21	-	8.60 (d, J = 8.7 Hz, 1H)	TOCSY 21->22,23 HMBC 21->20
22	52.6	4.74 (m, 1H) overlap	HMBC 22->23
23	27.2	3.10 (br. d, J = 14.8 Hz, 1H), 2.90 (m, 1H) overlap	HMBC 23->22,24,25
24	110.8	-	
25	128.1	7.28 (s, 1H)	HMBC 25->1,32,38
26	-	-	
27	132.6	-	
28	110.9	7.45 (dd, J = 7.8, 4.5 Hz, 1H)	HMBC 28->32 TOCSY 28->29,31
29	109.2	6.94 (m, 1H) overlap	HMBC 29->27,30
30	157.0	-	
31	103.8	7.51 (dd J = 9.9, 2.4 Hz, 1H)	HMBC 31->27,30
32	127.8	-	
33	171.9	-	
34	-	7.96 (d, J = 8.8 Hz, 1H)	TOCSY 34->35,36 HMBC 34->33
35	58.0	4.21 (dd, J = 8.8, 3.1 Hz, 1H)	HMBC 35->36
36	66.4	4.10 (m, 1H)	
37	20.0	1.07 (d, J = 6.4 Hz, 3H)	HMBC 37->35,36
38	-	not observed	
39	172.2	-	
40	-	7.2 (br. s. 2H)	HMBC 40->39

	13C	1H	key correlation
1	30.0	3.57 (dd, J = 15.3, 7.2 Hz, 1H), 3.80 (dd, J =15.3, 6.3 Hz, 1H)	TOCSY 1->2,3 HMBC 1->2,3,24,25
2	127.6	6.07 (dt, J = 15.6, 6.9 Hz, 1H)	HMBC 2->1,4
3	131.0	6.43 (d, J = 15.9 Hz, 1H)	HMBC 3->1,4,5,9
4	136.8	-	
5	123.6	7.10 (m, 1H) overlap	HMBC 5->9
6	127.9	7.13 (m, 1H) overlap	HMBC 6->4
7	124.0	7.10 (m, 1H) overlap	HMBC 7->5,9
8	141.2	-	
9	125.0	6.98 (br. s, 1)	HMBC 10->8,9 TOCSY 10->11
10	30.4	2.62 (m, 1H) overlap, 2.88 (ddd, J = 13.7, 11.0, 5.6 Hz, 1H)	HMBC 11->8,12
11	35.8	1.98 (ddd, J = 14.0, 7.6, 3.1 Hz, 1H), 2.40 (ddd, J = 13.6, 11.0, 2.6 Hz, 1H)	
12	171.2	-	
13	-	8.07 (d, J - 8.9 Hz, 1H)	COSY 13->14 TOCSY 13->14,15,15' HMBC 13->12
14	52.7	4.75 (ddd, J = 9.3, 9.5, 3.8 Hz, 1H)	HMBC 14->15
15	38.0	2.98 (m, 1H) overlap , 2.65 (m, 1H) overlap	HMBC 15->14,16,17
16	138.1	-	
17	129.5	7.16 (m, 1H) overlap	HMBC 17->18
18	127.7	7.17 (m, 1H) overlap	HMBC 18->16,17
19	128.0	7.14 (m, 1H) overlap	
20	172.1	-	
21	-	8.59 (d, J = 7.8 Hz, 1H)	COSY 21->22 TOCSY 21->22,23 HMBC 21->20
22	54.1	4.66 (ddd, J = 10.2, 7.6, 5.1 Hz, 1H)	HMBC 22->23
23	26.2	3.07 (dd, J - 15.1, 5.2 Hz, 1H), 2.97 (m, 1H) overlap	HMBC 23->22,24,32
24	106.4	-	
25	136.4	-	
26	-	10.91 (s, 1H)	HMBC 26->24,25,27,32
27	131.8	-	
28	111.2	7.18 (m, 1H) overlap	HMBC 28->30 TOCSY 28->29
29	108.4	6.81 (ddd, J = 9.3, 9.3, 2.5 Hz, 1H)	TOCSY 29->28,31 HMBC 29->27,30
30	156.6	-	
31	103.4	7.24 (dd, J = 10.3, 2.7 Hz, 1H)	HMBC 31->27,30
32	129.0	-	
33	172.1	-	
34	-	7.73 (d, J = 8.7 Hz, 1H)	HMBC 34->33 TOCSY 34->35,36,37
35	57.8	4.13 (dd, J = 8.7, 2.9 Hz, 1H)	HMBC 35->36,39
36	66.2	4.07 (m, 1H)	
37	19.5	1.05 (d, J = 6.4 Hz, 3H)	
38	-	4.96 (d, J = 4.9 Hz, 1H)	
39	172.0	-	
40	-	6.93 (m, 1H) overlap	HMBC 40->39

	13C	1H	key correlation
1	27.8	3.76 (dd, J = 16.6, 5.9 Hz, 1H), 3.90 (br. d, J = 16.0 Hz, 1H)	TOCSY1->2,3 HMBC 1->2,3,31
2	130.0	6.07 (d, J = 15.8 Hz, 1H)	HMBC 2->1,31
3	128.8	6.35 (dt, J = 16.0, 5.5 Hz, 1H)	HMBC 3->1,5,9,30,32
4	136.5	-	
5	122.9	7.00 (m, 1H) overlap	HMBC 5->9
6	127.8	7.06 (m, 1H) overlap	HMBC 6->4,8
7	127.1	7.06 (m, 1H) overlap	HMBC 7->9
8	141.3	-	
9	125.8	6.99 (br. s, 1H)	HMBC 9->5,7
10	29.6	2.91 (m, 1H) overlap, 2.52 (m, 1H) overlap	HMBC 10->7,8,9,11,12
11	35.7	2.32 (app t, 13.5 Hz, 1H), 2.08 (m, 1H) overlap	HMBC 11->8,12
12	170.7	-	
13	-	8.1 0 (d, J = 8.9 Hz, 1H)	HMBC 13->12 TOCSY 13->14,15,15'
14	52.6	4.82 (ddd, J = 9.7, 9.7, 4.1 Hz, 1H)	HMBC 14->15
15	38.0	2.89 (m, 1H) overlap, 2.64 (dd, J = 13.3, 10.5 Hz, 1H)	HMBC 15->14,16,17
16	137.7	-	
17	128.8	7.21 (m, 1H) overlap	
18	127.6	7.21 (m, 1H) overlap	
19	127.6	7.15 (m, 1H) overlap	HMBC 19->17
20	171.1	-	
21	-	8.62 (d, J = 6.6 Hz, 1H)	HMBC 21->20 TOCSY 21->22,23
22	53.2	4.66 (m, 1H)	
23	29.1	3.30 (m, 1H) overlap, 3.06 (br. d, J = 13.4 Hz, 1H)	HMBC 23->22,24
24	110.6	-	HMBC 25->27
25	125.8	7.13 (m, 1H) overlap	HMBC 26->24,25,27
26	-	10.96 (br. s, 1H)	
27	133.0	-	
28	110.0	7.18 (m, 1H) overlap	
29	108.8	6.89 (m, 1H) overlap	HMBC 29->27,30,31
30	154.5	-	
31	115.6	-	
32	125.8	-	
33	170.7	-	
34	-	7.74 (d, J = 8.3 Hz, 1H)	HMBC 34->33 TOCSY 34->35,36,37
35	57.8	4.08 (dd, J = 8.7, 3.0 Hz, 1H)	
36	65.8	4.02 (m, 1H)	
37	19.8	0.99 (d, J = 6.4 Hz, 3H)	HMBC 37->35,36
38	-	4.9 (d, J = 5.1 Hz, 1H)	HMBC 38->35,36,37
39	171.7	-	
40	-	7.03 (m, 1H) overlap	HMBC 40->39

	13C	1H	key correlation
1	39.0	2.51-2.57 (m, 1H), 2.79-2.85 (m, 1H)	HMBC 1->24
2	125.0	6.09 (ddd, J = 15.8, 9.7, 6.2 Hz, 1H)	TOCSY 2->3,1
3	132.6	6.62 (d, J = 15.8 Hz, 1H)	HMBC 3->4
4	136.9	-	
5	124.2	7.05 (br d, J = 8.5 Hz, 1H)	HMBC 5->9,7
6	127.9	7.15 (dd, J = 8.5, 7.4 Hz, 1H)	HMBC 6->4,8
7	127.0	6.99 (br d, J = 7.4 Hz, 1H)	
8	140.5	-	
9	124.9	7.18 (br s, 1H)	HMBC 9->3
10	30.9	2.62-2.67 (m, 1H), 2.85-2.90 (m, 1H)	
11	37.4	2.05 (ddd, J = 13.5, 6.9, 3.8 Hz, 1H), 2.35 (ddd, J = 13.5, 10.8, 3.1 Hz, 1H)	
12	171.4	-	
13	-	7.96 (d. J = 8.8 Hz. 1H)	HMBC 13->12
14	50.1	5.33 (ddd. J = 8.9. 8.8. 4.8 Hz. 1H)	HMBC 14->20
15	38.6	2.82-2.87 (m. 1H), 3.08 (dd, J = 14.0, 4.8 Hz, 1H)	HMBC 15->16.17 TOCSY 15->14.13
16	136.7	-	
17	129.9	7.38 (d. J = 7.4 Hz. 2H)	HMBC 17->19
18	127.8	7.27 (dd, J = 7.4, 7.4 Hz, 2H)	HMBC 18->16
19	126.1	7 20-7 23 (m. 1H)	HMBC 18->17
20	171.2	-	
21	-	-	
22	61.5	4 48 (dd. J. =10.3, 5.5 Hz, 1H)	HMBC 22->24 COSY 22->23
23	40.0	2 10 (dd J = 13.6.55 Hz 1H) 2 51-2 55 (m 1H)	HMBC 23->24
24	57.6	-	
25	81.6	6 16 (br.s. 1H)	COSY 25->26 HMBC 25->27
26	-	6.32 (br.s. 1H)	
27	143.8	-	
28	110.5	6.51 (dd .IHH = 8.6 Hz .IHF = 4.6 Hz .1H)	HMBC 28->30 32
29	113.7	6.84 (ddd, JHF = 9.0 Hz, JHH = 8.6, 2.7 Hz, 1H)	HMBC 29->27 30
<u> </u>	156.8 (d		
30	.l≈240 Hz)	_	
31	109.3	7.02 (dd. JHF = 8.4 Hz. JHH = 2.7 Hz. 1H)	HMBC 31->27.30
32	136.9	-	
33	170.4	-	
34		749(d = 80Hz = 1H)	HMBC 34->33
35	57.5	3.86 (ddd . l = 8.0, 2.6 Hz, 1H)	HMBC 35->39
36	65.6	3 90-3 96 (m 1H)	
37	10.0	0.77 (d. l = 6.6 Hz 3H)	COSY 37->36 TOCSY 37->36 35 34
30		not detected	
30	171.5		
10	171.5	[- [673/brs 1H] 710/brs 1H]	
L 40	-		10001 40-240

Acyclic Cinnamyl Carbonate 10: Synthesized according to Procedure B. White Powder. ¹H NMR (DMSO- d_6 , 500 MHz): δ 10.98 (d, J = 2.3 Hz, 1H), 8.96 (d, J = 1.2 Hz, 1H), 8.24 (d, J = 7.9 Hz, 1H), 8.06-8.16 (m, 4H), 7.74 (t, J = 5.7 Hz, 1H), 7.39 (dd, J = 16.0, 2.5 Hz, 1H), 7.36 (br. s, 1H), 7.23-7.34 (m, 7H), 7.09-7.14 (m, 2H), 6.87-6.93 (m, 2H), 6.65 (d, J = 15.9 Hz, 1H), 6.35 (dt, J = 16.0, 6.2 Hz, 1H), 4.68 (dd, J = 6.5, 1.0 Hz, 2H), 4.52-4.60 (m, 2H), 4.18-4.28 (m, 2H), 4.16 (ddd, J = 7.9, 5.6 Hz, 1H), 3.03-3.17 (m, 4H), 2.94 (dd, J = 15.9, 15.9, 9 Hz, 2H), 2.75-2.84 (m, 2H), 2.39-4.29 (m, 2H), 2.04-2.17 (m, 2H), 1.80-1.91 (m, 1H), 1.65-1.79 (m, 2H), 1.45-1.55 (m, 2H), 1.43 (s, 9H), 1.15 (d, J = 7 Hz, 3H). ¹³C NMR (DMSO- d_6 , 126 MHz): δ 174.1, 173.1, 172.7, 171.6, 171.4, 171.3, 169.8, 157.6, 156.8, 155.8, 152.8, 141.7, 135.8, 133.7, 133.4, 132.7, 129.3, 129.1, 128.6, 128.0, 127.5, 127.4, 126.4, 125.9, 124.2, 123.3, 117.7, 116.8, 115.3, 115.2, 112.2, 112.1, 109.9, 109.9, 81.5, 66.9, 55.0, 53.4, 52.4, 52.2, 51.5, 48.3, 36.6, 31.3, 30.8, 29.1, 27.3, 25.0, 17.9. MS *m*/z 1002.7 (calc'd: C₄₈H₆₄N₁₃O₁₀, [M+H]⁺, 1002.5).

MS m/z 884.4 (calc'd: C₄₅H₄₂FN₆O₅, [M+H]⁺, 884.4).

11c

MS *m*/z 884.4 (calc'd: $C_{45}H_{42}FN_6O_5$, [M+H]⁺, 884.4).

11a

Column: Waters Sunfire™	<u>%B</u>	Column: Waters XBridge™ C ₁₈ .	Time	%В	method B:	Time	%В
C ₁₈ , 4.6x250 mm, 5 μm	10	19x250mm, 5µm.	0	30	Same as A	0	30
Solvent A: $H_2O + 0.1\%$ TFA 2	25	Solvent A: $H_2O + 0.1\%v$ TFA	2	30	Repurification of	2	30
Flow rate: 1.00 mL/min 17	64	Flow rate: 18.00 ml/min	30	100	11a, 11c, & 11u	30	55

	13C	1H	key correlations
1	47.1	4.83 (dd, J 15.5, 6.4 Hz, 1H), 4.99 (dd, J = 15.5, 5.7 Hz, 1H)	HMBC 1->41,43
2	125.4	6.37 (ddd, J = 15.7, 6.4, 5.7 Hz, 1H)	HMBC 2->4
3	131.9	6.65 (br d $J = 15.7$ Hz 1H)	TOCSY 3->2 1
4	135.9	-	
5	125.1	7 15-7 20 (m. 1H) overlan	
	120.1	7.10-7.20 (m, 1H) overlap	
	120.0	7.19-7.24 (III, III) Overlap	
	127.8	7.09 (Drd, J = 7.1 Hz, 1H)	
8	141.6		
9	125.6	7.25 (br s, 1H) overlap	
10	30.7	2.73-2.86 (m, 2H)	HMBC 10->8,12
11	36.3	2.36-2.51 (m, 2H)	HMBC 11->8,12
12	172.6	-	
13	-	8.24 (d, J = 6.4 Hz, 1H)	HMBC 13->12
14	49.6	7.94-7.98 (m. 1H)	HMBC 14->16
15	17.3	1.14 (d. J = 7.2 Hz. 3H)	TOCSY 15->14.13
16	173.2	- · · · · · · · · · · · · · · · · · · ·	
17	-	7 81-7 88 (m 1H)	HMBC 17->16
10	10.6	4 08 4 16 (m, 1H)	
10	27.4	1.00-4.10 (m, 1H) 170 1.97 (m, 1H)	
19	27.4	1.05-1.74 (III, 1Π), 179-1.07 (III, 1Π)	
20	31	1.95-2.11 (m, 2H)	HMBC 20->21
21	174.1		
22	-	6.81 (br s, 1H), 7.30 (br s, 1H)	HMBC 22->21
23	171.9	-	
24	-	8.12 (d, J = 7.6 Hz, 1H)	HMBC 24->23
25	51.4	4.55-4.62 (m, 1H) overlap	HMBC 25->31
26	26.8	2.92-3.01 (m, 1H) overlap, 3.06-3.12 (m, 1H)	
27	129.6	-	
28	116.9	7.25 (s, 1H) overlap	HMBC 28->29
29	134.1	8.95 (br s. 1H)	HMBC 29->27.28
30	-	Not detected	
31	170 7	-	
32	-	802(d = 72Hz 1H)	HMBC 32->31
33	53.3	4 52-4 59 (m 1H)	HMBC 33->34
24	27.2	(1, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	
34	27.3	2.92-3.01 (III, 1H) Ovenap, 3.12-3.22 (III, 1H)	
35	109.9	-	
30	128		
37	103.9	7.45 (dd, JHF = 9.9 Hz, JHH = 2.3 Hz, 1H)	HMBC 37->41
	157.1 (d, J ⊧		
38	220Hz)		
20	100 /		HMBC 30->//1
10	111 1	7.48 (dd HH = 0.1 Hz HE = 4.5 Hz 14)	
40	111.1	ן י.40 (uu, נוח = א. ו חב, נוח = 4.5 HZ, דוח)	
41	132.8	-	
42	-		
43	128.5	/.2δ (S, 1H)	HMBC 43->1
44	171.9	-	
45	-	8.22 (d, J = 8.1 Hz, 1H)	
46	52.2	4.19-4.28 (m, 1H)	HMBC 46->53
47	29.1	1.54-1.64 m, 1H), 1.69-1.79 (m, 1H)	
48	25	1.43-1.57 (m, 2H)	
49	40.5	3.08-3.15 (m, 2H) overlap	HMBC 49->51
50	-	7.61 (t, J = 5.1 Hz, 1H)	
51	156.9	-	
52	-	14.03-14.44 (m. 3H)	
53	173.4	-	
51		7 15 (brs 1H) 7 31 (brs 1H)	HMBC 54->53
	-	ן ווו , נווו , נווו , ווון , ווון	

	13C	1H [°]	key correlations
1	32.4	3.52 (dd, J = 15.3, 5.6 Hz, 1H), 3.64 (dd, J = 15.3, 6.3 Hz, 1H)	HMBC 1->38,39,40
2	129.3	6.39 (ddd, J = 15.8, 6.3, 5.6 Hz, 1H)	TOCSY 2->1,2 HMBC 2->4
3	129.9	6.30 (br d, J = 15.8 Hz, 1H)	HMBC 3->4
4	137	-	
5	124.1	7.13-7.17 (m, 1H) overlap	HMBC 5->7,9
6	128.3	7.15-7.19 (m, 1H) overlap	HMBC 6->4,8
7	127.3	7.10 (br d. J = 7.2 Hz. 1H)	HMBC 7->9
8	141.1	-	
9	124.5	7.10 (br s, 1H) overlap	HMBC 9->7
10	30.2	2.69-2.76 (m, 1H), 2.77-2.82 (m, 1H) overlap	HMBC 10->7,8,9,12
11	35.4	2.31 (ddd, J = 14.3, 6.5, 6.5 Hz, 1H), 2.44-2.51 (m, 1H) overlap	HMBC 11->8,12
12	171.4	-	
13	-	8.07 (d, J = 7.6 Hz, 1H)	HMBC 13->12
14	47.7	4.12 (gd, J = 7.6, 7.1 Hz, 1H)	HMBC 14->15,16
15	17.6	0.85 (d, J = 7.1 Hz, 3H)	HMBC 15->15,16
16	172.3	-	
17	-	7.86 (d, J = 7.7 Hz, 1H)	HMBC 17->16
18	52.3	3.98 (ddd, J = 8.0, 7.8, 5.4 Hz, 1H)	TOCSY 18->17,18,20 HMBC 18->19,20,23
19	27.3	1.50-1.58 (m, 1H) overlap, 1.70-1.81 (m, 1H) overlap	HMBC 19->20,21
20	30.9	1.91-2.00 (m, 2H)	HMBC 20->21
21	173.9	-	
22	-	6.78 (br s, 1H), 7.22 (br s, 1H) overlap	TOCSY 22->22'
23	171.2	-	
24	-	7.56 (br d, J = 6.8 Hz, 1H)	HMBC 24->23
25	50.7	4.45 (ddd, J = 7.2, 6.8, 5.8 Hz, 1H)	COSY 25->24
26	27.6	2.93 (dd, J = 15.3, 7.6 Hz, 1H), 3.05-3.12 (m, 1H) overlap	HMBC 26->27
27	128.9	-	
28	116.8	7.28 (s, 1H)	HMBC 28->27,30
29	-	not observed	
30	134	8.95 (br s, 1H)	HMBC 30->27,28
31	170	-	
32	-	8.07 (d, J = 7.4 Hz, 1H)	HMBC 32->31
33	53.7	4.60 (ddd, J = 10.9, 7.4, 3.3 Hz, 1H)	TOCSY 33->32,34
34	27.7	2.85 (dd, J = 14.4, 11.1 Hz, 1H), 3.13-3.20 (m, 1H) overlap	HMBC 34->33,35
35	109.8	-	
36	133	-	
37	103.8	7.57 (d, JHF = 11.1 Hz, 1H)	HMBC 37->35,41,38,39
	155.3 (d. J ≅		
38	230Hz)		
30	120 1	-	
40	112.8	7.21 (d. JHF = 6.4 Hz. 1H)	HMBC 40->38
41	133		
42	-	10.83 (d. J = 1.3 Hz. 1H)	HMBC 42->35.36.41
43	125.7	7.17-7.19 (m. 1H) overlap	
44	172.2	- · · · · · · · · · · · · · · · · · · ·	
45	-	8.70 (br d. J = 7.8 Hz. 1H)	HMBC 45->44
46	52.2	4.25 (ddd, J = 7.8, 7.8, 6.1 Hz, 1H)	TOCSY 46->45,47,48,49
47	28.9	1.55-1.63 (m, 1H) overlap, 1.71-1.78 (m, 1H) overlap	HMBC 47->46
48	25.1	1.47-1.57 (m, 2H) overlap	HMBC 48->49
49	40.3	3.09-3.16 (m, 2H) overlap	HMBC 49->47,48,51
50	-	14.17 (br s) overlap	
51	156.9	-	
52	-	14.17 (br s) overlap	
53	173.3	-	
54	-	7.14 (br s, 1H), 7.39 (br s, 1H)	TOCSY 54'->54

	13C	1H	key correlations
1	27.3	3.80-3.91 (m, 2H)	HMBC 1->2,3,37
2	129.2	6.44 (dt. J = 15.8, 6.0 Hz. 1H)	HMBC 2->4.37
3	129.9	6.20 (br d $J = 15.8$ Hz 1H)	HMBC 3->5 9 TOCSY 3->2 1
4	136.9		
5	124.4	6 99-7 02 (m. 1H) overlap	
	129.1	7.13 (dd = 7.6, 7.6 Hz, 1H)	
7	120.1	[7.10, (00.0 - 7.0, 7.0, 12, 11)]	111111111111111111111111111111111111111
	141.0		
	141.4		
9	125.7	[7.35 (DFS, TH)	HMBC 9->3,5,7
10	30.4	[2.76-2.87 (m, 2H)	HMBC 10->8,12
11	35.9	[2.44 (000, J = 14.6, 5.7, 5.7 HZ, 1H), 2.56 (000, J = 14.6, 9.3, 5.8 HZ, 1H)	HMBC 11->8,12
12	172.6		
13	-	[8.11 (d, J = 6.0 Hz, 1H)	HMBC 13->12
14	49.3	[3.97-4.03 (m, 1H)	HMBC 14->16
15	17.3	1.09 (d, J = 7.2 Hz, 3H)	HMBC 15->14 TOCSY 15->14,13
16	173.2	-	
17	-	8.01 (d, J = 7.5 Hz, 1H)	
18	53	4.00-4.06 (m, 1H) overlap	HMBC 18->23
19	26.8	1.62-1.70 (m, 1H) overlap, 1.73-1.82 (m, 1H) overlap	HMBC 19->21,23
20	30.9	1.95-2.03 (m, 1H), 2.04-2.11 (m, 1H)	HMBC 20->21
21	174.1	-	
22	-	6.87(br s, 1H), 7.30 (br s, 1H) overlap	
23	171.9	-	
24	-	8.27 (d. J = 7.9 Hz. 1H)	HMBC 24->23
25	51.5	4.60 (ddd, J = 9.3, 7.9, 5.1 Hz, 1H)	HMBC 25->31
26	26.2	3 03-3 09 (m 1H) overlap 3 22-3 27 (m 1H)	HMBC 26->27 31
27	129.7	-	
28	116.3	7 30 (s. 1H) overlap	HMBC 28->29 TOCSY 28->29
20	13/ 1	8 07 (br.e. 1H)	
30	104.1	Not observed	
21	160.7		
20	109.7		
32	-		
33	54.3	$[4.7]$ (ddu, $J = 6.7, 7.9, 5.0 \exists 2, 1\exists$)	
34	29.3	3.02-3.07 (M, 1H), 3.29 (dd, J = 14.8, 5.3 HZ, 1H)	HMBC 34->44
35	110.4	-	
36	125.7		
37	116.2	-	
	154.0		
38	154.9		
30	100.3		
40	110.5	[0.32] (dd, $[0.11] = 9.712$, $[0.11] = 0.312$, $[11]$	
40	122.4	1.21 (dd, 5111 - 6.9112, 5112 - 4.4112, 111)	
41	155.4		
42	- 105.0	$10.95 (0, J - 2.4 \Pi Z, I \Pi)$	
43	125.9	$(1, 13)(0, 3 = 2.4 \Pi Z, 1\Pi)$	
44	170.7		
45	-	[8.01 (0, J = 7.5 Hz, 1H)	10CSY 45->46,47,48,49,50 HMBC 45->44
46	51.9	14.14 (aaa, J = 8.1, 7.5, 6.0 HZ, 1H)	INNRC 40->53
47	28.3	11.44-1.53 (m, 1H), 1.62-1.70 (m,1 H)	
48	24.4	[1.36-1.45 (m, 2H)	
49	40.2	[3.03-3.09 (m, 2H) overlap	<u> НМВС 49->47,51</u>
50	-	[7.47 (t, J = 5.5 Hz, 1H)	
51	156.6	-	
52	-	13.95-14.37 (m, 3H)	
53	173	-	
54	-	6.92 (br s, 1H) overlap, 6.99 (br s, 1H) overlap	TOCSY 54'->54

	13C	1H	key correlations	
1	32.4	3.52 (dd. J = 15.3. 5.6 Hz. 1H). 3.64 (dd. J = 15.3. 6.3 Hz. 1H)	HMBC 1->38.39.40	
2	129.3	6.39 (ddd, J = 15.8, 6.3, 5.6 Hz, 1H)	TOCSY 2->1,2 HMBC 2->4	
3	129.9	6.30 (br d, J = 15.8 Hz, 1H)	HMBC 3->4	
4	137	-		
5	124 1	7 13-7 17 (m 1H) overlap	HMBC 5->7 9	
6	128.3	7 15-7 19 (m. 1H) overlap	HMBC 6->4 8	
7	127.3	$7 10 (br d_{1}) = 7.2 Hz (H)$	HMBC 7->9	
8	141.1	-		
9	124.5	7 10 (br.s. 1H) overlap	HMBC 9->7	
10	30.2	2 69-2 76 (m 1H) 2 77-2 82 (m 1H) overlan	HMBC 10->7 8 9 12	
11	35.4	2.31 (ddd J = 14.3, 6.5, 6.5 Hz, 1H), 2.44-2.51 (m, 1H) overlap	HMBC 11->8 12	
12	171.4	-		
13	-	8 07 (d. J = 7 6 Hz 1H)	HMBC 13->12	
14	47 7	4 12 (ad J = 76 71 Hz 1H)	HMBC 14->15 16	
15	17.6	0.85 (d, l = 7.1 Hz, 3H)	HMBC 15->15 16	
16	172.3	-		
17	-	I 7 86 (d. J = 7 7 Hz 1H)	HMBC 17->16	
18	52.3	3.98 (dd J = 8.0, 7.8, 5.4 Hz 1H)	TOCSY 18->17 18 20 HMBC 18->19 20 23	
19	27.3	150-158 (m 1H) overlap 170-181 (m 1H) overlap	HMBC 19->20 21	
20	30.9	1 91-2 00 (m 2H)	HMBC 20->21	
21	173.9	-		
22	-	6 78 (br.s. 1H) 7 22 (br.s. 1H) overlap	TOCSY 22->22'	
23	171.2	-		
24	-	7.56 (br d $J = 6.8$ Hz 1H)	HMBC 24->23	
25	50.7	4.45 (ddd, J = 7.2, 6.8, 5.8 Hz, 1H)	COSY 25->24	
26	27.6	2.93 (dd, J = 15.3, 7.6 Hz, 1H), 3.05-3.12 (m, 1H) overlap	HMBC 26->27	
27	128.9	- (····, ····)		
28	116.8	7.28 (s, 1H)	HMBC 28->27,30	
29	-	not observed		
30	134	8.95 (br s, 1H)	HMBC 30->27,28	
31	170	-		
32	-	8.07 (d, J = 7.4 Hz, 1H)	HMBC 32->31	
33	53.7	4.60 (ddd, J = 10.9, 7.4, 3.3 Hz, 1H)	TOCSY 33->32,34	
34	27.7	2.85 (dd, J = 14.4, 11.1 Hz, 1H), 3.13-3.20 (m, 1H) overlap	HMBC 34->33,35	
35	109.8	-		
36	133	-		
37	103.8	7.57 (d, JHF = 11.1 Hz, 1H)	HMBC 37->35,41,38,39	
T	155.3 (d. J ≅			
20	230Hz)			
30	120.1	-		
40	112.8	1 7 21 (d. JHE = 6.4 Hz. 1H)	HMBC 40->38	
41	133	-		
42	-	$10.83 (d_1 J = 1.3 Hz 1H)$	HMBC 42->35 36 41	
43	125 7	7 17-7 19 (m 1H) overlap		
44	172.2	-		
45	-	8 70 (br.d. J = 7 8 Hz 1H)	HMBC 45->44	
46	52.2	4.25 (ddd, J = 7.8, 7.8, 6.1 Hz, 1H)	TOCSY 46->45.47.48.49	
47	28.9	1.55-1.63 (m, 1H) overlap, 1.71-1.78 (m, 1H) overlap	HMBC 47->46	
48	25.1	1.47-1.57 (m, 2H) overlap	HMBC 48->49	
49	40.3	3.09-3.16 (m, 2H) overlap	HMBC 49->47,48,51	
50	-	14.17 (br s) overlap		
51	156.9	-		
52	-	14.17 (br s) overlap		
53	173.3	-		
54	-	7.14 (br s, 1H), 7.39 (br s, 1H)	TOCSY 54'->54	

	13C	1H	key correlations
1	40.7	2.44 (dd, J = 14.3, 8.8 Hz, 1H), 2.68-2.73 (m, 1H)	HMBC 1->35,43
2	124.2	5.91 (ddd, J = 15.7, 8.8, 6.5 Hz, 1H)	COSY 2->1
3	134.2	6.55 (d, J = 15.7 Hz, 1H)	HMBC 3->1,4,5,9
4	136.7	-	
5	122.2	7.04-7.07 (m, 1H) overlap	
6	128.1	7.11-7.16 (m, 1H) overlap	HMBC 6->4,8
7	127.1	7.03-7.07 (m, 1H) overlap	
8	141.3	-	
9	126.2	7.13 (br s, 1H) overlap	HMBC 9->5,7
10	28.7	2.71-2.79 (m, 1H), 2.95-3.01 (m, 1H)	HMBC 10->8,12
11	34.3	2.51-2.57 (m, 1H), 2.59-2.66 (m, 1H)	HMBC 11->8,12
12	171.3	-	
13	-	8.09 (d, J = 8.1 Hz, 1H)	
14	48.3	4.13-4.19 (m, 1H) overlap	HMBC 14->16
15	17.6	1.20 (d, J = 7.3 Hz, 3H)	HMBC 15->14,16 COSY 15->14 TOCSY 15->14,13
16	171.8	-	
17	-	7.00-7.03 (m, 1H) overlap	HMBC 17->16
18	50.6	4.19 (ddd, J = 8.1, 7.8, 5.4 Hz, 1H)	HMBC 18->19,20
19	28.4	1.59-1.70 (m, 1H), 1.70-1.80 (m, 1H)	
20	31	1.99 (ddd, J = 15.5, 9.5, 5.8 Hz, 1H), 2.08 (ddd, J = 15.5, 9.9, 5.7 Hz, 1H)	HMBC 20->21
21	173.5	-	
22	-	6.84 (br s, 1H), 7.31 (br s, 1H)	HMBC 22->21
23	171	-	
24	-	8.77 (d, J = 8.1 Hz, 1H)	TOCSY 24->25,26 HMBC 24->23
25	48.3	5.07 (ddd, J = 9.7, 8.1, 5.2 Hz, 1H)	HMBC 25->31
26	25.6	3.17 (dd, J = 15.9, 5.1 Hz, 1H), 3.00 (dd, J = 15.9, 9.7 Hz, 1H)	HMBC 26->27,28,31
27	128.3	-	
28	117.3	7.50 (s, 1H)	HMBC 28->27,29
29	133.5	8.99 (s, 1H)	HMBC 29->27,28 TOCSY 29->28
30	-	Not detected	
31	170.2	-	
32	-	-	
33	60.1	4.62 (dd, J = 9.3, 4.5 Hz, 1H)	TOCSY 33->34 HMBC 33->1,34,35,44
34	40	2.21 (dd, J = 13.3, 4.5 Hz, 1H), 2.46-2.52 (m, 1H) overlap	HMBC 34->35
35	57.8	-	
36	135	-	
37	109.8	7.10-7.14 (m, 1H)	HMBC 37->38,41
	156.5 (d, J ≅		
38	230 Hz)	-	
39	114	6.81-6.88 (m. 1H) overlap	HMBC 39->38.41
40	109.8	6.84 (dd, JHH = 9.1 Hz, JHF = 2.6 Hz, 1H)	HMBC 40->36.38 COSY 40->39
41	144.8	-	
42	-	Not detected	
43	80.3	6.19 (s. 1H)	
44	169.9	-	
45	-	7.56 (d. J = 8.2 Hz. 1H)	HMBC 45->44
46	50.6	4.04 (ddd, J = 8.2, 8.0, 6.0 Hz, 1H)	COSY 46->47 HMBC 46->44,54
47	29.9	0.97-1.06 (m, 1H) overlap, 1.33-1.42 (m, 1H) overlap	HMBC 47->49
48	24.4	1.00-1.11 (m, 1H) overlap, 1.36-1.46 (m, 1H) overlap	
49	39.8	2.89-2.97 (m, 1H) overlap, 3.03-3.11 (m, 1H)	HMBC 49->51
50	-	7.42 (apt t, J = 5.6 Hz, 1H)	
51	156.3	-	
52	-	14.11 (br s, 3H)	
53	172.4	-	
54	-	7.08 (br s, 1H), 7.40 (br s, 1H)	HMBC 55'->54 TOCSY 55'->55

Acyclic Cinnamyl Carbonate 12: Synthesized according to Procedure A with 0.41 mmol starting template. Purified via trituration with 3x5 mL methanol. Beige Solid. 170 mg (0.202 mmol) 49% yield. ¹H-NMR (500 MHz, DMSO-d₆) δ 10.99 (d, *J* = 1.9 Hz, 1 H), 8.28 (d, *J* = 7.6 Hz, 1 H), 8.09 (d, *J* = 8.4 Hz. 1 H), 7.91 (d, *J* = 7.5 Hz, 1 H), 7.86 (d, *J* = 1.4 Hz, 1 H), 7.79 (d, *J* = 8.2 Hz, 1 H), 6.60 (d, *J* = 16.00 Hz, 1 H), 6.32 (dd, *J* = 15.9, 6.3, 6.3 Hz, 1 H), 5.08 (dd, *J* = 5.3, 5.3 Hz, 1 H), 4.66 (d, *J* = 5.95 Hz, 1 H), 4.60 (ddd, *J* = 9.0, 4.3, 4.3 Hz, 1 H), 4.39 (dd, *J* = 13.3, 6.1 Hz, 1 H), 4.22-4.17 (m, 2H), 3.67-3.55 (m, 2H), 3.09 (dd, *J* = 14.5, 3.8 Hz, 1 H), 3.09 (dd, *J* = 14.5, 3.8 Hz, 1 H), 2.85 (dd, *J* = 15.6, 9.9 Hz, 1 H), 2.68-2.57 (m, 2H), 2.32 (dd, *J* = 8.0, 8.0 Hz, 1 H), 1.81-1.76 (m, 1H), 1.43 (s, 9H), 1.20 (d, *J* = 7.2 Hz, 3 H), 1.17-1.12 (m, 1H), 1.10-1.04 (m, 1H), 0.86 (d, *J* = 6.7 Hz, 3 H), 0.82 (dd, *J* = 7.4, 7.4 Hz, 3 H). ¹³C-NMR (126 MHz, d₆-DMSO) δ 174.1, 171.9, 171.3, 170.3, 170.2, 152.8, 141.7, 135.8, 134.7, 133.4, 129.3, 128.6, 127.9, 126.4, 126.0, 125.7, 124.2, 123.3, 123.2, 121.0, 113.2, 111.0, 110.1, 81.5, 66.9, 61.5, 57.1, 54.9, 53.2, 48.0, 36.9, 36.7, 31.0, 27.4, 24.1, 18.1, 15.4, 11.4. MS *m/z* [M-OCO₂*t*Bu]⁺, 841.3 (calc'd: C₃₅H₄₄BrN₆O₆ [M+H]⁺, 841.1)

16a

MS *m*/z 723.2 (calc'd: C₄₅H₄₂FN₆O₅, [M+H]⁺, 723.2).

16d

Time

0

2.5

24

29

%В

30

30

86

30

Analytical HPLC Method <u>Column</u>: Waters Sunfire™ C₁₈, 4.6x250 mm, 5 μm <u>Solvent A</u>: H₂O + 0.1% TFA <u>Solvent B</u>: ACN + 0.1% TFA Flow rate: 1.00 mL/min

٦ I	Preparative HPLC Method
	<u>Column</u> : Waters Sunfire™
	C ₁₈ , 19x250 mm, 5 μm
	Solvent A: H ₂ O + 0.1% TFA
	Solvent B ACN + 0.1%
	TFA
-	Flow rate: 18.0 mL/min

Time	%B	
0	45	
2	45	
12	50	
13	50	
15	100	

 $\begin{array}{l} Semi-Prep \ HPLC \ Method\\ \hline Column: \ Waters \ XSelect^{**}\\ \hline C_{18}, \ 10x250 \ mm, \ 5 \ \mu m\\ \hline Solvent \ A: \ H_2O + 0.1\% \ TFA\\ \hline Solvent \ B: \ ACN + 0.1\% \ TFA\\ \hline Flow \ rate: \ 6.00 \ mL/min \end{array}$

OH

16e

Time	%В	
0	45	
1	45	
4	50	
10	54	
12	45	

MS m/z 723.3 (calc'd: C₄₅H₄₂FN₆O₅, [M+H]⁺, 723.2).

н

	13C	1H	key correlation
1	-	7.12 ppm (br s) (1H) ; 6.99 ppm (br s) (1H)	HMBC 1 -> 2 / TOCSY 1 -> 1'
2	173.9 ppm	-	HMBC 3 -> 2
3	47.7 ppm	4.21-4.18 ppm (m) (1H)	COSY 5 -> 3
4	17.9 ppm	1.22 ppm (d) J=7.2 Hz (3H)	COSY 3 -> 4
5	-	7.90 ppm (d) J=7.5 Hz (1H)	HMBC 5 -> 6
6	170.1 ppm	-	HMBC 7 -> 6
7	56.9 ppm	4.23-4.21 ppm (m) (1H)	COSY/HMBC 12 -> 7
8	36.4 ppm	1.83-1.78 ppm (m) (1H)	COSY 7 -> 8
9	23.8 ppm	1.46-1.42 ppm (m) (1H) ; 1.18-1.11 ppm (m) (1H)	COSY 8 -> 9
10	11.1 ppm	0.83 ppm (t) J=7.4 Hz (3H)	COSY 9 -> 10
11	15.0 ppm	0.87 ppm (d) J=6.8 Hz (3H)	COSY 8 -> 11
12	-	7.74 ppm (d) J=8.1 Hz (1H)	HMBC 12 -> 13
13	170.5 ppm	-	HMBC 14 -> 13
14	54.6 ppm	4.42 ppm (q) J=6.5 Hz (1H)	COSY 17 -> 14
15	61.3 ppm	3.69 ppm (dd) J=10.3, 5.9 Hz (1H) ; 3.62 ppm (dd) J=10.5, 6.4 Hz (1H)	COSY 14 -> 15
16	-	Not Observed	-
17	-	8.51 ppm (d) J=7.6 Hz (1H)	HMBC 17 -> 18
18	172.7 ppm	-	HMBC 19 -> 18
19	52.6 ppm	4.76 ppm (ddd) J=12.8, 6.2, 4.6 Hz (1H)	COSY 30 -> 19
20	27.7 ppm	3.32 ppm (dd) J=14.3, 3.8 Hz (1H) ; 2.81 ppm (t) J=13.7 Hz (1H)	COSY 19 -> 20
21	109.1 ppm	-	HMBC 20, 28, 29 -> 21
22	126.6 ppm	-	HMBC 26, 29 -> 22
23	122.6 ppm	8.19 ppm (s) (1H)	HMBC 23 -> 21
24	116.2 ppm	-	HMBC 23, 26 -> 24
25	131.6 ppm	-	HMBC 23, 42 -> 25
26	115.4 ppm	7.33 ppm (s) (1H)	TOCSY 23 -> 26
27	136.5 ppm	-	HMBC 23, 28, 29 -> 27
28	-	10.93 ppm (d) J=1.7 Hz (1H)	
29	126.5 ppm	7.23 ppm (d) J= 1.7 Hz (1H)	COSY/TOCSY 28 -> 29
30	-	7.52 ppm (d) J=6.4 Hz (1H)	HMBC 30 -> 31
31	171.7 ppm	-	HMBC 32, 33 -> 31
32	31.3 ppm	2.25 ppm (ddd) J=16.9, 5.6, 1.9 Hz (1H) ; 2.15 ppm (ddd) J=16.9, 12.7, 1.8 Hz (1H)	COSY/TOCSY 33 -> 32
33	25.9 ppm	3.02 ppm (dd) J=16.5, 12.6 Hz (1H) ; 2.45 ppm (dd) J=16.4, 5.6 Hz (1H)	HMBC 33 -> 35, 39
34	141.0 ppm	-	HMBC 32, 33, 36 -> 34
35	126.4 ppm	6.83 ppm (d) J=7.4 Hz (1H)	TOCSY 37 -> 35
36	127.6 ppm	7.05 ppm (t) J=7.7 Hz (1H)	COSY/TOCSY 37 -> 36
37	119.2 ppm	7.17 ppm (d) J=7.7 Hz (1H)	HMBC 37 -> 40, 41 (slight)
38	135.2 ppm	-	HMBC 36 -> 38
39	128.0 ppm	5.52 ppm (s)	TOCSY 37 -> 39
40	132.1 ppm	3.70 ppm (d) J=16.0 Hz (1H)	
41	127.9 ppm	6.30 ppm (dt) J=16.2, 3.9 Hz (1H)	
42	37.7 ppm	[3.79 ppm (ddd) J= 17.0, 4.6, 1.5 Hz (1H) ; 3.43 ppm (dt) J=16.7, 2.3 Hz (1H)	COSY 41 -> 42

	13C	1H	key correlation
1	-	7.20 ppm (br s) (1H) ; 6.96 ppm (br s) (1H)	TOCSY 1 -> 1'
2	173.9 ppm	-	HMBC 3 -> 2
3	47.8 ppm	4.22 ppm (pentet) J=7.1 Hz (1H)	COSY 3 -> 4
4	18.2 ppm	1.21 ppm (d) J=7.2 Hz (3H)	
5	-	7.90 ppm (d) J=7.5 Hz (1H)	COSY 5 -> 3 ; slight HMBC 5 -> 3
6	170.2 ppm	-	HMBC 5 -> 6
7	56.8 ppm	4.22 ppm (dd) J=8.6, 6.6 Hz (1H)	TOCSY 7 -> 11
8	36.8 ppm	1.77-1.73 ppm (m) (1H)	COSY 7 -> 8
9	23.8 ppm	1.46-1.42 ppm (m) (1H) ; 1.13 -1.08 ppm (m) (1H)	COSY 8 -> 9
10	11.2 ppm	0.82 ppm (dd) J=7.5, 7.5 Hz (3H)	COSY 9 -> 10
11	15.2 ppm	0.85 ppm (d) J=7.0 Hz (3H)	COSY 8 -> 11
12	-	7.70 ppm (d) J=8.7 Hz	COSY 12 -> 7 ; slight HMBC 12 -> 7
13	169.1 ppm	-	HMBC 12 -> 13
14	52.5 ppm	4.60 ppm (ddd) J=7.5, 7.5, 3.6 Hz (1H)	COSY 14 -> 15
15	68.7 ppm	3.75 ppm (dd) J=11.3, 7.1 Hz (1H) ; 3.66 ppm (dd) J=11.1, 3.4 Hz (1H)	HMBC 15 -> 42
16	-	-	-
17	-	8.82 ppm (d) J=7.9 Hz (1H)	COSY 17 -> 14
18	172.0 ppm	-	HMBC 17 -> 18
19	51.8 ppm	5.05 ppm (ddd) J=9.6, 9.6, 9.6 Hz (1H)	COSY 30 -> 19
20	29.1 ppm	2.97 ppm (dd) J=14.6, 4.3 Hz (1H) ; 2.80 ppm (dd) J=14.2, 9.9 Hz (1H)	HMBC 20 -> 21 ; COSY/TOCSY 19 -> 20
21	110.2 ppm	-	HMBC 28, 29 -> 21
22	129.3 ppm	-	HMBC 26, 29 -> 22
23	121.0 ppm	7.85 ppm (d) J=1.9 Hz	HMBC 23 -> 27
24	110.9 ppm	-	HMBC 23, 26 -> 24
25	123.2 ppm	7.14 ppm (dd) J=8.4, 1.7 Hz (1H)	HMBC 25 -> 27 / 23 -> 25
26	113.1 ppm	7.27 ppm (d) J=8.7 Hz (1H)	TOCSY 23 -> 26
27	134.8 ppm	-	HMBC 29 -> 27
28	-	10.91 ppm (d) J=2.1 Hz (1H)	Indole
29	125.3 ppm	7.17 ppm (d) J=2.5 Hz (1H)	COSY/TOCSY 28 -> 29
30	-	8.16 ppm (d) J=9.4 Hz	HMBC 30 -> 31
31	171.2 ppm	-	HMBC 33 -> 31
32	36.6 ppm	2.41-2.36 ppm (m) (1H) ; 2.07 ppm (ddd) J=13.9, 7.1, 3.2 Hz (1H)	COSY/TOCSY 33 -> 32
33	30.2 ppm	3.02-2.97 ppm (m) (1H) ; 2.63-2.60 ppm (m) (1H)	HMBC 35, 39 -> 33
34	141.6 ppm	-	HMBC 33 -> 34
35	127.8 ppm	7.01 ppm (d) J=7.9 Hz (1H)	TOCSY 39 -> 35
36	123.2 ppm	7.16 ppm (dd) J=7.3, 7.3 Hz (1H)	HMBC 36 -> 38
37	125.3 ppm	7.02 ppm (d) J=8.1 Hz (1H)	HMBC 37 -> 40
38	135.9 ppm	-	HMBC 41 -> 38
39	123.9 ppm	7.26 ppm (br s) (1H)	HMBC 40 -> 39
40	131.3 ppm	6.47 ppm (d) J=15.8 (1H)	
41	127.3 ppm	6.04 ppm (ddd) J=15.9, 7.0, 5.6 Hz (1H)	
42	69.6 ppm	4.31 ppm (ddd) J=14.0, 5.1, 1.3 Hz (1H); 3.99 ppm (dd) J=14.1, 7.0 Hz (1H)	COSY 41 -> 42 ; HMBC 15 -> 42 / 42 -> 15

	13C	1H	key correlation
1	-	7.14 ppm (br s) (1H) ; 6.97 ppm (br s) (1H)	TOCSY 1 -> 1'
2	174.1 ppm	-	HMBC 3 -> 2
3	47.6 ppm	4.21 ppm (dd) J=7.3, 7.3 Hz (1H)	COSY 3 -> 4
4	18.0 ppm	1.21 ppm (d) J=7.1 Hz (3H)	
5	-	7.93 ppm (d) J=7.6 Hz (3H)	COSY 5 -> 3
6	170.2 ppm	-	HMBC 5 -> 6
7	56.6 ppm	4.23 ppm (dd) J=8.3, 6.1 Hz (1H)	TOCSY 7 -> 8
8	36.4 ppm	1.83-1.79 ppm (m) (1H)	COSY 8 -> 11 / TOCSY 8 -> 10
9	23.6 ppm	1.48-1.44 ppm (m) (1H)	COSY 9 -> 10
10	11.2 ppm	0.84 ppm (dd) J=7.4, 7.4 Hz (3H)	
11	15.1 ppm	0.88 ppm (d) J=6.8 Hz (3H)	
12	-	7.74 ppm (d) J=8.3 Hz (1H)	COSY/TOCSY 12 -> 7
13	170.3 ppm	-	HMBC 12 -> 13
14	54.7 ppm	4.42 ppm (dd) 13.5, 6.1 Hz (1H)	HMBC 14 -> 13
15	61.1 ppm	3.71-3.64 ppm (m) (2H)	COSY 14 -> 15
16	-	Not Observed	-
17	-	8.51 ppm (d) J=7.5 Hz (1H)	HMBC 17 -> 14
18	172.7 ppm	-	HMBC 17 -> 18
19	53.1 ppm	4.51 ppm (ddd) J=12.4, 8.5, 3.4 Hz	COSY 30 -> 19
20	27.1 ppm	3.23 ppm (dd) J=14.0, 3.0 Hz (1H) ; 2.78 ppm (dd) J=13.4 Hz (1H)	COSY 19 -> 20
21	109.7 ppm	-	HMBC 20, 28, 29 -> 21
22	128.0 ppm	-	HMBC 29 -> 22
23	119.8 ppm	7.95 ppm (d) 1.4 Hz (1H)	COSY/TOCSY 23 -> 25
24	110.0 ppm	-	HMBC 23 -> 24
25	123.9 ppm	7.09 ppm	HMBC 42 -> 25
26	126.9 ppm	-	HMBC 42 -> 26
27	134.6 ppm	-	HMBC 23, 25, 29 -> 27
28	-	10.56 ppm (d) J=1.9 Hz (1H)	
29	126.6 ppm	7.27 ppm (d) J=2.5 Hz (1H)	COSY/TOCSY 28 -> 29
30	-	8.12 ppm (d) J=8.3 Hz	HMBC 30 -> 31
31	172.0 ppm	-	HMBC 32, 33 -> 31
32	34.5 ppm	2.40-2.36 ppm (m) (1H) ; 2.15 ppm (dd) J=14.9, 11.9 Hz (1H)	COSY/TOCSY 33 -> 32
33	27.2 ppm	3.06 ppm (dd) J=13.5, 12.2 Hz (1H) ; 2.36-2.33 (m) (1H)	HMBC 35 -> 33
34	142.6 ppm	-	HMBC 36 -> 34
35	126.5 ppm	6.85 ppm (d) J=7.7 Hz (1H)	TOCSY 35 -> 39
36	128.1 ppm	7.08 ppm (dd) J=7.4, 7.4 Hz (1H)	COSY/TOCSY 35, 37 -> 36
37	120.4 ppm	7.19 ppm (d) J=7.7 Hz (1H)	HMBC 40 -> 37 / TOCSY 37 -> 39
38	137.3 ppm	-	HMBC 36 -> 38
39	127.7 ppm	5.69 ppm (s) (1H)	HMBC 39 -> 40
40	132.3 ppm	4.68 ppm (d) J=16.4 Hz (1H)	
41	126.6 ppm	6.11 ppm (ddd) J=16.3, 5.8, 2.9 Hz (1H)	
42	33.3 ppm	3.89 ppm (dd) J=17.3, 5.9 Hz (1H); 3.52-3.49 ppm (m) (1H)	COSY 41 -> 42

	13C	1H	key correlation
1	-	7.11 ppm (br s) (1H) ; 6.97 ppm (br s) (1H)	HMBC 1' (slight) -> 3
2	174.1 ppm	-	HMBC 3 -> 2
3	47.9 ppm	4.21-4.18 ppm (m) (1H)	HMBC 5 -> 3
4	18.2 ppm	1.20 ppm (d) 7.1 Hz (3H)	COSY 3 -> 4
5	_	7.89 ppm (d) J=6.2 Hz (1H)	HMBC 5 ->
6	170.3 ppm	-	HMBC 7 -> 6
7	57.2 ppm	4.23-4.20 ppm (m) (1H)	HMBC 12 -> 7
8	36.8 ppm	1.82-1.78 ppm (m) (1H)	COSY 7 -> 8
9	24.0 ppm	1.46-1.42 ppm (m) (1H) ; 1.18-1.13 ppm (m) (1H)	COSY 8 -> 9
10	11.4 ppm	0.83 ppm (dd) J=7.4, 7.4 Hz (3H)	COSY 9 -> 10
11	15.4 ppm	0.87 ppm (d) J=7.2 Hz (3H)	COSY 8 -> 11
12	-	7.73 ppm (d) 8.3 Hz (1H)	HMBC 12 -> 13
13	170.3 ppm	-	HMBC 14 -> 13
14	54.9 ppm	4.39 ppm (ddd) J=6.5, 6.5, 6.5 Hz (1H)	COSY 17 -> 14
15	61.3 ppm	3.69 ppm (dd) J= 10.6, 5.9 Hz (1H) ; 3.62 ppm (dd) J=10.6, 5.9 Hz (1H)	COSY 14 -> 15
16	-	Not Observed	-
17	-	8.34 ppm (d) J=7.5 Hz (1H)	HMBC 17 -> 18
18	172.6 ppm	-	HMBC 19 -> 18
19	53.6 ppm	4.53 ppm (ddd)	COSY 19 -> 20
20	26.9 ppm	3.11 ppm (dd) J=14.9, 1.7 Hz (1H) ; 2.88 ppm (dd) J=14.8, 12.5 Hz (1H)	HMBC 20 -> 29
21	112.1 ppm	-	HMBC 20, 29 -> 21
22	130.3 ppm	-	HMBC 26, 29 -> 22
23	121.3 ppm	7.90 ppm (d) J=1.8 Hz (1H)	COSY/TOCSY 23 -> 25
24	111.9 ppm	-	HMBC 23, 25 (slight), 26 -> 24
25	123.7 ppm	7.25 ppm (d) J=8.7, 1.8 Hz (1H)	
26	112.6 ppm	7.57 ppm (d) J=8.7 Hz (1H)	TOCSY 23 -> 26 ; COSY 25 -> 26
27	136.3 ppm	-	HMBC 23, 25, 29 -> 27
28	-	-	-
29	129.5 ppm	7.37 ppm (s)	HMBV 42 -> 29
30	-	8.38 ppm (d) J=7.6 Hz (1H)	HMBC 30 -> 31 ; COSY 30 -> 19
31	172.5 ppm	-	HMBC 32, 33 -> 31
32	32.8 ppm	2.66 ppm (dd) J=14.0, 14.0 Hz (1H) ; 2.40-2.36 ppm (1H)	HMBC 32 -> 34
33	27.0 ppm	2.66-2.62 ppm (m) (1H) ; 3.09 ppm (dd) J=15.8, 12.9 Hz (1H)	HMBC 33' -> 34,35,39
34	141.7 ppm	-	HMBC 36 -> 34
35	127.4 ppm	6.99 ppm (d) J=8.1 Hz (1H)	COSY 36 -> 35
36	128.0 ppm	7.13 ppm (dd) J=7.6 Hz (1H)	COSY 36 -> 37
37	123.8 ppm	6.98 ppm (d) J=7.1 Hz (1H)	HMBC 37 -> 40
38	137.8 ppm	-	HMBC 41 -> 38
39	125.1 ppm	6.69 ppm (s) (1H)	HMBC 39 -> 40
40	132.2 ppm	6.50 ppm (d) J=15.6 Hz (1H)	
41	128.1 ppm	5.99 ppm (ddd) J=15.5, 7.7, 6.5 Hz (1H)	
42	45.4 ppm	[4.80-4.78 ppm (m) (2H)	COSY 41 -> 42

Acyclic Cinnamyl Carbonate 13: Synthesized according to Procedure A with 0.350 mmol starting template. Purified via SiO₂ chromatography using a gradient from 1% to 10% methanol in chloroform. Beige Solid. 80% yield. ¹H-NMR (500 MHz, DMSO-d₆) δ 11.06 (s, 1H), 8.09 (d, *J* = 7.7 Hz, 1H), 7.94 (d, *J* = 7.6 Hz, 1H), 7.88 (d, *J* = 7.7 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.74 (d, *J* = 1.3 Hz, 1H), 7.29-7.18 (m, 5H), 7.15 (dd, *J* = 8.5, 1.5 Hz, 1H), 6.97 (br s, 2H), 6.63 (d, *J* = 16.0 Hz, 1H), 6.33 (ddd, *J* = 15.9, 6.2, 6.2 Hz, 1H), 5.03 (dd, *J* = 5.5, 5.5 Hz, 1H), 4.66 (d, *J* = 6.1 Hz, 1H), 4.52 (ddd, *J* = 8.0, 8.0, 4.8 Hz, 1H), 4.32 (dd, *J* = 13.6, 6.4 Hz, 1H), 4.19 (pentet, *J* = 7.5 Hz, 1H), 4.15 (dd, *J* = 8.0, 8.0 Hz, 1H), 3.48 (dd, *J* = 5.8, 5.8 Hz, 1H), 3.14-3.11 (m, 2H), 2.95 (dd, *J* = 14.7, 8.8 Hz, 1H), 2.77-2.74 (m, 2H), 2.46-2.40 (m, 2H), 1.73-1.68 (m, 1H), 1.43 (s, 9H), 1.39-1.35 (m, 1H), 1.20 (d, *J* = 7.1 Hz, 3H), 0.79 (dd, *J* = 7.5, 7.5 Hz, 3H). (126 MHz, DMSO-d₆) δ 174.0, 171.6, 171.2, 170.4, 170.3, 152.8, 141.8, 135.8, 134.7, 133.4, 129.2, 128.6, 128.0, 126.4, 125.5, 124.2, 123.3, 123.3, 120.7, 113.3, 111.0, 109.8, 81.5, 66.9, 61.8, 57.0, 55.0, 53.5, 48.1, 36.6, 30.9, 27.4, 24.2, 18.2, 18.1, 16.7, 15.2, 11.1. MS *m/z* [M-OCO₂*t*Bu]⁺, 841.3 (calc'd: C₃₅H₄₄BrN₆O₆ [M+H]⁺, 841.1)

	13C	1H	key correlation
1	-	6.91 ppm (br s) (1H) ; 7.17 ppm (br s) (1H)	HMBC 1 -> 2 / TOCSY 1 -> 1'
2	173.7 ppm	-	HMBC 3 -> 2
3	47.9 ppm	4.19 ppm (p) J=7.1 Hz (1H)	COSY 5 -> 3
4	17.9 ppm	1.22 ppm (d) J=7.1 Hz (3H)	COSY 3 -> 4
5	-	7.97 ppm (d) J=7.1 Hz (3H)	HMBC 5 -> 6
6	170.4 ppm	-	HMBC 7 -> 6
7	56.9 ppm	4.27 ppm (t) J=8.1 Hz (1H)	COSY 12 -> 7
8	36.3 ppm	1.79-1.75 ppm (m) (1H)	COSY 7 -> 8
9	24.1 ppm	1.50-1.46 ppm (m) (1H) ; 1.18-1.11 ppm (m) (1H)	COSY 8 -> 9
10	10.7 ppm	0.86 ppm (t) J=7.4 Hz (3H)	COSY 9 -> 10
11	15.0 ppm	0.88 ppm (d) J=6.8 Hz (3H)	COSY 8 -> 11
12	-	7.81 ppm (d) J=8.9 Hz (1H)	HMBC 12 -> 13
13	171.0 ppm	-	HMBC 14 -> 13
14	25.8 ppm	4.50-4.47 ppm (m) (1H)	COSY 25 -> 14
15	25.9 ppm	3.29 ppm (dd) J=14.7 & 2.4 Hz (1H) ; 2.91 ppm (dd) J=14.7 & 10.3 Hz (1H)	COSY 14 -> 15
16	107.1 ppm	-	HMBC 18 & 23 -> 16
17	129.7 ppm	-	HMBC 21 & 23 -> 17
18	119.7 ppm	7.65 ppm (d) J=1.3 Hz (1H)	COSY 18->20 / TOCSY 18 -> 21
19	110.6 ppm	-	HMBC 18, 20 (slight), 21 -> 19
20	122.8 ppm	7.12 ppm (dd) J=8.5 & 1.4 Hz (1H)	HMBC 18 -> 20
21	112.5 ppm	7.20 ppm (d) J=8.7 Hz (1H)	HMBC 21 -> 17
22	134.2 ppm	-	HMBC 18, 20, 23 -> 22
23	-	10.92 ppm (br s)	
24	136.1 ppm	-	HMBC 15, 22, & 42 -> 24
25	-	8.83 ppm (d) J=8.6 Hz (1H)	HMBC 25 -> 26
26	170.6 ppm	-	HMBC 27 -> 26
27	54.6 ppm	4.56-4.52 ppm (m) (1H)	COSY 30 -> 27
28	62.2 ppm	3.63 ppm (dd) J=9.5 & 5.5 Hz (1H); 3.43 (t) J=9.3 Hz (1H)	COSY/TOCSY 27 -> 28
29	-	Not Observed	-
30	-	8.01 ppm (d) J=7.2 Hz (1H)	HMBC 30 -> 31
31	172.0 ppm	-	HMBC 32 -> 31
32	34.3 ppm	2.59 ppm (ddd) J=14.2, 11.8, & 2.8 Hz (1H) ; 2.21 ppm (ddd) J= 14.4, 6.7, & 2.9 Hz (1H)	COSY/TOCSY 33 -> 32
33	29.3 ppm	3.07 ppm (ddd) J=14.6, 11.7, & 2.0 Hz (1H) ; 2.64 ppm (ddd) J= 14.9, 7.0, & 1.5 Hz (1H)	HMBC 33 -> 34, 35, & 39
34	141.2 ppm	-	HMBC 33 & 32' -> 34
35	127.5 ppm	6.99 ppm (d) J=7.6 Hz (1H)	HMBC 37 & 39 -> 35
36	128.1 ppm	[7.18 ppm (t) J=7.2 Hz (1H)	COSY 36 -> 35
37	124.5 ppm	7.06 ppm (d) J=8.0 Hz (1H)	HMBC 40->37
38	136.5 ppm	-	HMBC 41 & 42 -> 38
39	122.5 ppm	7.08 ppm (s) (1H)	HMBC 40 -> 39 ; 39 ->37
40	130.6 ppm	[6.57 ppm (d) J=15.7 Hz (1H)	
41	127.9 ppm	5.98 ppm (ddd) J=15.7, 8.4, 5.9 Hz (1H)	
42	29.1 ppm	3.75 (dd) J=14.4 & 5.4 Hz (1H) ; 3.50 (dd) J=14.5 & 8.7 Hz (1H)	COSY/TOCSY 40 & 41 -> 42

	13C	1H	key correlation
1	-	7.61 ppm (br s) (1H) ; 6.95 ppm (br s) (1H)	TOCSY 1 -> 1'
2	174.1 ppm	-	HMBC 3 -> 2
3	47.9 ppm	4.16 ppm (pentet) J=7.2 Hz (1H)	COSY 3 -> 4 / HMBC 1->3
4	18.1 ppm	1.16 ppm (d) J=7.1 Hz (3H)	
5	-	7.84 ppm (d) J=8.5 Hz (1H)	COSY 5 -> 3
6	170.1 ppm	-	HMBC 7 -> 6
7	56.9 ppm	4.16 ppm (dd) J=8.3, 7.4 Hz (1H)	TOCSY 7 -> 8,11
8	36.3 ppm	1.75-1.71 ppm (m) (1H)	COSY 7 -> 8
9	24.1 ppm	1.41-1.37 ppm (m) (1H) ; 1.09-1.02 ppm (m) (1H)	COSY 8 -> 9
10	11.0 ppm	0.78 ppm (dd) J=7.4, 7.4 Hz (3H)	COSY 9 -> 10
11	15.2 ppm	0.80 ppm (d) J= 6.8 Hz (3H)	COSY 8 -> 11
12	_	7.80 ppm (d) J=7.4 Hz (1H)	COSY 12 -> 7
13	170.4 ppm	-	HMBC 12 -> 13
14	53.0 ppm	4.64-4.58 ppm (m) (1H)	
15	29.4 ppm	3.36-3.34 ppm (m) (1H); 3.12 ppm (dd) J=15.0, 2.7 Hz (1H)	COSY 14 -> 15
16	110.8 ppm	-	HMBC 24 -> 16
17	127.4 ppm	-	HMBC 21,24 -> 17
18	129.9 ppm	-	HMBC 20 -> 18
19	115.1 ppm	-	HMBC 21 -> 19
20	124.5 ppm	7.26 ppm (d) J=8.7 Hz (1H)	
21	111.7 ppm	7.19 ppm (d) J=8.6 Hz (1H)	COSY 20 -> 21
22	135.6 ppm	-	HMBC 20,24 -> 22
23	-	11.03 ppm (s) (1H)	Indole
24	124.3 ppm	7.06 ppm (d) J=1.5 Hz (1H)	COSY 23 -> 24
25	-	8.26 ppm (br s) (1H)	COSY 25 -> 14
26	170.7 ppm	-	HMBC 25 -> 26
27	54.0 ppm	4.58 ppm (ddd) J=8.6, 6.5, 6.5 (1H)	COSY 27 -> 28
28	62.1 ppm	3.50-3.41 ppm (m) (2H)	COSY 29 -> 28
29	-	4.80 ppm (dd) J=5.4, 5.4 Hz (1H)	affected by water suppression
30	-	7.84 ppm (d) J=8.5 Hz (1H)	COSY 27 -> 30
31	170.9 ppm	-	HMBC 32, 33 -> 31
32	35.9 ppm	2.48-2.46 ppm (m) (1H) ; 2.32 ppm (ddd) J=14.5, 6.7, 2.5 Hz (1H)	COSY/TOCSY 33 -> 32
33	30.0 ppm	3.03 ppm (dd) J=12.4, 12.4 Hz (1H) ; 2.65-2.61 ppm (m) (1H)	HMBC 33 -> 35,39
34	141.7 ppm	-	HMBC 33,36 -> 34
35	127.5 ppm	6.98 ppm (d) J=7.4 Hz (1H)	HMBC 37 -> 35
36	128.2 ppm	7.11 ppm (dd) J=7.5, 7.5 Hz (1H)	COSY 36 -> 35,37 ; TOCSY 36 -> 37
37	123.0 ppm	7.06 ppm (d) J=7.7 Hz (1H)	HMBC 37 -> 40
38	136.9 ppm	-	HMBC 36 -> 38
39	125.6 ppm	7.03 ppm (br s) (1H)	HMBC 35,37 -> 39
40	130.6 ppm	6.14 ppm (d) J=15.6 Hz (1H)	HMBC 37 -> 40
41	not observed	6.36 ppm (ddd) J=16.0, 5.5, 5.5 Hz (1H)	
42	35.7 ppm	4.05-4.00 ppm (m) (2H)	COSY/TOCSY 40, 41 -> 42

	13C	1H	key correlation
1	-	7.23 ppm (br s) (1H) ; 6.95 ppm (br s) (1H)	TOCSY 1 -> 1'
2	174.0 ppm	-	HMBC 3 -> 2
3	48.0 ppm	4.21 ppm (p) J=7.0 Hz (1H)	COSY 5 -> 3
4	18.2 ppm	1.21 ppm (d) J=7.0 Hz (3H)	
5	-	8.02 ppm (d) J=7.2 Hz (1H)	HMBC 5 -> 6
6	170.6 ppm	-	HMBC 7 -> 6
7	56.7 ppm	4.25 ppm (dd) J=8.6, 8.6 Hz (1H)	TOCSY 7 -> 8
8	36.5 ppm	1.80-1.75 ppm (m) (1H)	COSY/TOCSY 8 -> 11
9	24.2 ppm	1.53-1.49 ppm (m) (1H)	COSY/TOCSY 9 -> 10
10	10.9 ppm	0.86 ppm (dd) J= 7.6, 7.6 Hz	
11	15.1 ppm	0.88 ppm (d) J=6.8 Hz (1H)	
12	-	7.85 ppm (d) J=8.9 Hz (1H)	COSY 12 -> 7
13	170.8 ppm	-	HMBC 12 -> 13
14	57.5 ppm	4.47 ppm (ddd) J=12.0, 9.7, 2.2 Hz (1H)	COSY 25 -> 14
15	26.6 ppm	3.31-3.28 ppm (m) (1H) ; 2.88 ppm (dd) J=14.3, 12.2 Hz (1H)	COSY 14 -> 15
16	111.9 ppm	-	HMBC 15, 24 -> 16
17	128.6 ppm	-	HMBC 21,24 -> 17
18	122.3 ppm	8.23 ppm (s) (1H)	
19	114.6 ppm	-	HMBC 18, 21 -> 19
20	128.7 ppm		HMBC 18,42 -> 20
21	113.3 ppm	7.23 ppm (s) (1H)	
22	135.2 ppm	-	HMBC 18,24 -> 22
23	-	10.93 ppm (d) J=1.7 Hz (1H)	Indole
24	124.2 ppm	7.29 ppm (d) J=1.7 Hz (1H)	COSY 23 -> 24 ; HMBC 15 -> 24
25	-	8.68 ppm (d) J=9.6 Hz (1H)	HMBC 25 -> 26
26	169.4 ppm	-	HMBC 27 -> 26
27	54.8 ppm	4.18 ppm (dd) J=11.9, 6.3 Hz (1H)	COSY/TOCSY 30 -> 27
28	62.1 ppm	3.75-3.72 ppm (m) (1H) ; 3.47-3.44 ppm (m) (1H)	COSY 27 -> 28 ; TOCSY 30 -> 28
29	-	5.36 ppm (dd) J=5.3, 5.3 Hz (1H)	COSY 29 -> 28 ; TOCSY 29 -> 27
30		7.36 ppm (d) J=6.2 Hz (1H)	HMBC 30 -> 31
31	171.2 ppm	-	HMBC 32,33' -> 31
32	33.1 ppm	2.51-2.48 ppm (m) (1H) ; 2.29 ppm (dd) J=15.5, 6.7 Hz (1H)	COSY/TOCSY 33 -> 32
33	27.2 ppm	3.10 ppm (dd) J=15.2, 12.2 Hz (1H) ; 2.50-2.54 ppm (m) (1H)	HMBC 35 -> 33
34	141.8 ppm	-	HMBC 32,33(slight),36 -> 34
35	127.0 ppm	6.91 ppm (d) J=7.6 Hz (1H)	HMBC 32(slight),33 -> 35
36	128.2 ppm	7.13 ppm (dd) J= 7.6, 7.6 Hz (1H)	TOCSY 36 -> 39
37	121.2 ppm	7.28 ppm (d) J=7.2 Hz (1H)	COSY 37 -> 39
38	136.7 ppm	-	HMBC 36,40(slight) -> 38
39	125.8 ppm	6.38 ppm (s) (1H)	HMBC 39 -> 40
40	129.6 ppm	5.43 ppm (d) J=15.9 Hz (1H)	
41	128.6 ppm	6.46 ppm (ddd) J=16.0, 4.8, 4.8 Hz (1H)	
42	38.1 ppm	3.76-3.72 ppm (m) (1H) ; 3.52-3.48 ppm (m) (1H)	COSY/TOCSY 40, 41 -> 42 ; HMBC 21 -> 42

	13C	1H	key correlation
1	-	7.22 ppm (br s) (1H) ; 6.95 ppm (br s) (1H)	TOCSY 1 -> 1'
2	173.3 ppm	-	HMBC 3 -> 2
3	47.7 ppm	4.20 ppm (p) J=7.2 Hz (1H)	COSY 3 -> 4
4	18.0 ppm	1.23 ppm (d) J=7.2 Hz (3H)	
5	-	7.97 ppm (d) J=6.5 Hz (1H)	HMBC 5 -> 6
6	170.1 ppm	-	HMBC 7 -> 6
7	56.7 ppm	4.25 ppm (t) J=8.5 Hz (1H)	COSY 12 -> 7
8	22.2 ppm	1.79-1.76 ppm (m) (1H)	COSY 7 -> 8
9	24.0 ppm	1.48 -1.44 ppm (m) (1H) ; 1.15-1.10 ppm (m) (1H)	COSY 8 -> 9
10	10.7 ppm	0.84 ppm (t) J=7.5 Hz (3H)	COSY 9 -> 10
11	15.0 ppm	0.87 ppm (d) J=6.8 Hz (3H)	COSY 8 -> 11
12	-	7.97 ppm (d) J=9.4 Hz (1H)	HMBC 12 -> 13
13	171.2 ppm	-	HMBC 14 -> 13
14	53.1 ppm	4.62 ppm (ddd) J=12.2, 8.7, & 2.5 Hz (1H)	COSY/TOCSY 14 -> 15
15	26.4 ppm	3.25 ppm (dd) J=14.9, 1.7 Hz (1H) ; 2.86 ppm (dd) J=14.7, 12.5 Hz (1H)	HMBC 15 -> 16
16	110.4 ppm	-	HMBC 15, 24 -> 16
17	128.8 ppm	-	HMBC 21, 24 -> 17
18	120.5 ppm	7.79 ppm (d) J=1.9 Hz (1H)	HMBC 18 -> 20, 22
19	111.3 ppm	-	HMBC 18 -> 19
20	123.2 ppm	7.23 ppm (dd) J=8.5 Hz, 1.9 Hz (1H)	HMBC 18 -> 20
21	111.5 ppm	7.45 ppm (d) J=8.9 Hz (1H)	HMBC 21 -> 17
22	134.4 ppm	-	HMBC 18, 24, 42 -> 22
23	-	-	-
24	127.9 ppm	7.29 ppm (s) (1H)	HMBC 42 -> 24
25	-	8.56 ppm (d) J=8.5 Hz (1H)	COSY 25 -> 14
26	170.0 ppm	-	HMBC 25 -> 26
27	53.5 ppm	4.48 ppm (ddd) J=7.7, 7.7, 5.4 Hz (1H)	HMBC 27 -> 26
28	62.5 ppm	3.54 ppm (dd)	
29	-	Not Observed	-
30	-	7.78 ppm (d) J=7.9 Hz (1H)	COSY 30 -> 27
31	171.0 ppm	-	HMBC 30 -> 31
32	34.7 ppm	2.60-2.54 ppm (m) (1H) ; 2.23 ppm (ddd) J=15.2, 7.5, 2.6 Hz (1H)	HMBC 32 -> 31, 34
33	29.0 ppm	3.04 ppm (ddd) J=14.4, 11.6, 2.2 Hz (1H) ; 2.60-2.54 (m) (1H)	COSY/TOCSY 32 -> 33
34	141.5 ppm	-	HMBC 32 -> 34
35	128.1 ppm	7.18-7.17 ppm (m) (1H)	COSY 35 -> 36 / TOCSY 35 -> 39
36	128.0 ppm	7.01-6.99 ppm (m)	COSY/TOCSY 35, 37 -> 36
37	123.6 ppm	7.18-7.17 ppm (m) (1H)	HMBC 37 -> 40 / TOCSY 37 -> 39
38	135.6 ppm	-	HMBC 41 -> 38
39	123.9 ppm	6.85 ppm (s) (1H)	HMBC 39 -> 35, 37, 40
40	130.4 ppm	6.10 ppm (d) J=16.1 Hz (1H)	
41	125.1 ppm	6.19 ppm (dt) J=15.9, 5.4 Hz (1H)	
42	46.3 ppm	4.92 ppm (d) J=5.1 Hz (2H)	COSY/TOCSY 40, 41 -> 42

	13C	1H	key correlation
1	-	7.04 ppm (br s) (1H) ; 6.93 ppm (br s) (1H)	HMBC 1 & 1' -> 2
2	173.8 ppm	-	HMBC 3 -> 2
3	48.0 ppm	4.10 ppm (p) J=7.3 Hz (1H)	COSY 5 -> 3
4	17.8 ppm	1.17 ppm (d) J=7.2 Hz (3H)	COSY/TOCSY 3 -> 4
5	-	7.69 ppm (d) J=7.5 Hz (1H)	HMBC 5 -> 6
6	170.3 ppm	-	HMBC 7 -> 6
7	56.5 ppm	4.01 ppm (dd) J=8.8, 5.7 Hz (1H)	COSY 12 -> 7
8	37.0 ppm	1.60-1.54 ppm (m) (1H)	COSY/TOCSY 7->8
9	23.5 ppm	1.18-1.15 ppm (m) (1H) ; 0.87-0.82 ppm (m) (1H)	COSY/TOCSY 8 -> 9
10	11.5 ppm	0.69 ppm (t) J=7.3 Hz (3H)	COSY/TOCSY 9 -> 10
11	15.1 ppm	0.57 ppm (d) J=6.8 Hz (3H)	COSY 7 -> 11
12	-	7.34 ppm (d) J=8.9 Hz (1H)	HMBC 12 -> 13
13	170.8 ppm	-	HMBC 14 -> 13
14	61.2 ppm	4.49 ppm (dd) J=10.4, 5.1 Hz (1H)	COSY/TOCSY 14 -> 15 / HMBC 14 -> 24
15	40.3 ppm	2.60 ppm (dd) J=13.8, 10.5 Hz (1H) ; 2.08 ppm (dd) J=13.8, 5.1 Hz (1H)	HMBC 42 -> 15 / HMBC 15' -> 24
16	57.6 ppm	-	HMBC 14, 15, 18, 42 -> 16
17	137.6 ppm	-	HMBC 21 -> 17
18	124.9 ppm	7.13 ppm (d) J=2.1 Hz (1H)	HMBC 18 -> 16 / TOCSY 18 -> 20, 21
19	109.5 ppm	-	HMBC 18, 20 (slight), 21 -> 19
20	130.3 ppm	7.16 ppm (dd) J= 8.2, 2.2 Hz (1H)	HMBC 18 -> 20
21	111.0 ppm	6.50 ppm (d) J= 8.3 Hz (1H)	COSY TOCSY 20 -> 21
22	146.6 ppm	-	HMBC 18, 20 -> 22
23	-	Not Observed	-
24	81.4 ppm	6.08 ppm (s) (1H)	Aminal (distinctive)
25	-	-	-
26	171.0 ppm	-	HMBC 27 -> 26
27	51.1 ppm	5.08 ppm (dt) 8.4, 5.9 Hz (1H)	COSY 30 -> 27
28	62.9 ppm	3.64-3.61 ppm (m) (1H)	COSY 27 -> 28
29	-	Not Observed	-
30	-	7.63 ppm (d) J= 8.2 Hz (1H)	HMBC 30 -> 31
31	171.8 ppm	-	HMBC 32, 33 -> 31
32	37.6 ppm	2.42 ppm (dt) J=12.4, 3.1 Hz (1H) ; 2.24 ppm (ddd) 12.8, 5.4, 4.0 Hz (1H)	COSY/TOCSY 33 -> 32
33	31.1 ppm	2.95-2.90 ppm (m) (1H) ; 2.69-2.65 ppm (m) (1H)	HMBC 33 -> 34
34	140.6 ppm	-	HMBC 36 -> 34
35	127.3 ppm	7.02 ppm (d) J=6.9 Hz (1H)	COSY/TOCSY 36 -> 35 / HMBC 35 -> 34/37
36	128.6 ppm	7.18 ppm (t) J=7.3 Hz (1H)	HMBC 36 -> 34, 38
37	123.9 ppm	7.11 ppm (d) J=7.7 Hz (1H)	COSY 36->37 / HMBC 37 -> 40
38	137.1 ppm	-	HMBC 41 -> 38
39	125.6 ppm	7.10 ppm (br s) (1H)	HMBC 39 -> 40
40	133.4 ppm	6.60 ppm (d) J=15.7 Hz (1H)	
41	125.4 ppm	6.07 ppm (dt) J=15.7, 7.8 Hz (1H)	
42	39.6 ppm	2.88 ppm (dd) J=12.9, 8.1 Hz (1H) ; 2.51-2.47 ppm (m) (1H)	COSY 41 -> 42 / TOCSY 40 -> 42

Acyclic Cinnamyl Carbonate 14: Synthesized according to Procedure A. Purified via trituration with 3x5 mL methanol. Beige Solid. ¹H-NMR (DMSO-*d*₆, 500 MHz): δ 11.00 (d, *J* = 2.5 Hz, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.89 (d, *J* = 8.3 Hz, 1H), 7.84 (d, *J* = 7.5 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.74 (d, *J* = 1.8 Hz, 1H), 7.26-7.30 (m, 1H), 7.26 (br. s, 1H), 7.23-7.24 (m, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 2.3 Hz, 1H), 7.14 (d, *J* = 2 Hz, 1H), 7.13 (d, *J* = 2 Hz, 1H), 7.1 (br. d, *J* = 7.5 Hz, 1H), 7.07 (br. s, 1H), 6.99 (br. s, 1H), 6.61 (d, *J* = 15.9 Hz, 1H), 6.32 (dt, *J* = 15.6, 6.2 Hz, 1H), 4.65 (dd, *J* = 6.3, 6.2 Hz, 2H), 4.5 (ddd, *J* = 9.2, 8.2, 5.0 Hz, 1H), 4.41 (apt q, *J* = 6.7 Hz, 1H), 4.15 (dddd, *J* = 7.2, 7.2, 7.2, 7.2, 7.2, Hz, 1H), 4.07 (dd, *J* = 7.8, 6.2 Hz, 1H), 3.56 (dd, *J* = 10.4, 6.0 Hz, 1H), 3.51 (dd, *J* = 10.4, 6.3 Hz, 1H), 3.11 (dd, *J* = 14.9, 4.8 Hz, 1H), 2.85 (dd, *J* = 14.7, 9.4 Hz, 1H), 2.78 (app t, *J* 543 = 7.9 Hz, 2H), 2.43-2.49 (m, 3H), 1.60-2.49 (m, 1H), 1.41 (s, 9H), 1.19 (d, *J* = 7 Hz, 3H), 1.08- 1.16 (m, 1H), 0.90-1.00 (m, 1H), 0.65 (d, *J* = 6.7 Hz, 3H). ¹³C-NMR (DMSO-*d*₆, 126 MHz): δ 174.4, 172.1, 171.3, 171.2, 153.3, 142.2, 136.3, 135.2, 133.9, 129.5, 129.1, 128.5, 126.9, 126.0, 124.7, 123.8, 121.2, 113.7, 111.5, 110.3, 82.0, 67.4, 62.2, 58.0, 55.0, 53.6, 48.7, 37.1, 36.7, 31.4, 27.85, 27.78, 27.6, 24.3, 18.6, 15.7, 11.7. MS *m*/z 841.4 (calc'd: C₄₀H₅₃BrN₆O₉, [M+H]⁺, 841.1).

	13C	1H	key correlation
1	29.6	3.62-3.68 (m, 1H), 3.70-3.76 (m, 1H)	HMBC 1->29, 28
2	126.7	6.53-6.60 (m, 1H) overlap	COSY 2->1
3	131.4	6.53-6.60 (m, 1H) overlap	
4	136.8	-	
5	123.6	7.16-7.20 (m, 1H) overlap	
6	127.9	7.17-7.21 (m, 1H) overlap	
7	127.4	7.02-7.06 (m, 1H)	HMBC 7->5
8	141.4	-	
9	125.3	7.31 (br s, 1H) overlap	HMBC 9->3,5
10	29.9	2.68-2.75 (m, 1H), 3.02-3.10 (m, 1H) overlap	HMBC 10->7,8,9
11	35.1	2.41 (ddd, J = 14.9, 9.2, 2.2 Hz, 1H), 2.58-2.65 (m, 1H)	
12	171.5	-	
13	-	8.11 (d, J = 8.4 Hz, 1H)	
14	55.3	4.25 (ddd, J = 8.4, 5.5, 5.5 Hz, 1H)	
15	61.4	3.46-3.54 (m, 2H)	
16	-	not observed	
17	169.4	-	
18	-	7.29-7.32 (m, 1H) overlap	HMBC 18->17
19	56.6	4.06 (dd, J = 8.0, 6.6 Hz, 1H)	
20	37.3	1.60-1.69 (m, 1H)	
21	23.4	0.88-0.98 (m, 1H), 1.22-1.33 (m, 1H)	
22	10.9	0.71 (t, J = 7.4 Hz, 3H)	
23	15.0	0.68 (d, J = 6.7 Hz, 3H)	
24	170.3	-	
25	-	8.25 (d, J = 8.8 Hz, 1H)	
26	53.6	4.60 (ddd, J = 9.0, 8.8, 5.9 Hz, 1H)	HMBC 26->28
27	26.1	2.91 (dd, J = 14.4, 9.4 Hz, 1H), 3.04-3.10 (m, 1H) overlap	HMBC 27->28,29,36
28	105.9	-	
29	136.6	-	
30	-	10.94 (s, 1H)	
31	133.6	-	
32	112.3	7.17 (d, J = 8.6 Hz, 1H)	HMBC 32->36
33	122.4	7.06 (dd, J = 8.6, 1.9 Hz, 1H)	HMBC 33->31,34, TOCSY 33->32,35
34	110.6	-	
35	120.1	7.70 (d, J = 1.9 Hz, 1H)	HMBC 35->28,31,33,34
36	130.1	-	
37	170.6	-	
38	-	7.84 (d, J = 7.5 Hz, 1H)	
39	18.3	1.20 (d, J = 7.1 Hz, 3H)	
40	47.9	4.17 (dq, J = 7.1, 7.1 Hz, 1H)	
41	173.5	-	
42	-	7.00 (br s, 1H), 7.20 (br s, 1H)	TOCSY 42->42', HMBC 42->41

*Note: This isolated compound was contaminated O-tert-butoxycarbonyl(cinnamyl alcohol 3-propionic acid)

	13C	1H	key correlation
1	34.9	3.93-3.99 (m, 1H), 4.23-4.28 (m, 1H) overlap	COSY 1→1', HMBC 1→34,35,36
2	128.4	6.45 (ddd, <i>J</i> = 16.06, 6.0, 5.5 Hz, 1H)	HMBC 2→4
3	129.8	6.20 (br d, <i>J</i> = 16.0 Hz, 1H)	HMBC 3→4
4	137	-	
5	122.9	7.00 (br d, <i>J</i> = 7.5 Hz, 1H)	HMBC 5→3
6	127.9	7.10 (dd, <i>J</i> = 7.5, 7.5 Hz, 1H)	HMBC 6→4,8, TOCSY 6→5,7,9
7	127.3	6.99 (br d, <i>J</i> = 7.5 Hz, 1H) overlap	
8	141.3	-	
9	124.6	7.22 (br s, 1H)	HMBC 9→3
10	28.9	2.68-2.74 (m, 1H) overlap, 3.01-3.05 (m, 1H) overlap	HMBC 10→7,8,9,12
11	34.3	2.48-2.53 (m, 1H) obscured, 2.66-2.72 (m, 1H) overlap	HMBC 11→9,12
12	171.5	-	
13	-	8.10 (d, <i>J</i> = 8.3 Hz, 1H)	HMBC 13→12, COSY 13→14
14	56.1	4.23-4.27 (m, 1H) overlap	HMBC 14→15,16
15	62	3.50-3.55 (m, 1H), 3.60 (ddd, <i>J</i> = 11.0, 5.7, 5.7 Hz, 1H)	HMBC 15→16
16	169.3	-	
17	-	4.90 (dd, <i>J</i> = 5.7, 5.7 Hz, 1H)	HMBC 17→14,15
18	-	7.34 (d, <i>J</i> = 8.3 Hz, 1H)	HMBC 18→16, COSY 18→19
19	56.3	4.30 (dd, <i>J</i> = 8.3, 7.4 Hz, 1H)	COSY 19→20, HMBC 19→24
20	37.1	1.65-1.72 (m, 1H)	COSY 20→21,23
21	23.9	0.98-1.06 (m, 1H), 1.39-1.48 (m, 1H)	
22	10.9	0.79 (t, <i>J</i> = 7.3 Hz, 3H)	COSY 22→21
23	14.8	0.80 (d, J = 6.6 Hz, 3H)	
24	170.2	-	
25	-	8.34 (d, <i>J</i> = 7.3 Hz, 1H)	HMBC 25→24, COSY 25→26
26	54.3	4.61 (ddd, <i>J</i> = 7.8, 7.8, 7.3 Hz, 1H)	HMBC 26→28, COSY 26→27
27	29.1	3.09-3.14 (m, 2H)	HMBC 27→28
28	109.6	-	
29	126.1	7.06 (d, <i>J</i> = 2.5 Hz, 1H)	HMBC 29→28,31,36
30	-	11.06 (d, <i>J</i> = 2.5 Hz, 1H)	
31	135.6	-	
32	111.8	7.18 (d, J = 8.6 Hz, 1H)	HMBC 32→31,34,36
33	124.6	7.26 (d, <i>J</i> = 8.6 Hz, 1H)	HMBC 33→31
34	114.9	-	
35	129.7	-	
36	126.6	-	
37	169.5	-	
38	-	1.78 (d, J = 7.6 Hz, 1H)	HMBC 38→37
39	18.1	4.16 (dq, J = 7.6, 7.0 Hz, 1H)	
40	47.8	1.14 (d, <i>J</i> = 7.0 Hz, 1H)	
41	173.3	-	
42	-	6.90 (br s, 1H), 6.91 (br s, 1H)	IHMBC 42→41

	13C	1H	key correlation
1	39.5	2.51-2.55 (m, 2H)	HMBC 1->28,29 ; NOESY 1->29
2	124.1	6.18 (ddd, J = 15.7, 8.2, 7.0 Hz, 1H)	COSY 2->1, HMBC 2->4
3	134.3	6.57 (d, J = 15.7 Hz, 1H)	
4	136.8	-	
5	124.4	7.03 (br d, J = 7.6 Hz, 1H)	HMBC 5->3, TOCSY 5->6,7,9
6	128.0	7.16 (dd, J = 7.6, 7.6 Hz, 1H)	HMBC 6->4,8
7	127.5	7.01 (br d, J = 7.6 Hz, 1H)	
8	141.4	-	
9	124.5	7.38 (br s, 1H)	HMBC 9->3
10	29.8	2.75 (apt dd, J = 14.0, 9.8 Hz, 1H), 3.02 (apt dd, J = 14.0, 10.7 Hz, 1H)	HMBC 10->7,9,12
11	35.8	2.31-2.36 (m, 1H) overlap, 2.47-2.54 (m, 1H) overlap	
12	171.3	-	
13	-	7.98 (d, J = 7.9 Hz, 1H)	HMBC 13->12
14	54.7	4.35 (ddd, J = 7.9, 7.0, 5.4 Hz, 1H)	COSY 14->13
15	61.5	3.54 (dd, J = 10.7, 7.0 Hz, 1H), 3.60 (dd, J = 10.7, 5.4 Hz, 1H)	COSY 15->14
16	-	not observed	
17	170.2	-	
18	-	8.03 (d, J = 6.1 Hz, 1H)	HMBC 18->17
19	55.6	4.23 (dd, J = 9.1, 6.1 Hz, 1H)	HMBC 19->24
20	36.4	1.71-1.77 (m, 1H) overlap	COSY 20->19
21	24.1	1.18-1.25 (m, 1H), 1.66-1.73 (m, 1H) overlap	
22	11.0	0.89 (t, J = 7.5 Hz, 3H)	COSY 22->21
23	14.8	0.99 (d, J = 6.8 Hz, 3H)	COSY 23->20
24	172.3	-	
25	-	-	
26	60.3	4.42 (dd, J = 8.7, 6.3 Hz, 1H)	COSY 26->27, HMBC 26->24 NOESY 26->29
27	38.3	2.09 (dd, J = 13.0, 6.3 Hz, 1H), 2.32-2.37 (m, 1H) overlap	HMBC 27->26,28,29,37
28	56.8	-	
29	80.8	6.35 (s, 1H)	HMBC 29->1,24,27,31,36
30	-	not observed	
31	147.8	-	
32	111.1	6.50 (d, J = 8.3 Hz, 1H)	HMBC 32->34,36
33	130.6	7.14 (dd, J = 8.3, 2.1 Hz, 1H)	HMBC 33->31
34	108.8	-	
35	124.9	7.31 (d, J = 2.1 Hz, 1H)	HMBC 35->31
36	136.7	-	
37	169.4	-	
38	-	7.33 (d, J = 7.1 Hz, 1H)	
39	47.4	3.98 (dq, J = 7.1, 6.8 Hz, 1H)	HMBC 39->41
40	17.9	0.83 (d, J = 6.8 Hz, 3H)	COSY 40->39, HMBC 40->41
41	173.3	-	
42	-	6.90 (br s, 1H), 7.38 (br s, 1H)	HMBC 42->41, TOCSY 42->42'

	13C	1H	key correlation
1	38.0	3.68 (apt d, J = 4.1 Hz, 2H)	
2	129.0	6.38 (ddd, J = 16.0, 5.9, 5.9 Hz, 1H)	HMBC 2->4
3	129.4	6.16 (br d, J = 16.0 Hz, 1H)	HMBC 3->5,9
4	136.8	-	
5	123.1	7.18 (d, J = 8.0 Hz, 1H) overlap	
6	127.6	7.16 (dd, J = 8.0, 8.0 Hz, 1H) overlap	HMBC 6->4,9
7	126.8	6.97 (br d, J = 8.0 Hz, 1H)	
8	140.6	-	
9	124.4	7.03 (br s, 1H)	HMBC 9->3,5,7,10
10	29.3	2.78 (ddd, J = 14.8, 7.8, 3.5 Hz, 1H), 2.83-2.89 (m, 1H) overlap	
11	34.7	2.32 (ddd, J = 14.9, 7.8, 3.5 Hz, 1H), 2.50-2.56 (m, 1H)	HMBC 11->12
12	171.4	- · · · · · · · · · · · · · · · · · · ·	
13	-	7.46 (d, J = 7.4 Hz, 1H)	
14	53.9	4.12 (apt dd, J = 11.9, 6.0 Hz, 1H)	
15	61.6	3.03 (dd, J = 10.8, 6.0 Hz, 1H), 2.84-2.89 (m, 1H) overlap	
16	-	not observed	
17	not observed	-	
18	-	7.38-7.42 (m, 1H) overlap	
19	56.8	4.03 (dd, J = 7.9, 6.4 Hz, 1H)	HMBC 19->24
20	35.8	1.72-1.80 (m, 1H)	
21	23.4	0.99-1.08 (m, 1H), 1.30-1.38 (m, 1H)	
22	10.5	0.80 (t, J = 7.4 Hz, 3H)	
23	14.8	0.84 (d, J = 6.8 Hz, 3H)	
24	170.0	-	
25	-	7.38-7.42 (m, 1H) overlap	
26	52.9	4.62 (apt dd, J = 14.4, 7.5 Hz, 1H)	HMBC 26->37
27	26.5	3.08-3.12 (m, 1H) obscured	HMBC 27->28,37
28	108.8	-	
29	125.0	7.15 (br s, 1H) overlap	HMBC 29->28,31,36
30	-	10.69 (br s, 1H)	HMBC 30->31
31	135.4	-	
32	113.0	7.32 (s, 1H)	HMBC 32->1,36
33	130.0	-	
34	113.6	-	
35	121.7	7.83 (s, 1H)	HMBC 35->28,31,33,34
36	127.4	-	
37	170.3	-	
38	-	7.60 (br s, 1H)	
39	47.6	4.29 (qd, J = 7.1, 7.0 Hz, 1H)	HMBC 39->37,41
40	17.6	1.23 (d, J = 7.1 Hz, 3H)	HMBC 40->41
41	173.4	-	
42	-	6.82 (br s, 1H), 7.06 (br s, 1H)	

	13C	1H	key correlation
1	47.5	4.83-4.90 (m, 2H)	HMBC 1->2,3,29,31
2	124.7	6.59-6.67 (m, 1H) overlap	HMBC 2->4
3	132.6	6.59-6.67 (m, 1H) overlap	
4	136.2	-	
5	124.5	7.16-7.20 (m, 1H) overlap	HMBC 5->3
6	127.9	7.20 (dd, J = 7.5, 7.3 Hz, 1H) overlap	HMBC 6->4,8
7	128.1	7.04 (ddd, J = 7.3, 1.5, 1.5 Hz, 1H)	
8	141.5	-	
9	124.7	7.41 (br s, 1H)	HMBC 9->3, TOCSY 9->5,6,7
10	29.6	2.70-2.76 (m, 1H), 2.94-3.00 (m, 1H) overlap	HMBC 10->7,8,9
11	34.7	2.42 (ddd, J = 14.5, 8.5, 2.7 Hz, 1H), 2.46-2.51 (m, 1H) obscured	HMBC 11->8
12	171.4	-	
13	-	7.87 (d, J = 7.4 Hz, 1H)	
14	54.5	4.22-4.27 (m, 1H) overlap	HMBC 14->17
15	61.4	3.34-3.40 (m, 2H) obscured	HMBC 15->17
16	-	not observed	
17	170.0	-	HMBC 18->17
18	-	7.70 (d, J = 8.0 Hz, 1H)	HMBC 19->24
19	57.1	4.01 (dd, J = 8.0, 7.1 Hz, 1H)	
20	35.9	1.60-1.68 (m, 1H)	
21	23.6	0.95-1.02 (m, 1H), 1.27-1.34 (m, 1H)	
22	10.7	0.73 (dd, J = 7.6, 7.6 Hz, 3H) overlap	
23	15.0	0.72 (d, J = 7.1 Hz, 3H) overlap	
24	171.2	-	
25	-	7.98 (d, J = 8.2 Hz, 1H)	HMBC 25->24,27
26	52.2	4.56 (ddd, J = 8.6, 8.2, 4.8 Hz, 1H)	HMBC 26->37, COSY 26->25,27
27	26.5	2.99-3.94 (m, 2H) overlap	
28	109.2	-	
29	128.6	7.35 (s, 1H)	HMBC 29->1,27,31,36
30	-	-	
31	134.5	-	
32	111.4	7.44 (d, J = 8.7 Hz, 1H)	HMBC 32->34,36
33	123.1	7.21 (dd, J = 8.7, 1.9 Hz, 1H)	HMBC 33->31,35
34	111.1	-	
35	120.9	7.78 (d, J = 1.9 Hz, 1H)	HMBC 35->31,33
36	129.3	-	
37	170.9	-	
38	-	7.94 (d, J = 7.3 Hz, 1H)	HMBC 38->37
39	47.8	4.21 (dq, J = 7.3, 7.2 Hz, 1H)	HMBC 39->41
40	18.1	1.17 (d, J = 7.2 Hz, 1H)	HMBC 40->39
41	173.8	-	
42	-	7.02 (br s, 1H), 7.32 (br s, 1H)	

Acyclic Cinnamyl Carbonate 15: Synthesized according to Procedure A. Purified via trituration with 3x5 mL methanol. Beige solid. ¹H-NMR (DMSO- d_6 , 500 MHz): δ 10.99 (d, J = 1.7 Hz, 1H), 7.99 (d, J = 6.7 Hz, 1H), 7.98 (d, J = 7.5 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.74 (d, J = 1.7 Hz, 1H), 7.32 (br s, 1H), 7.28 (br s, 1H), 7.26 (d, J = 8.5 Hz, 1H), 7.25 (d, J = 7.2 Hz, 1H), 7.21 (dd, J = 7.5, 7.5 Hz, 1H), 7.17 (d, J = 1.9 Hz, 1H), 7.12 (dd, J = 8.6, 1.7 Hz, 1H), 7.10 (d, J = 7.3 Hz, 1H), 7.03 (br s, 1H), 6.61 (d, J = 16.0 Hz, 1H), 6.31 (ddd, J = 15.9, 6.2, 6.2 Hz, 1H), 5.00 (dd, J = 5.3, 5.3 Hz, 1H), 4.64 (d, J = 6.0 Hz, 1H), 4.39-4.34 (m, 1H), 4.22 (pentet, J = 7.1 Hz, 1H), 4.16 (dd, J = 7.9, 6.7 Hz, 1H), 3.55-3.46 (m, 2H), 3.04 (dd, J = 14.6, 5.7 Hz, 1H), 2.91 (dd, J = 14.7, 7.8 Hz, 1H), 2.78 (dd, J = 7.8, 7.8 Hz, 1H), 2.45 (dd, J = 8.6, 7.3 Hz, 1H), 1.74-1.69 (m, 1H), 1.40 (s, 9H), 1.38-1.33 (m, 1H), 1.14 (d, J = 7.0 Hz, 3H), 1.07-7.01 (m, 1H), 0.77 (d, J = 6.9 Hz, 3H), 0.76 (dd, J = 7.9, 7.9 Hz, 3H).). ¹³C-NMR (DMSO- d_6 , 126 MHz): δ 172.9, 171.8, 171.6, 170.6, 170.4, 152.8, 141.7, 135.9, 134.7, 133.5, 129.2, 128.6, 128.0, 126.4, 125.4, 124.2, 123.3, 123.3, 120.8, 113.3, 111.0, 109.9, 81.5, 66.9, 61.7, 57.0, 54.7, 53.6, 53.2, 48.4, 36.6, 31.0, 27.4, 25.2, 24.1, 18.1, 17.8, 15.3, 11.3. MS *m/z*, 841.3 (calc'd: $C_{35}H_{44}BrN_6O_6$ [M+H]⁺, 841.1)

						Semi-Pren HPLC Method		
Analytical HPLC Method	Time	%B	Preparative HPLC Method	Time	%B	Column: Waters XSelect™	Time	%В
<u>Column</u> : Waters Sunfire™	0	30	<u>Column</u> : Waters Sunfire™	0	45	C_{18} , 10x250 mm, 5 µm	0	38
C_{18} , 4.6x250 mm, 5 µm Solvent A: H O + 0.1% TEA	2.5	30	G_{18} , 19x250 mm, 5 μ m Solvent A: H O + 0.1% TEA	2	45	Solvent A: H ₂ O + 0.1% TFA	1	38
Solvent B: ACN + 0.1% TFA	24	86	Solvent A: ACN + 0.1% TFA	12	50	Solvent B: ACN + 0.1% TFA	20	43
Flow rate: 1.00 mL/min	29	30	Flow rate: 18.0 mL/min	13	50	Flow rate: 6.00 mL/min	21	38
						For re-purification of 790		

	13C	1H	key correlation
1	-	7.29 ppm (br s) (1H) ; 6.98 ppm (br s)	TOCSY 1 -> 1'
2	173.0 ppm	-	HMBC 1(slight),3 -> 2
3	53.4 ppm	4.40 ppm (ddd) J=7.5, 7.5, 7.5 Hz (1H)	COSY/TOCSY 14 -> 3
4	26.9 ppm	3.05 ppm (dd) J=14.7, 7.5 Hz (1H) ; 2.92 ppm (dd) J=14.5, 6.8 Hz (1H)	COSY/TOCSY 3 -> 4
5	105.8 ppm	-	HMBC 4,7,12,42(slight) -> 5
6	130.0 ppm	-	HMBC 10,12 -> 6
7	120.0 ppm	7.71 ppm (d) J=1.7 Hz (1H)	HMBC 7 -> 5,11
8	110.8 ppm	-	HMBC 7,10 -> 8
9	122.3 ppm	7.08 ppm (dd) J=8.5, 1.9 Hz (1H)	HMBC 7 -> 9 / 9 -> 7
10	112.3 ppm	7.19 ppm (d) J=8.2 Hz (1H)	COSY 9 -> 10 ; HMBC 10 -> 6,8
11	133.7 ppm	-	HMBC 7,9,12 -> 11
12	-	10.94 ppm (s)	indole
13	136.7 ppm	-	HMBC 4,12,41,42 -> 13
14	-	7.69 ppm (d) J=8.3 Hz	HMBC 14 -> 15
15	171.8 ppm	-	HMBC 16 -> 15
16	47.5 ppm	4.39-4.33 ppm (m) (1H)	COSY/TOCSY 18 -> 16
17	17.4 ppm	1.22 ppm (d) J=7.1 Hz (1H)	COSY/TOCSY 16 -> 17
18	-	8.01 ppm (d) J=7.7 Hz (1H)	HMBC 18 -> 19
19	169.9 ppm	-	HMBC 20 -> 19
20	56.6 ppm	4.14 ppm (d) J=8.0, 5.8 Hz (1H)	COSY/TOCSY 25 -> 20
21	36.8 ppm	1.70-1.66 ppm (m) (1H)	TOCSY 20 -> 21
22	23.7 ppm	1.33-1.28 ppm (m) (1H) ; 1.05-0.98 ppm (m) (1H)	TOCSY 21 -> 22
23	11.1 ppm	0.70 ppm (dd) J=7.4 Hz (3H)	COSY/TOCSY 22 -> 23
24	15.0 ppm	0.76 ppm (d) J=6.8 Hz (3H)	COSY/TOCSY 21 -> 24
25	-	7.49 ppm (d) J=7.9 Hz (1H)	HMBC 25 -> 26
26	170.2 ppm	-	HMBC 27 -> 26
27	55.0 ppm	4.36-4.32 ppm (m) (1H)	COSY/TOCSY 30 -> 27
28	61.3 ppm	3.50-3.45 ppm (m) (2H)	COSY/TOCSY 27 -> 28
29	-	not observed	-
30	-	8.15 ppm (d) J=8.0 Hz (1H)	HMBC 30 -> 31
31	172.0 ppm	-	HMBC 32, 33 -> 31
32	34.6 ppm	2.67 ppm (ddd) J=14.9, 8.4, 6.6 Hz (1H) ; 2.40 ppm (ddd) J=14.5, 6.4, 6.4 Hz (1H)	HMBC 32 -> 34 ; COSY 33 -> 32
33	30.0 ppm	2.89-2.80 ppm (m) (2H)	HMBC 33 -> 34
34	141.4 ppm	-	HMBC 32,33,36 -> 34
35	126.9 ppm	7.03 ppm (d) J=7.4 Hz (1H)	COSY/TOCSY 36 -> 35
36	128.2 ppm	7.20 ppm (dd) J=7.8, 7.8 Hz (1H)	COSY/TOCSY 36 -> 37
37	123.9 ppm	7.16 ppm (d) J=7.6 Hz (1H)	HMBC 37 -> 40 / 40 -> 37
38	136.6 ppm	-	HMBC 36,41 -> 38
39	125.0 ppm	7.37 ppm (s) (1H)	TOCSY 39 -> 35,36,37
40	130.7 ppm	6.54 ppm (d) J=15.7 Hz (1H)	
41	126.6 ppm	6.37 ppm (ddd) J=15.8, 6.8, 6.8 Hz (1H)	
42	29.3 ppm	[3.76 ppm (dd) J=16.0, 6.1 Hz (1H) ; 3.62-3.58 ppm (m) (1H)	COSY/HMBC 41 -> 42

	13C	1H	key correlation
1	-	7.99 ppm (d) J=3.0 Hz (1H)	COSY 12 -> 13 ; HMBC 13 -> 1; HMBC 1 -> 3,5
2	170.4 ppm	-	HMBC 3,13 -> 2
3	46.0 ppm	4.11 ppm (ddd) J=12.9, 8.2, 4.6 Hz (1H)	COSY/TOCSY 14 -> 3 ; HMBC 3 -> 2
4	35.2 ppm	2.09 ppm (dd) J=13.1, 4.4 Hz (1H) ; 1.99 ppm (dd) J=13.1, 13.1 Hz (1H)	COSY/TOCSY 3 -> 4
5	47.7 ppm	-	HMBC 4,7,12,42 -> 5
6	134.6 ppm	-	HMBC 4,10,42 -> 6
7	125.8 ppm	7.16 ppm (s) (1H)	HMBC 7 -> 5
8	108.3 ppm	-	HMBC 7,10 -> 8
9	130.8 ppm	7.19-7.16 ppm (m) (1H)	COSY 9 -> 10 ; HMBC 9 -> 7
10	110.5 ppm	6.56 ppm (d) J=8.0 Hz (1H)	HMBC 10 -> 6,8
11	148.6 ppm	-	HMBC 7,12,13 -> 11
12	-	not observed	
13	73.2 ppm	4.93 ppm (d) J=3.2 Hz (1H)	HMBC 13 -> 2,4 / 13 -> 4,42 ; NOESY 13 -> 4'
14	-	7.19-7.16 ppm (m) (1H)	HMBC 14 -> 15
15	171.0 ppm	-	HMBC 16 -> 15
16	47.5 ppm	4.29 ppm (pentet) J=7.4 Hz (1H)	COSY/TOCSY 18 -> 16
17	17.5 ppm	1.11 ppm (d) J=7.1 Hz (3H)	COSY/TOCSY 16 -> 17
18	-	7.77 ppm (d) J=8.4 Hz (1H)	HMBC 18 -> 19
19	169.7 ppm	-	HMBC 20 -> 19
20	58.2 ppm	4.05 ppm (dd) J=6.9, 4.6 Hz (1H)	COSY/TOCSY 25 -> 20
21	35.6 ppm	1.88-1.84 (m) (1H)	TOCSY 20 -> 21
22	23.8 ppm	1.32-1.27 ppm (m) (1H) ; 1.23-1.17 ppm (m) (1H)	TOCSY 21 -> 22
23	11.7 ppm	0.81 ppm (dd) J=7.4, 7.4 Hz (3H)	COSY/TOCSY 22 -> 23
24	15.4 ppm	0.84 ppm (d) J=7.0 Hz (3H)	COSY/TOCSY 21 -> 24
25	-	8.19 ppm (d) J=6.7 Hz (1H)	HMBC 25 -> 26
26	171.5 ppm	-	HMBC 27 -> 26
27	53.5 ppm	4.54 ppm (ddd) J=7.8, 7.8, 6.0 Hz (1H)	COSY 27 -> 28
28	61.7 ppm	3.43 ppm (dd) J=9.3, 5.6 Hz (1H) ; 3.14 ppm (dd) J=9.2, 9.2 Hz (1H)	COSY/TOCSY 27 -> 28
29	-	not observed	-
30	-	7.91 ppm (d) J=7.4 Hz (1H)	COSY 30 -> 27
31	171.7 ppm	-	HMBC 30 -> 31
32	34.5 ppm	2.81-2.76 ppm (m) (1H) ; 2.37-2.33 ppm (m) (1H)	COSY 33 -> 32
33	30.1 ppm	2.94-2.89 ppm (m) (1H) ; 2.85-2.81 ppm (m) (1H)	HMBC 35,39 -> 33
34	140.9 ppm	-	HMBC 36 -> 34
35	128.2 ppm	7.04 ppm (d) J=7.4 Hz (1H)	HMBC 35 -> 33
36	128.4 ppm	7.21 ppm (dd) J= 7.6 Hz (1H)	HMBC 36 -> 38
37	124.0 ppm	7.18-7.16 ppm (m) (1H)	TOCSY 35,39 -> 37 ; COSY 36 -> 37
38	136.6 ppm	-	HMBC 41 -> 38
39	125.1 ppm	7.32 ppm (br s) (1H)	TOCSY 39 -> 35
40	134.5 ppm	6.42 ppm (d) J=15.8 Hz	
41	124.1 ppm	6.36 ppm (ddd) J=15.4, 7.2, 7.2 Hz (1H)	
42	43.2 ppm	2.46-2.44 ppm (m) (2H)	COSY 41 -> 42

	13C	1H	key correlation
1	-	7.55 ppm (br s) (1H) ; 7.09 ppm (br s) (1H)	TOCSY 1 -> 1'
2	173.6 ppm	-	HMBC 1 -> 2
3	53.2 ppm	4.41 ppm (ddd) J=11.1, 7.9, 3.3 Hz (1H)	COSY 14 -> 3
4	27.2 ppm	3.07 ppm (dd) J=14.6, 3.1 Hz (1H) ; 2.87 ppm (dd) J=14.6, 11.1 Hz (1H)	COSY/TOCSY 3 -> 4
5	109.5 ppm	-	HMBC 4,7,12,13 -> 5
6	127.6 ppm	-	HMBC 10,12,13 -> 6
7	121.7 ppm	7.96 ppm (s) (1H)	HMBC 7 -> 5,8,9,11
8	113.8 ppm	-	HMBC 7,10 -> 8
9	130.5 ppm	-	HMBC 7,42 -> 9
10	113.2	7.35 ppm (s) (1H)	HMBC 42 -> 10 / 10 -> 42
11	135.5 ppm	-	HMBC 7,12,13 -> 11
12	-	10.82 ppm (d) J=1.9 Hz (1H)	indole
13	125.1 ppm	7.17 ppm (d) J=2.2 Hz (1H)	COSY 12 -> 13
14	-	7.72 ppm (d) J= 8.0 Hz (1H)	HMBC 14 -> 15
15	171.6 ppm	-	HMBC 16 -> 15
16	47.5 ppm	4.15 ppm (pentet) J=7.0 Hz (3H)	COSY/TOCSY 18 -> 16
17	17.8 ppm	1.17 ppm (d) J=7.0 Hz (1H)	COSY/TOCSY 16 -> 17
18	-	7.60 ppm (d) J=7.0 Hz (1H)	HMBC 18 -> 19
19	169.4 ppm	-	HMBC 20 -> 19
20	56.3 ppm	4.05 ppm (dd) J=8.4, 5.7 Hz (1H)	COSY/TOCSY 25 -> 20
21	36.6 ppm	1.64-1.59 ppm (m) (1H)	TOCSY 20 -> 21
22	23.5 ppm	1.22-1.17 ppm (m) (1H) ; 0.94-0.89 ppm (m) (1H)	COSY/TOCSY 21 -> 22
23	10.9 ppm	0.67 ppm (dd) J=7.4, 7.4 Hz (3H)	COSY/TOCSY 22 -> 23
24	14.9 ppm	0.67 ppm (d) J=6.8 Hz (3H)	COSY/TOCSY 21 -> 24
25	-	7.41 ppm (d) J=8.5 Hz (1H)	HMBC 25 -> 26
26	169.5 ppm	-	HMBC 27 -> 26
27	54.1 ppm	4.24 ppm (ddd) J=8.3, 6.1, 6.0 Hz (1H)	COSY 27 -> 28
28	61.2 ppm	3.44-3.37 ppm (m) (1H)	COSY/TOCSY 27 -> 28
29	-	4.83 ppm (dd) J=5.3, 5.3 Hz (1H)	COSY/TOCSY 29 -> 27,28
30	-	8.03 ppm (d) J=8.3 Hz (1H)	HMBC 30 -> 31
31	171.2 ppm	-	HMBC 32,33 -> 31
32	35.7 ppm	2.52-2.48 ppm (m) (1H) ; 2.38-2.33 ppm (m) (1H)	COSY 33 -> 32
33	30.0 ppm	2.76-2.72 ppm (m) (2H)	HMBC 39 -> 33
34	141.2 ppm	-	HMBC 32,33,35,36 -> 34
35	128.1 ppm	7.19 ppm (d) J=4.8 Hz (1H)	HMBC 36 -> 35
36	126.7 ppm	7.04-7.01 ppm (m) (1H)	COSY 37 -> 36 ; TOCSY 39 -> 36
37	123.4 ppm	7.19 ppm (d) J=3.7 Hz (1H)	HMBC 39,40 -> 37
38	136.9 ppm	-	HMBC 36,37,40,41 -> 38
39	125.0 ppm	7.09 ppm (s) (1H)	HMBC 40 -> 39
40	129.9 ppm	6.26 ppm (d) J=15.9 Hz (1H)	
41	129.0 ppm	6.37 ppm (ddd) J=15.8, 6.2, 6.2 Hz (1H)	
42	38.3 ppm	3.72 ppm (dd) J=16.1, 6.2 Hz (1H) ; 3.65 ppm (dd) J=16.0, 5.8 Hz (1H)	COSY 41 -> 42

	13C	1H	key correlation
1	-	7.41 ppm (br s) (1H) ; 7.08 ppm (br s) (1H)	TOCSY 1 -> 1'
2	173.2 ppm	-	HMBC 1 -> 2
3	52.7 ppm	4.38 ppm (ddd) J=10.3, 7.5, 2.9 Hz (1H)	COSY 14 -> 3
4	26.8 ppm	3.09 ppm (dd) J=15.0, 2.9 Hz (1H) ; 3.00-2.95 ppm (m) (1H)	COSY/TOCSY 3 -> 4
5	109.7 ppm	-	HMBC 4,7,13 -> 5
6	129.3 ppm	-	HMBC 10,13 -> 6
7	120.7 ppm	7.82 ppm (d) J=1.7 Hz (1H)	
8	111.1 ppm	-	HMBC 7,10 -> 8
9	123.2	7.24-7.21 ppm (m) (1H)	HMBC 7 -> 10 ; COSY 7 -> 9
10	111.5 ppm	7.45 ppm (d) J=8.6 Hz (1H)	COSY 10 -> 9 ; TOCSY 7 -> 10
11	134.4 ppm	-	HMBC 7,13, 42 -> 11
12	-	-	-
13	128.0 ppm	7.28 ppm (s) (1H)	HMBC 42 -> 13
14	-	7.76 ppm (d) J=7.7 Hz (1H)	HMBC 14 -> 15
15	172.0 ppm	-	HMBC 16 -> 15
16	17.3 ppm	1.21 ppm (d) J=7.2 Hz (3H)	COSY/TOCSY 17 -> 16
17	47.6 ppm	4.29 ppm (pentet) J=7.3 Hz (1H)	COSY/TOCSY 18 -> 17
18	-	8.00 ppm (d) J=7.4 Hz (1H)	HMBC 18 -> 19
19	170.3 ppm	-	HMBC 20 -> 19
20	56.7 ppm	4.13 ppm (dd) J=7.5, 6.4 Hz (1H)	COSY/TOCSY 25 -> 20
21	36.5 ppm	1.71-1.67 ppm (m) (1H)	COSY 20 -> 21
22	23.9 ppm	1.38-1.34 ppm (m) (1H) ; 1.09-1.04 ppm (m) (1H)	COSY/TOCSY 21 -> 22
23	10.9 ppm	0.75 ppm (dd) J=7.4 Hz (3H)	COSY/TOCSY 22 -> 23
24	14.9 ppm	0.79 ppm (d) J=6.8 Hz (3H)	COSY/TOCSY 21 -> 24
25	-	7.46 ppm (d) J=7.8 Hz (1H)	HMBC 25 -> 26
26	170.2 ppm	-	HMBC 27 -> 26
27	55.4 ppm	4.23 ppm (ddd) J=7.5, 5.9, 5.9 Hz (1H)	COSY 27 -> 28
28	61.0 ppm	3.57-3.50 ppm (m) (2H)	COSY/TOCSY 27 -> 28
29	-	not observed	-
30	-	8.13 ppm (d) J=7.6 Hz (1H)	HMBC 30 -> 31
31	172.3 ppm	-	HMBC 32,33 -> 31
32	35.5 ppm	2.53-2.50 ppm (m) (1H) ; 2.47-2.44 ppm (m) (1H)	COSY 33 -> 32
33	30.1 ppm	2.87-2.84 ppm (m) (1H) ; 2.82-2.77 ppm (m) (1H)	HMBC 33 -> 35,39
34	141.5 ppm	-	HMBC 32,33,36 -> 34
35	127.5 ppm	7.09 ppm (d) J=7.1 Hz (1H)	HMBC 37 -> 35
36	128.2 ppm	7.24-7.21 ppm (m) (1H)	COSY 37 -> 36, 37
37	124.4 ppm	7.18 ppm (d) J=7.5 Hz (1H)	HMBC 40 -> 37
38	135.9 ppm	-	HMBC 36,41 -> 38
39	124.8 ppm	7.33 ppm (s) (1H)	HMBC 40 -> 39
40	132.3 ppm	6.66 ppm (d) J=15.8 Hz (1H)	
41	124.5 ppm	6.44 ppm (ddd) J=15.8, 6.3, 6.3 Hz (1H)	
42	47.1 ppm	4.93 ppm (dd) J=15.9, 6.0 Hz (1H) ; 4.83 ppm (dd) J=15.9, 6.2 Hz (1H)	COSY 41 -> 42

Acyclic Cinnamyl Carbonate S1: Synthesized according to General Procedure A. The reaction was filtered, concentrated, and the residue partitioned between EtOAc and H₂O. The resulting solids were collected by filtration to give **S1** (546mg, 62%) as an off-white solid. ¹H NMR (DMSO-*d*₆, 600 MHz): δ 0.69 (d, *J* = 6.4 Hz, 3H), 0.72 (d, *J* = 6.4 Hz, 3H), 0.77 (t, *J* = 7.3 Hz, 3H), 1.35-1.47 (m, 2H), 1.43 (s, 9H), 1.47-1.58 (m, 1H), 1.89-1.99 (m, 1H), 2.37-2.46 (m, 1H), 2.46-2.55 (m, 1H), 2.68 (dd, *J* = 16.4, 5.7 Hz, 1H), 2.75-2.85 (m, 2H), 2.88-2.97 (m, 2H), 3.08 (dd, *J* = 14.3, 4.6 Hz, 1H), 3.43 (br s, 1H), 4.04-4.10 (m, 1H), 4.22-4.29 (m, 1H), 4.39-4.49 (m, 1H), 4.53-4.59 (m, 1H), 4.67 (d, *J* = 6.0 Hz, 2H), 6.33 (dt, *J* = 15.6, 6.0 Hz, 1H), 6.63 (d, *J* = 15.6 Hz, 1H), 7.04 (s, 1H), 7.11 (d, *J* = 6.8 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.19 (s, 1H), 7.21-7.35 (m, 5H), 7.53 (br d, *J* = 8.3 Hz, 1H), 7.77 (br s, 1H), 7.92-7.98 (m, 1H), 8.01 (d, *J* = 7.7 Hz, 1H), 8.35 (d, *J* = 7.2 Hz, 1H), 11.02 (s, 1H), 11.92 (br s, 1H). ¹³C NMR (CDCl₃, 150 MHz): δ 173.2, 172.3, 172.1,171.5 170.7, 170.4, 162.3, 152.8, 141.7, 135.9, 134.7, 133.5, 129.2, 128.6, 128.1, 126.4, 125.4, 124.2, 123.3, 120.7, 113.3, 111.0, 110.1, 81.5, 66.9, 58.0, 53.3, 52.2, 49.7, 36.6, 35.8, 34.3, 30.9, 30.3, 27.4, 19.0, 18.4, 18.0, 17.5, 13.6. MS *m/z* 883.2/885.2 (calc'd: C₄₂H₅₆BrN₆O₁₀ [M+H]⁺, 883.3).

Analytical HPLC Method	Time	%B	Pren HPLC Method A			Prep HPLC Method B	
Column: Waters X-Select [™]	0	10	Column: Waters X-Select [™]	Time	%B	PFP. 4.6x250 mm. 5 µm	Time
PFP, 4.6x250 mm, 5 μm	3	10	PFP, 4.6x250 mm, 5 μm	0	40	Solvent A: $H_2O + 0.1\%$	0
Solvent A: H ₂ O + 0.1% TFA	23	70	Solvent A: H ₂ O + 0.1% TFA	3	40	HCO ₂ H	3
Solvent B: ACN + 0.1% TFA	25	10	Solvent B: ACN + 0.1% TFA	23	85	<u>Solvent B</u> : ACN + 0.1%	23
Flow rate: 1.00 mL/min	30	10	Flow rate: 18.00 mL/min			HCO₂H Flow rate: 18.00 mL/min	

%В

	13C	1H	key correlations	
1	41.6	2.38 (dd, J = 13.4, 6.6 Hz, 1H), 2.46 (dd, J = 13.4, 5.7 Hz, 1H)	HMBC 1→35 NOESY 1→35	
2	124.2	6.24-6.28 (m, 1H)	HMBC 2→4 NOESY 2→33	
3	134.2	6.24-6.28 (m, 1H)	HMBC 3→1 NOESY 3→33	
4	136.7	-		
5	124.1	7.04 (br d, <i>J</i> = 7.6 Hz, 1H)	HMBC 5→3	
6	127.7	7.15 (dd, <i>J</i> = 7.6, 7.6 Hz, 1H)	HMBC 6→4,8	
7	128	7.00 (br d, <i>J</i> = 7.6 Hz, 1H)		
8	140.1	-		
9	125.5	7.50-7.53 (m, 1H)	HMBC 9→3	
10	30.4	2.83-2.88 (m, 2H)	HMBC 10→8,12	
11	34.2	2.33-2.38 (m, 1H), 2.90-2.94 (m, 1H)	HMBC 11→8,12	
12	170.4	-		
13	-	7.70 (br d, <i>J</i> = 8.6 Hz, 1H)	HMBC 13→12	
14	50.6	4.26-4.31 (m, 1H)		
15	35.6	1.10-1.17 (m, 1H), 1.50-1.56 (m, 1H)		
16	17.5	0.51-0.57 (m, 1H), 0.63-0.69 (m, 1H)		
17	13.5	0.61-0.65 (m, 3H)		
18	172.1	-		
19	-	8.42 (br d, <i>J</i> = 5.7 Hz, 1H)	HMBC 19→18	
20	52	4.25 (ddd, <i>J</i> = 8.2, 5.7, 5.7 Hz, 1H)	COSY 20→21	
21	35.9	2.54-2.59 (m, 2H)	HMBC 21→22	
22	171.4	-		
23	-	not detected		
24	170.6	-		
25	-	6.97 (br d, <i>J</i> = 8.0 Hz, 1H)		
26	56.9	4.08 (dd, <i>J</i> = 8.0, 6.4 Hz, 1H)	TOCSY 26→25,27,28,29 HMBC 26→30	
27	30.7	1.89-1.96 (m, 1H)		
28	18.6	0.78 (d, <i>J</i> = 6.7 Hz, 3H)		
29	17.9	0.79 (d, <i>J</i> = 6.7 Hz, 3H)		
30	169.5	-		
31	-	7.92 (br d, <i>J</i> = 7.3 Hz, 1H)	HMBC 31→30 TOCSY 31→32,33 NOESY 31→33	
32	46.1	4.00 (ddd, <i>J</i> = 12.5, 7.3, 5.0 Hz, 1H)	HMBC 32→30,43	
33	33.3	pro-S 1.87 (dd, J = 13.1, 12.5 Hz, 1H)		
33'		<i>pro</i> -R 2.33 (dd, <i>J</i> = 13.1, 4.7 Hz, 1H)		
34	47.4	-		
35	74.9	4.82 (d, <i>J</i> = 2.3 H, 1H)	HMBC 35→1,34,37,43 COSY 35→36,44	
36	-	6.31 (br s, 1H)	HMBC 36→34,37,42	
37	148.3	-		
38	110.8	6.62 (d, <i>J</i> = 8.3 Hz, 1H)	HMBC 38→40,42	
39	130.6	7.18 (dd, <i>J</i> = 8.3, 2.0 Hz, 1H)	HMBC 39→37,40,41	
40	108	-		
41	126.3	7.05 (d, <i>J</i> = 2.0 Hz, 1H)	HMBC 41→34,37,40	
42	132.4	-		
43	169.3	-		
44	-	7.96 (d, J = 2.3 Hz, 1H)	HMBC 44→32,34	

	13C	1H	key correlations
1	40.7	2.42 (dd, J = 13.7, 7.0 Hz, 1H), 2.47-2.52 (m, 1H)	HMBC 1→34 NOESY 1→35,32
2	124.7	6.65 (ddd, <i>J</i> = 15.6, 7.6, 7.0 Hz, 1H)	HMBC 2→4 NOESY 2→33'
3	133.2	6.40 (d, <i>J</i> = 15.6 Hz, 1H)	HMBC 3→1
4	136.6	-	
5	125.1	6.98 (br d, <i>J</i> = 7.6 Hz, 1H)	HMBC 5→3
6	127.9	7.17 (dd, <i>J</i> = 7.6, 7.5 Hz, 1H)	HMBC 6→4,8
7	127.5	7.05 (br d, <i>J</i> = 7.5 Hz, 1H)	
8	141.3	-	
9	123.9	7.81 (br s, 1H)	HMBC 9→3
10	29.9	2.84-2.91 (m, 1H)	HMBC 10→8,12
11	34.9	2.53-2.60 (m, 1H), 2.64-2.70 (m, 1H)	HMBC 11→8,12
12	171.5	-	
13	-	8.08 (br d, J = 7.7, 5.5 Hz, 1H)	TOCSY 13→14,15,16,17
14	52.2	4.16 (ddd, <i>J</i> = 8.9, 7.7, 5.5 Hz, 1H)	
15	33.9	1.44-1.52 (m, 1H), 1.62-1.68 (m, 1H)	
16	18.3	1.04-1.13 (m, 2H)	
17	13.4	0.77 (t, J = 7.3 Hz, 3H)	
18	171.9	-	
19	-	8.31 (br d. <i>J</i> = 6.9 Hz. 1H)	TOCSY 19→20.21
20	51.3	4.27-4.32 (m. 1H)	HMBC 20→22
21	35.3	2.68-2.79 (m. 1H)	HMBC 21→22
22	171.6	-	
23	-	not detected	
24	169.7	-	
25	-	7.12 (d. <i>J</i> = 7.1 Hz. 1H)	TOCSY 25→26.27.28.29 HMBC 25→24
26	56.6	4.27-4.32 (m. 1H)	
27	31.5	1.97-2.05 (m. 1H)	HMBC 27→26.30
28	17.6	0.85 (d, J = 6.8 Hz, 3H)	
29	18.8	0.87 (d, J = 6.8 Hz, 3H)	
30	169.7	-	
31	-	8.23 (br d. $J = 7.3$ Hz. 1H)	TOCSY 31 \rightarrow 32 33 HMBC 31 \rightarrow 30 NOESY 31 \rightarrow 33
32	47.1	4.41 (ddd, J = 13.2, 7.3, 4.5 Hz, 1H)	HMBC 32 \rightarrow 43 NOFSY 32 \rightarrow 35
33	35	pro-S 1.69 (dd $J = 13.2, 13.2 \text{ Hz}, 1\text{H}$)	HMBC 33→43
33'		pro-R = 2.65 (dd, J = 13.2, 4.5 Hz, 1H)	
34	48.5	-	
35	72.4	4 83 (br s 1H)	HMBC 35 \rightarrow 1 NOESY 35 \rightarrow 1 2 3
36	-	6 21 (br s 1H)	HMBC 36-34 42
37	147	-	
38	110.7	$6.56 (d_{1}/= 8.1 Hz 1H)$	HMBC 38→40.42
30	130.3	7 12 (dd / = 81 15 Hz 1H)	
<u></u>	100.5		
41	126./	7 25 (d. / = 1.5 Hz. 1H)	
42	120.4	-	
42	160.0	-	
	109.0	7.60 (s. 1H)	
1	-	11.00 (3, 111)	

	13C	1H	key correlations
1	29.6	3.69 (dd, J = 16.5, 6.7 Hz, 1H), 3.78 (dd, J = 16.5, 7.0 Hz, 1H)	HMBC 1→2,3,34,35
2	125.5	6.47 (ddd, J = 15.6, 7.0, 6.7 Hz, 1H)	COSY 2→1 HMBC 2→4
3	131.8	6.68 (br d, J = 15.6 Hz, 1H)	HMBC 3→4
4	137	-	
5	123.5	7.25 (br d, J = 7.7 Hz, 1H)	HMBC 5→3 TOCSY 5→6,7,9
6	127.9	7.21 (dd, J = 7.7, 7.5 Hz, 1H)	HMBC 6→4,8
7	127.2	7.04 (br d, J = 7.5 Hz, 1H)	
8	141.3	-	
9	125.8	7.40 (br s, 1H)	HMBC 9→3
10	29.9	2.79 (ddd, J = 14.6, 8.6, 4.4 Hz, 1H), 2.93-2.99 (m, 1H)	HMBC 10→7,9,12
11	35.2	2.45 (ddd, J = 14.6, 8.3, 4.4 Hz, 1H), 2.51-2.56 (m, 1H)	HMBC 11→12
12	171.9	-	
13	-	8.08 (br d, J = 7.7 Hz, 1H)	HMBC 13→12 TOCSY 13→14,15,16,17
14	52.4	4.19 (ddd, J = 8.9, 7.7, 5.3 Hz, 1H)	COSY 14→15 HMBC 14→18
15	33.6	1.44-1.51 (m, 1H), 1.55-1.63 (m, 1H)	COSY 15→16 HMBC 15→18
16	18.5	1.14-1.30 (m, 2H)	
17	13.3	0.79 (dd, J = 7.3, 7.3 Hz, 3H)	
18	172.4	-	
19	-	8.10 (br d, J = 6.5 Hz, 1H)	HMBC 19→18
20	49.6	4.54 (ddd, J = 7.3, 6.5, 6.3 Hz, 1H)	HMBC 20→22,24
21	35.3	2.54 (dd, J = 16.8, 7.3 Hz, 1H), 2.71 (dd, J = 16.8, 6.3 Hz, 1H)	HMBC 21→22
22	171.9	-	
23	-	12.33 (br s, 1H)	
24	170.4	-	
25	-	7.63 (br d, J = 8.3 Hz, 1H)	HMBC 25→24
26	57.5	4.14 (dd, J = 8.3, 5.7 Hz, 1H)	HMBC 26→30
27	29.4	2.00-2.17 (m, 1H)	
28	16.7	0.61 (d, J = 6.8 Hz, 3H)	
29	18.8	0.75 (d, J = 6.8 Hz, 3H)	TOCSY 29→25,26,27,28
30	170	-	
31	-	7.67-7.70 (m, 1H)	HMBC 31→30
32	53.1	4.40 (ddd, J = 8.1, 8.0, 6.0 Hz, 1H)	
33	26.6	2.98 (dd, J = 14.4, 8.0 Hz, 1H), 3.07 (dd, J = 14.4, 6.0 Hz, 1H)	HMBC 33→34
34	105.5	-	
35	136.8	-	
36	-	10.88 (s, 1H)	HMBC 36→34
37	133.8	-	
38	112.2	(7.20 (d, J = 8.4 Hz, 1H)	HMBC 38→40,42
39	122.2	[/.υδ (αα, J = 8.4, 1.8 Hz, 1H)	НМВС 39→37,40
40	110.8		
41	120.2	//.09 (0, J = 1.8 HZ, 1H)	HMBC 41→34,37,40
42	129.8	- 	
43	172.7		
1 441	-	17.10 (DFS. 1H). 7.19 (DFS. 1H)	IHIVIBU 44.44 →43

	13C	1H	key correlations
1	39	3.62 (dd, J = 15.5, 5.4 Hz, 1H), 3.72 (dd, J = 15.5, 6.5 Hz, 1H)	HMBC 1→2,3,38,39
2	129.2	6.39 (ddd, J = 15.8, 6.5, 5.4 Hz, 1H)	COSY 1→2 HMBC 2→4
3	130.3	6.24 (br d, J = 15.8 Hz, 1H)	
4	137.3	-	
5	128.3	7.15-7.19 (m, 1H)	HMBC 5→3
6	123.9	7.15-7.19 (m, 1H)	HMBC 6→4,8
7	127.5	6.96-7.01 (m, 1H)	
8	141.3	-	
9	125.1	7.13 (br s, 1H)	HMBC 9→3
10	30.4	2.68-2.75 (m, 1H), 2.77-2.85 (m, 1H)	HMBC 10→8,12
11	35.5	2.34 (ddd, J = 13.9, 5.9, 5.9 Hz, 1H), 2.53-2.61 (m, 1H)	HMBC 11→8,12
12	171.6	-	
13	-	7.90 (br d, J = 7.7 Hz, 1H)	TOCSY 13→14,15,16,17
14	52.1	4.08 (ddd, J = 7.8, 7.7, 5.0 Hz, 1H)	HMBC 14→18
15	34	1.16-1.26 (m, 1H), 1.27-1.36 (m, 1H)	HMBC 15→18
16	17.9	0.77-0.90 (m, 2H)	
17	13.3	0.46 (t, J = 7.3 Hz, 3H)	
18	172	-	
19	-	8.23 (br d, J = 7.4 Hz, 1H)	HMBC 19→18 TOCSY 19→20,21
20	50.5	4.42 (ddd, J = 8.4, 7.4, 5.0 Hz, 1H)	HMBC 20→24
21	35.9	2.55 (dd, J = 16.7, 8.4 Hz, 1H), 2.67 (dd, J = 16.7, 5.0 Hz, 1H)	HMBC 21→22
22	171.9	-	
23	-	12.15 (br s, 1H)	
24	170.5	-	
25	-	6.99-7.04 (m, 1H)	
26	57.6	4.04 (dd, J = 7.6, 5.4 Hz, 1H)	HMBC 26→30
27	30.8	1.89-1.90 (m, 1H)	
28	17.4	0.68 (d, J = 6.8 Hz, 3H)	HMBC 28→25,26,27,29
29	18.9	0.72 (d, J = 6.8 Hz, 3H)	
30	170	-	
31	-	7.84 (br d, J = 8.7 Hz, 1H)	HMBC 31→30 TOCSY 31→32,33
32	53.3	4.46 (ddd, J = 11.8, 8.7, 2.5 Hz, 1H)	
33	27.6	2.83 (dd, J = 14.3, 11.8 Hz, 1H), 3.12 (dd, J = 14.3, 2.5 Hz, 1H)	HMBC 33→34
34	109.9	-	
35	125.4	7.16-7.18 (m, 1H)	HMBC 35→37
36	-	10.76 (d, J = 1.4 Hz, 1H)	
37	135.7	-	
38	130.5	7.36 (s, 1H)	HMBC 38→1,40,42
39	113.5	-	
40	114.1	-	
41	121.9	7.96 (s, 1H)	HMBC 41→1,34,39,40
42	127.8	-	
43	173.6	-	
44	_	7 11 (br s 1H) 7 51 (br s 1H)	HMBC 44 44'→43

Acyclic Cinnamyl Carbonate S3: Synthesized according to Procedure A. Purified via SiO₂ chromatography using a gradient from 1% to 10% methanol in chloroform. Beige solid. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 10.93 (d, *J* = 2.5 Hz, 1H), 7.97 (d, *J* = 8.3 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.83 (t, *J* = 5.6 Hz, 1H), 7.28-7.37 (m, 5H), 7.22-7.27 (m, 3H), 7.11 (br. d, *J* = 7.3 Hz, 1H), 7.04 (br. s, 1H), 6.89 (dd, *J* = 9.1, 9.1, 2.5 Hz, 1H), 6.64 (d, *J* = 16 Hz, 1H), 6.34 (dt, *J* = 16.0, 6.2 Hz, 1H), 4.68 (dd, *J* = 6.2, 1.1 Hz, 2H), 4.38 (ddd, *J* = 7.0, 7.0 Hz, 1H), 4.26- 4.35 (m, 3H), 3.74 (ddd, *J* = 9.6, 6.6, 6.6 Hz, 1H), 3.53 (ddd, *J* = 9.6, 5.7, 6.0 Hz, 1H), 2.96-3.10 (m, 4H), 2.8 (app t, *J* = 7.8 Hz, 2H), 2.37 (app t, *J* = 7.8 Hz, 2H), 1.93-2.03 (m, 1H), 1.70-1.91 (m, 6H), 1.47-1.60 (m, 2H), 1.44 (s, 9H), 1.27-2.39 (m, 2H), 1.00-1.08 (m, 1H), 0.84 (d, *J* = 6.8 Hz, 3H), 0.81 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (DMSO-*d*₆, 126 MHz): δ 173.0, 171.7, 171.2, 171.1, 170.2, 169.2, 155.7, 152.8, 141.8, 135.8, 133.4, 132.7, 128.6, 128.0, 127.7, 127.7, 126.4, 125.8, 124.2, 123.3, 112.1, 112.0, 110.32, 110.28, 108.9, 108.7, 103.3, 103.1, 81.5, 67.0, 66.9, 59.5, 54.5, 53.3, 51.9, 47.2, 38.1, 36.9, 36.1, 31.0, 29.6, 28.9, 27.3, 25.8, 24.4, 24.1, 22.5, 14.9, 10.8. MS *m/z* 876.5 (calc'd: C₄₆H₆₂N₇O₉, [M+H]⁺, 876.5)

	13C	1H	key correlation
1	31.9	3.58 (br d, J = 5.8 Hz, 2H)	HMBC 1→2,3,41,42
2	129.3	6.38 (dt, J = 15.8, 5.8 Hz, 1H)	TOCSY 2→1 HMBC 2→4,41
3	129.6	6.32 (d, J = 15.8 Hz, 1H)	HMBC 3→5,9
4	136.9	-	
5	123.7	7.15-7.19 (m, 1H) overlap	
6	128.4	7.16-7.21 (m, 1H) overlap	HMBC 6→4,8
7	127.1	6.99-7.04 (m, 1H) overlap	
8	141.5	-	
9	124.8	7.15 (br s, 1H) overlap	
10	30.9	2.71 (t, J = 7.8 Hz, 2H)	HMBC 10→8,12
11	36.9	2.27 (br t, J = 7.8 Hz, 2H)	HMBC 11→8,12
12	171.1	-	
13	-	7.81 (br t, J = 6.0 Hz, 1H)	HMBC 13→12 COSY 13→14,14'
14	37.5	2.77-2.86 (m, 1H), 3.04-3.11 (m, 1H)	COSY 14→15
15	25.6	1.23-1.32 (m, 2H) overlap	COSY 15→16
16	29.6	1.26-1.33 (m, 1H) overlap, 1.48-1.55 (m, 1H) overlap	
17	51.1	4.24-4.30 (m, 1H)	TOCSY 17→14,15,16,18 HMBC 17→21
18	-	7.83 (d, J = 8.4 Hz, 1H)	HMBC 18→19
19	168.8	-	
20	22.1	1.79 (s, 3H)	HMBC 20→19
21	171.5	-	
22	-	7.93 (d, J = 7.7 Hz, 1H)	HMBC 22→21
23	54.7	4.19 (dd, J = 8.8, 7.7 Hz, 1H)	HMBC 23→21,28 TOCSY 23→24,25,26,27
24	35.6	1.63-1.71 (m, 1H) overlap	
25	14.6	0.87 (d, J = 6.8 Hz, 3H)	
26	23.8	0.98-1.09 (m, 1H), 1.45-1.54 (m, 1H) overlap	
27	10.3	0.78 (dd, J = 7.4, 7.4 Hz, 3H)	
28	126.7	-	
29	59.3	4.13 (dd, J = 8.3, 5.0 Hz, 1H)	COSY 29→30,30' TOCSY 29→30,31,32 HMBC 29→33
30	28.8	1.63-1.70 (m, 1H) overlap	
31	24.0	1.66-1.78 (m, 1H) overlap, 1.92-2.01 (m, 1H) overlap	
32	46.8	3.43-3.50 (m, 1H), 3.67-3.74 (m, 1H)	
33	171.2	-	
34	-	7.51 (br d, J = 7.7 Hz, 1H) overlap	HMBC 34→33
35	53.2	4.48 (ddd, J = 9.7, 7.7, 3.8 Hz, 1H)	HMBC 35→37,46
36	27.2	2.93-3.05 (m, 2H) overlap	HMBC 36→37
37	110.2	-	
38	126.1		
39	103.5	7.49 (d, JHF = 11.0 Hz, 1H)	HMBC 39→40
	155.2 (d, J ≈		
40	240 Hz)	-	
41	119.9		
42	112.4	7.22 (d, JHF = 6.4 Hz, 1H)	HMBC 42→40
43	132.0		
44	-	10.84 (0, J = 1.9 HZ, 1H)	ΠΒΙΝΙΟ 44→37,38,43
40	124.2	1.10-1.10 (III, 10) Ovenap	
40	173.0	$\frac{1}{2}$	
41	-	1.02 (b) S, 1 Π) overlap, 1.50 (b) S, 1 Π)	ΠΙVIDU 47→40 TUUST 47→47

	13C	1H	key correlation
1	47	4.49 (dd, J = 16.3, 5.6 Hz, 1H), 4.96 (dd, J = 16.6, 5.6, Hz, 1H)	HMBC 1→43,45
2	125.6	6.33 (ddd, <i>J</i> = 15.8, 5.6, 5.6 Hz, 1H)	TOCSY 2→3,1
3	131.4	6.48 (br d, J = 15.8 Hz, 1H)	HMBC 3→4
4	136.1	-	
5	124.3	7.16-7.19 (m, 1H) overlap	
6	128.3	7.14-7.19 (m, 1H) overlap	HMBC 6→4,8
7	127.6	7.03-7.07 (m, 1H)	
8	141.7	-	
9	125.8	7.15 (br s, 1H)	
10	30.6	2.72 (t, J = 7.5 Hz, 2H)	HMBC 10→8,12
11	36.7	2.23-2.32 (m, 2H)	HMBC 11→8,12
12	171.2	-	
13	-	7.69 (br t, J = 5.7 Hz, 1H)	HMBC 13→12 COSY 13→14
14	37.3	2.82-2.90 (m, 1H), 2.97-3.03 (m, 1H)	COSY 14→15
15	25.4	1.15-1.24 (m, 2H)	COSY 15→16,16' TOCSY 15→16,17
16	29	1.27-1.34 (m, 1H), 1.39-1.46 (m, 1H)	HMBC 16→17 COSY 16→17
17	51.6	4.22-4.28 (m, 1H)	HMBC 17→21
18	-	7.89 (d, $J = 8.0$ Hz, 1H)	
19	169.1	-	
20	22	1.79 (s, 3H)	
21	171.7	-	
22	-	7.99 (d, <i>J</i> = 8.6 Hz, 1H)	HMBC 22→21
23	54.4	4.25-4.30 (m, 1H)	
24	35.6	1.67-1.74 (m, 1H)	
25	15.1	0.81 (d, J = 6.7 Hz, 3H)	
26	23.5	0.95-1.03 (m, 1H), 1.43-1.51 (m, 1H)	
27	10.6	0.76 (t, J = 7.4 Hz, 3H)	
28	170.3	-	
29	59.7	4.16 (dd, <i>J</i> = 8.2, 5.0 Hz, 1H)	TOCSY 29→30,31,32 HMBC 29→33
30	28.7	1.57-1.65 (m, 1H), 1.84-1.89 (m, 1H)	
31	23.8	1.59-1.65 (m, 1H), 1.68-1.75 (m, 1H)	
32	46.8	3.45-3.51 (m, 1H), 3.55-3.61 (m, 1H)	
33	171.6	-	
34	-	7.79 (d, <i>J</i> = 8.1 Hz, 1H)	HMBC 34→33
35	52.6	4.36-4.42 (m, 1H)	COSY 35→36 HMBC 35→46
36	26.5	2.96-3.03 (m, 1H), 3.08-3.14 (m, 1H)	HMBC 36→35,37
37	110.4	-	
38	128.1	-	
39	103.4	7.37 (dd, JHF = 10.1, JHH = 2.4 Hz, 1H)	HMBC 39→40,43
40	156.9 (d,		
40	J≈230 Hz)	-	
41	108.9	6.93 (ddd, JHF = 9.4 Hz, JHH = 8.9, 2.4 Hz, 1H)	HMBC 41→43
42	110.6	7.44 (dd, JHH = 8.9 Hz, JHF = 4.5 Hz, 1H)	HMBC 42→38,40
43	132.5	-	
44	-	-	
45	128.7	7.35 (br s, 1H)	HMBC 45→37,38,43
46	173.3	-	
47	-	7.11 (br s, 1H), 7.27 (br s, 1H)	TOCSY 47→47'

Acyclic Cinnamyl Carbonate S5: Synthesized according to Procedure A. Purified via SiO₂ chromatography using a gradient from 1% to 10% methanol in chloroform. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 0.77 (d, *J* = 6.8 Hz, 3H), 0.78 (d, *J* = 6.8 Hz, 3H), 1.43 (s, 9H), 1.86-1.96 (m, 1H), 2.41 (ddd, *J* = 14.5, 8.7, 5.9 Hz, 1H), 2.55 (dd, *J* = 14.5, 8.3 Hz, 1H), 2.72-2.88 (m, 4H), 3.03 (apt dt, *J* = 14.1, 4.9 Hz, 2H), 3.55 (dd, *J* = 16.6, 5.4 Hz, 1H), 3.74 (dd, *J* = 16.6, 6.0 Hz, 1H), 4.11 (dd, *J* = 8.2, 6.9 Hz, 1H), 4.42 (ddd, *J* = 8.6, 8.6, 5.1 Hz, 1H), 4.47 (ddd, *J* = 9.0, 8.1, 4.8 Hz, 1H), 4.66 (dd, *J* = 6.2, 1.1 Hz, 2H), 6.31 (dt, *J* = 15.9, 6.2 Hz, 1H), 6.61 (br d, *J* = 15.9 Hz, 1H), 7.05-7.11 (m, 2H), 7.13-7.30 (m, 12H), 7.74 (d, *J* = 1.9 Hz, 1H), 7.88 (d, *J* = 8.3 Hz, 1H), 8.02 (d, *J* = 8.0 Hz, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 8.16 (t, *J* = 5.7 Hz, 1H), 11.01 (d, *J* = 1.9 Hz, 1H). ¹³C NMR (DMSO-*d*₆, 126 MHz): δ 173.2, 172.2, 172.1, 171.5, 169.2, 153.3, 142.1, 138.4, 136.3, 135.2, 133.9, 129.7, 129.6, 129.0, 128.5 (2), 126.8, 126.7, 125.9, 124.7, 123.74, 123.70, 121.1, 113.8, 111.5, 110.4, 82.0, 67.4, 58.5, 54.5, 53.9, 42.4, 37.8, 36.9, 31.4, 30.6, 27.8, 19.6,18.6

	13C	1H	key correlation
1	28.3	3.53 (dd, J = 17.2, 5.9 Hz, 1H), 3.81 (dd, J = 17.2, 5.9 Hz, 1H)	HMBC 1→25,26
2	127.6	6.56 (ddd, <i>J</i> = 16.0, 5.9, 5.9 Hz, 1H)	HMBC 2→4, COSY 2→1
3	130.2	6.37 (br d, J = 16.0 Hz, 1H)	
4	136.9	-	
5	123	7.26 (d, <i>J</i> = 7.9 Hz, 1H) overlap	HMBC 5→9,3
6	127.97	7.18 (dd, J = 7.9, 7.9 Hz, 1H) overlap	HMBC 6→4,8
7	127.95	6.99 (d, <i>J</i> = 7.9 Hz, 1H) overlap	
8	140.7	-	
9	124.9	7.20 (s, 1H) overlap	
10	29.8	2.73-2.78 (m, 1H) overlap, 2.89-2.96 (m, 1H) overlap	HMBC 10→9
11	34	2.34-2.40 (m, 1H), 2.72-2.79 (m, 1H) overlap	TOCSY 11→11',10
12	171.3	-	
13	-	7.78 (d, <i>J</i> = 9.1 Hz, 1H)	TOCSY 13→14,15,16,17, HMBC 13→12
14	58	3.92 (dd, <i>J</i> = 9.1, 6.0 Hz, 1H)	HMBC 14→18
15	29.1	1.92-1.98 (m, 1H)	
16	17.6	0.76 (d, <i>J</i> = 3.7 Hz, 3H)	
17	19	0.77 (d, <i>J</i> = 3.7 Hz, 3H)	
18	170.8	-	
19	-	6.97 (dd, <i>J</i> = 8.0, 2.9 Hz, 1H) overlap	
20	41.1	3.12 (dd, <i>J</i> = 16.7, 2.9 Hz, 1H), 3.76 (dd, <i>J</i> = 16.7, 8.0 Hz, 1H)	TOCSY 20→19, HMBC 20→18,21
21	167.6	-	
22	-	8.04-8.08 (m, 1H) overlap	HMBC 22→21
23	53.1	4.51-4.56 (m, 1H)	HMBC 23→34
24	26.7	2.72-2.79 (m, 1H) overlap, 2.96-3.00 (m, 1H) obscured	HMBC 24→25,26,33,34
25	106.6	-	
26	136.4	-	
27	-	11.00 (s, 1H)	
28	134.1	-	
29	112.3	7.21 (d, $J = 8.5$ Hz, 1H) overlap	HMBC 29→31
30	122.5	7.12 (dd, $J = 8.5$, 1.6 Hz, 1H)	HMBC 30→28,31
31	110.7	-	
32	120	7.73 (d, J = 1.6 Hz, 1H)	HMBC 32→25,28,30,31
33	129.8	-	
34	171.1		
35	-	8.04-8.08 (m, 1H) overlap	
36	53.5	$\begin{bmatrix} 4.49 \ (000, J = 9.0, 8.0, 5.0 \text{ Hz}, 1\text{H}) \\ 0.00 \ (11 \ J = 40.7, 0.0 \text{ Hz}, 11) \\ 0.05 \ (11 \ J = 40.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50.7, 50$	HMBC 30→34,38,42
31	37.3	2.86 (aa, J = 13.7, 9.0 HZ, 1H), 3.05 (aa, J = 13.7, 5.0 HZ, 1H)	HMBC 37→38,39
38	137.5		
39	129	7.22 (0, J = 7.7 HZ, ZH) Ovenap	
40	127.9	7.26 (dd, <i>J</i> = 7.7, 7.7 Hz, 2H) overlap	HMBC 40→38
41	126	7.15-7.18 (m, 1H) overlap	
42	172.4	-	
43	-	7.15 (br s, 1H), 7.46 (br s, 1H)	HMBC 43→42, TOCSY 43→43'

	13C	1H	key correlation
1	38.3	3.61-3.67 (m, 1H) overlap, 3.69-3.75 (m, 1H) overlap	HMBC 1→3
2	129	6.40 (ddd, J = 16.0, 5.6, 5.6 Hz, 1H)	HMBC 2→4, COSY 2→1
3	129.1	6.08 (br d, J = 16.0 Hz, 1H)	HMBC 3→4,5,9
4	137	-	
5	122.6	7.21 (br d, <i>J</i> = 8.0 Hz, 1H)	HMBC 5→3,7,9
6	127.6	7.17 (dd, <i>J</i> = 8.0, 8.0 Hz, 1H) overlap	HMBC 6→8,4
7	126.7	6.99 (d, <i>J</i> = 8.0 Hz, 1H) overlap	
8	140.9	-	
9	124.5	6.99 (br s, 1H) overlap	HMBC 9→3,5,7
10	29.1	2.68-2.74 (m, 1H), 2.86-2.92 (m, 1H) overlap	HMBC 10→8
11	34.3	2.42-2.48 (m, 1H), 2.53-2.59 (m, 1H)	HMBC 11→8
12	170.9	-	
13	-	7.39 (d, <i>J</i> = 8.7 Hz, 1H)	HMBC 13→12
14	57.8	3.92 (dd, <i>J</i> = 8.7, 5.9 Hz, 1H)	COSY 14→13, HMBC 14→18
15	29.5	1.83-1.90 (m, 1H)	COSY 15→14
16	17	0.68 (d, J = 6.7 Hz, 3H) overlap	COSY 16→15
17	18.6	0.69 (d, J = 6.6 Hz, 3H) overlap	
18	170.3	-	
19	-	7.26-7.31 (m, 1H) overlap	
20	40.8	3.09-3.17 (m, 1H) overlap, 3.66-3.72 (m, 1H) overlap	HMBC 20→18,21
21	167.4	-	
22	-	7.75-7.86 (m, 1H) overlap	
23	54.8	4.50-4.56 (m, 1H) overlap	COSY 23→22
24	27.6	2.76-2.82 (m, 1H),3.04-3.10 (m, 1H) overlap	
25	109.9	-	
26	124.4	7.13 (d, <i>J</i> = 2.1 Hz, 1H)	HMBC 26→25,28,33, COSY 26→27
27	-	10.71 (br s, 1H)	HMBC 27→25,26,28,33
28	135.1	-	
29	113.1	7.31 (s, 1H)	HMBC 29→1
30	129.6	-	
31	113.8	-	
32	121.9	8.00 (s, 1H)	HMBC 32→25,28,30,31
33	128.1	-	
34	170.5	-	
35	-	7.84 (d, <i>J</i> = 8.1 Hz, 1H) overlap	HMBC 35→34
36	53.1	4.56 (ddd, <i>J</i> = 8.5, 8.1, 5.4 Hz, 1H) overlap	HMBC 36→38,42
37	37.2	2.91 (dd, <i>J</i> = 13.9, 8.5 Hz, 1H) overlap, 3.10 (dd, <i>J</i> = 13.9, 5.4 Hz, 1H) overlap	HMBC 37→38,39
38	137.4	-	
39	128.6	7.25-7.28 (m, 2H) overlap	HMBC 39→41
40	127.5	7.25-7.28 (m, 2H) overlap	HMBC 40→38
41	125.5	7.16-7.20 (m, 1H) overlap	
42	172.1		
43	-	Not observed	

	13C	1H	key correlation
1	34.9	3.93 (br dd, J = 16.6, 4.1 Hz, 1H), 4.03 (dd, J = 16.6, 6.3 Hz, 1H)	HMBC 1→31,33
2	128.2	6.42 (ddd, <i>J</i> = 16.0, 6.3, 4.1 Hz, 1H)	COSY 2→1, HMBC 2→4,5
3	129.8	6.13 (br d, <i>J</i> = 16.0 Hz, 1H)	
4	136.8	-	
5	123.1	6.99 (dd, <i>J</i> = 7.9 Hz, 1H) overlap	
6	127.9	7.14-7.19 (m, 1H) overlap	HMBC 6→8,4
7	127.3	7.09 (d, <i>J</i> = 7.9 Hz, 1H) overlap	HMBC 7→10
8	141.3	-	
9	124.62	7.28 (br s, 1H)	HMBC 9→10,5,7
10	29.3	2.68-2.75 (m, 1H) overlap, 2.96-3.03 (m, 1H) overlap	HMBC 10→7,8,9
11	34.3	2.40-2.47 (m, 1H), 2.69-2.77 (m, 1H) overlap	HMBC 11→8
12	171.7	-	
13	-	7.95 (d, <i>J</i> = 8.6 Hz, 1H)	TOCSY 13→14,15,16,17, HMBC 13→12
14	57.5	4.24 (dd, <i>J</i> = 8.6, 5.6 Hz, 1H)	HMBC 14→18
15	30.1	2.03-2.11 (m, 1H)	HMBC 15→18
16	17.3	0.78 (d, <i>J</i> = 6.9 Hz, 3H)	
17	19.1	0.82 (d, <i>J</i> = 6.9 Hz, 3H)	
18	171	-	
19	-	7.82-7.86 (m, 1H) overlap	HMBC 19→18
20	42.3	3.58 (dd, <i>J</i> = 16.4, 4.8 Hz, 1H), 3.78 (dd, <i>J</i> = 16.4, 6.1 Hz, 1H)	COSY 20→19, HMBC 20→18
21	168.2	-	
22	-	8.11 (d, <i>J</i> = 8.1 Hz, 1H)	HMBC 22→21
23	54	4.59 (ddd, <i>J</i> = 8.4, 8.1, 5.9 Hz, 1H)	HMBC 23→24
24	29.3	2.96-3.03 (m, 1H) overlap, 3.15 (dd, <i>J</i> = 14.7, 8.4 Hz, 1H)	HMBC 24→25,34
25	110.1	-	
26	125.5	6.90 (d, <i>J</i> = 2.2 Hz, 1H)	HMBC 26→25,33
27	-	11.05 (d, <i>J</i> = 2.2 Hz, 1H)	HMBC 27→25,26,28,33
28	135.6	-	
29	111.6	7.17 (d, $J = 8.5$ Hz, 1H) overlap	HMBC 29→31
30	124.55	7.25 (d, $J = 8.5$ Hz, 1H) overlap	
31	114.7	-	
32	129.5	-	
33	126.3	-	
34	170	-	
35	-	7.85 (d, J = 8.3 Hz, 1H)	HMBC 35→34
36	53.6	4.39 (ddd, J = 8.5, 8.3, 5.3 Hz, 1H)	HMBC 36→34,42
37	37.2	2.74-2.81 (m, 1H) overlap, 2.96-3.02 (m, 1H) overlap	HMBC 37→38,39,42
38	137.4		
39	128.9	7.18 (d, J = 7.7 Hz, 2H) overlap	HMBC 39→37
40	127.8	7.20-7.25 (m, 2H) overlap	
41	126	7.14-7.19 (m, 1H) overlap	
42	172	-	
43	-	6.99 (br s, 1H) overlap, 7.10 (br s, 1H) overlap	TOCSY 43→43', HMBC 43→42

	13C	1H	key correlation
1	46.8	4.85 (dd, J = 16.7, 6.1 Hz, 1H), 4.91 (dd, J = 16.7, 5.2 Hz, 1H)	HMBC 1→2,3,28.
2	125.6	6.51 (ddd, J = 15.9, 6.1, 5.2 Hz, 1H)	COSY 2→3,1 HMBC 2→4
3	131.5	6.34 (d, <i>J</i> = 15.9 Hz, 1H)	
4	135.8	-	
5	123.5	7.20-7.23 (m, 1H)	HMBC 5→3
6	127.7	7.16-7.20 (m, 1H)	HMBC 6→4,8
7	128.1	7.03 (br d, <i>J</i> = 7.3 Hz, 1H)	
8	140.6	-	
9	125.8	7.24 (br s, 1H)	HMBC 9→5,7
10	30.1	2.72-2.79 (m, 1H), 2.85-2.93 (m, 1H)	
11	34.7	2.37 (ddd, J = 14.4, 7.8, 3.7 Hz, 1H), 2.65-2.72 (m, 1H)	HMBC 11→8,12 TOCSY 11→11',10,1'
12	171.3	-	
13	-	7.77 (d, <i>J</i> = 8.6 Hz, 1H)	HMBC 13→12 TOCSY 13→14,15,16,17
14	57.9	3.89 (dd, <i>J</i> = 8.6, 6.2 Hz, 1H)	HMBC 14→18
15	29.1	1.90-1.99 (m, 1H)	
16	17.7	0.77 (d, <i>J</i> = 6.9 Hz, 3H)	
17	18.7	0.78 (d, <i>J</i> = 6.8 Hz, 3H)	
18	170.6	-	
19	-	7.20-7.23 (m, 1H)	HMBC 19→18
20	40.9	3.14 (dd, J = 16.8, 4.4 Hz, 1H), 3.63 (dd, J = 16.8, 7.0 Hz, 1H)	HMBC 20→18,21 TOCSY 20→19
21	167.6	-	
22	-	8.00 (d, J = 9.1 Hz, 1H)	HMBC 22→21 TOCSY 22→23,24
23	51.9	4.56 (ddd, J = 11.4, 9.1, 3.1 Hz, 1H)	HMBC 23→25
24	27.2	2.66-2.73 (m, 1H), 3.04-3.10 (m, 1H)	HMBC 24→25,26,33
25	109.8	-	
26	128	7.23 (Dr S, 1H)	HMBC 26→25
21	-	-	
20	104.0		
29	111.7	7.42 (0, J = 0.0 Hz, III)	
30	123.1	7.19-7.24 (III, 1H)	
32	121.1	- 7 84 (d. / = 1.9 Hz 1H)	HMBC 32-28 31
33	121.1	-	
34	170.9	-	
35	-	8 21 (d. / = 8 1 Hz 1H)	HMBC 35→34_TOCSY 35→36 37
36	53.4	4 49 (ddd = 8.9.81 4.9 Hz 1H)	HMBC 36→38 42
37	37.1	2.85 (dd ./ = 13.8 .8.9 Hz .1H) .3.04 (dd ./ = 13.8 .4.9 Hz .1H)	HMBC 37→38
38	137.5		
39	128.9	7.22-7.25 (m, 2H)	TOCSY 39→41
	407.5		
40	127.5	/.24-/.2δ (M, 2H)	HIMBC 40→38
41	126	7.15-7.19 (m, 1H)	HMBC 41→39
42	172.4	-	
43	-	7.11 (br s, 1H), 7.43 (br s, 1H)	TOCSY 43→43' HMBC 43→42

D.2. Synthesis of pyrroloindoline isomerization model system 21a&b

N-Acetyl-L-tryptophan isopropyl amide (S7): Boc-L-Tryptophan (1.52 g, 5 mmol) was dissolved in DMF and cooled in an ice bath,

then treated with HBTU (2.08 g, 5.5 mmol). The mixture was stirred cold for 10 min, then iPr₂NH (1.05 mL, 6 mmol) was added. The mixture was stirred at rt for 30 min, then concentrated, re-dissolved in EtOAc and washed successively with NaHCO₃, 1M HCl, brine, dried over Na₂SO₄ and concentrated. The resulting residue was treated with 4N HCl in dioxane for 30 min, then concentrated and re-dissolved in DMF. The mixture was rendered basic by the addition of iPr₂EtN, cooled to 0 °C and treated with Ac₂O (708 µL, 7.5 mmol). The mixture was stirred at rt for 30 min, then concentrated, re-dissolved in EtOAc and washed successively with NaHCO₃, 1N HCl, brine, dried over Na₂SO₄ and concentrated with Ac₂O (708 µL, 7.5 mmol). The mixture was stirred at rt for 30 min, then concentrated. The residue was triturated with hexanes:CHCl₃ (1:1) and the resulting solid was collected by filtration to give **S7** (1.26 g, 73%) as a white solid. ¹H NMR

 $(DMSO-d_6, 400 \text{ MHz})$: δ 0.92 (d, J = 6.6 Hz, 3H), 1.02 (d, J = 6.6 Hz, 3H), 1.78 (s, 3H), 2.88 (dd, J = 14.5, 8.2 Hz, 1H), 3.01 (dd, J = 14.5, 5.8 Hz, 1H), 3.72-3.86 (m, 1H), 4.46 (ddd, J = 8.6, 8.2, 5.9 Hz, 1H), 6.96 (ddd, J = 8.0, 7.0, 1.0 Hz, 1H), 7.04 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 7.30 (ddd, J = 8.0, 1.1,1.0 Hz, 1H), 7.58 (br d, J = 7.8 Hz, 1H), 7.75 (d, J = 7.7 Hz, 1H), 7.96 (d, J = 8.3 Hz, 1H), 10.75-10.79 (m, 1H). ¹³C NMR (DMSO- d_6 , 101 MHz): δ 175.7, 174.1, 141.2, 132.6, 128.7, 126.0, 123.8, 123.3, 116.4, 115.4, 58.6, 33.5, 27.8, 27.5, 27.4. MS m/z 288.4 (calc'd: C₁₆H₂₂N₃O₂ [M+H]⁺, 288.4).

endo-Pyrroloindoline (21a) and exo-pyrroloindoline (21b): Anhydrous DCM was vigorously sparged with argon for 15 min. To a vial

was added *N*-acetyl-L-tryptophan isopropyl amide (**S7**, 345 mg, 1 mmol), cinnamyl alcohol (147 mg, 1.1 mmol) and Pd(PPh₃)₄ (58 mg, 0.05 mmol), and the vessel was evacuated and backfilled with argon (x3). DCM (2.5 mL) was added, the mixture was cooled in an ice bath, and Et₃B (1.0 M in hexanes, 1.2 mL) was added in one portion. The resulting suspension was stirred at 0 °C for 9 hrs, then diluted with EtOAc and washed with sat. NaHCO₃ (x2), brine, dried over Na₂SO₄ and concentrated. Purification by column chromatography on SiO₂ eluted with 0–8% MeOH in

CHCl₃ afforded **21a** (150 mg, 37%) and **21b** (146 mg, 36%). **21a**: $R_f = 0.61$, 6% MeOH/CHCl₃, ¹H NMR (CDCl₃, 500 MHz, major rotamer): δ 0.48 (d, J = 6.6 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H), 2.01 (s, 3H), 2.49 (dd, J = 13.8, 8.3 Hz, 1H), 2.59 (ddd, J = 13.8, 6.6, 1.0 Hz, 1H), 2.63-2.67 (m, 2H), 3.56-3.70 (m, 1H), 4.36-4.43 (m, 2H), 5.55 (br s, 1H), 5.99 (ddd, J = 15.6, 8.3, 7.0 Hz, 1H), 6.08 (d, J = 7.8 Hz, 1H), 6.40 (d, J = 15.6 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.77 (dd, J = 7.4, 7.4 Hz, 1H), 7.04-7.12 (m, 2H), 7.17-7.22 (m, 1H), 7.23-7.29 (m, 4H). ¹³C NMR (CDCl₃, 126 MHz, major rotamer): δ 171.3, 170.2, 147.9, 136.9, 134.0, 132.0, 129.0, 128.5, 127.4, 126.1, 124.4, 123.9, 120.1, 109.6, 80.7, 63.0, 55.6, 42.8, 41.1, 40.5, 22.2, 22.2, 21.3. MS *m/z* 404.2 (calc'd: C₂₅H₃₀N₃O₂ [M+H]⁺, 404.2). **21b**: $R_f = 0.50$, 6% MeOH/CHCl₃, ¹H NMR (CDCl₃, 600 MHz, major rotamer): δ 1.17 (d, J = 6.6 Hz, 3H), 1.18 (d, J = 6.6 Hz, 3H), 1.92 (s, 3H), 2.37 (dd, J = 13.1, 7.9 Hz, 1H), 2.58 (br dd, J = 13.5, 8.0 Hz, 1H), 2.63 (br dd, J = 13.5, 7.3 Hz,1H), 2.72 (dd, J = 13.1, 8.0 Hz, 1H), 4.04-4.08 (m, 1H), 4.09-4.17 (m, 1H), 5.53 (s, 1H), 6.08 (br d, J = 8.0 Hz, 1H), 6.09 (apt dt, J = 15.5, 7.7 Hz, 1H), 6.38 (d, J = 15.5 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 6.77 (dd, J = 7.3, 7.3 Hz, 1H), 7.08-7.16 (m, 2H), 7.21-7.26 (m, 1H), 7.24-7.32 (m, 5H). ¹³C NMR (CDCl₃, 150 MHz, major rotamer): δ 172.0, 170.9, 148.5, 137.1, 133.8, 128.8, 128.60, 128.58, 127.4, 126.2, 124.9, 123.3, 118.9, 109.7, 82.7, 62.3, 55.0, 41.8, 41.6, 40.6, 22.8, 22.53, 22.50. MS *m/z* 404.2 (calc'd: C₂₅H₃₀N₃O₂ [M+H]⁺, 404.3).

(S)-2-acetamido-3-(2-cinnamyl-1H-indol-3-yl)-N-isopropylpropanamide (22): exo-Pyrroloindoline 21b (12.7 mg, 31.5 µmol) was

dissolved in MeNO₂ (5.0 mL) and treated with TFA (1.3 mL). The mixture was stirred at rt for 30 min, then concentrated and dried thoroughly in vacuo. Purification by column chromatography on SiO₂ eluted with $0\rightarrow 2\%$ MeOH in CHCl₃ afforded **22** (9.0 mg, 71%) as a light yellow film. $R_f = 0.48$, 6% MeOH/CHCl₃. ¹H NMR (CDCl₃, 500 MHz, major rotamer): δ 0.64 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.5Hz, 3H), 1.99 (s, 3H), 3.05 (dd, J = 14.1, 10.0 Hz, 1H), 3.28 (dd, J = 14.1, 4.8 Hz, 1H), 3.68 (dd, J =16.4, 6.5 Hz, 1H), 3.75 (dd, J = 16.4, 6.6 Hz, 1H), 3.76-3.85 (m, 1H), 4.60 (ddd, J = 10.0, 7.3, 4.8 Hz, 1H), 5.07 (br d, J = 7.3 Hz, 1H), 6.32 (ddd, J = 15.7, 6.8, 6.8 Hz, 1H), 6.47 (br d, J = 7.3 Hz, 1H), 6.54 (d, J = 15.7 Hz, 1H), 7.09-7.18 (m, 2H), 7.21-7.34 (m, 4H), 7.34-7.39 (m, 2H), 7.66 (d, J = 7.4 Hz, 1H),

7.99 (br s, 1H). ¹³C NMR (CDCl₃, 126 MHz): δ 170.3, 170.0, 136.9, 135.5, 134.3, 132.5, 128.8, 128.6, 127.8, 126.3, 126.3, 121.9, 120.0, 118.7, 110.7, 107.3, 54.2, 41.6, 29.9, 28.2, 23.4, 22.6, 21.9. MS *m*/z 404.2 (calc'd: C₂₅H₃₀N₃O₂ [M+H]⁺, 404.2).

D.3. Selective Synthesis of 9d

(3-bromophenyl)propanic acid tert-butyl ester (S8): 3-Bromobenzaldehyde (4.63 g, 25 mmol), Meldrum's acid (3.60 g, 25 mmol), piperidine (198 µL, 2 mmol), AcOH (429 µL, 7.5 mmol) were dissolved in benzene (50 mL) and heated to reflux on a Dean-Stark apparatus. After 30 min, the reaction was cooled in an ice bath and EtOH (5 mL) was added, followed by the addition of NaBH₄ (945 mg, 25 mmol) in portions. The mixture was stirred for 90 min, guenched by the addition of H₂O, and concentrated. To the residue was added pyridine (40 mL) and H₂O (4 mL), and the mixture was heated to reflux for 22 hours. The reaction was cooled, concentrated, diluted with 1M NaOH (75 mL), and washed with Et₂O (x2). The aqueous phase was acidified to pH <2 by the addition of conc. HCl, and extracted with DCM (x3). The combined extract was washed with brine, dried over Na₂SO₄ and concentrated to give acid S8 (5.32 g, 93%) as a yellow crystalline solid, which was used without purification. ¹H NMR (500 MHz, CDCl₃): δ 2.68 (t, *J* = 7.7 Hz, 2H), 2.93 (t, *J* = 7.7 Hz, 2H), 7.10-7.21 (m, 2H), 7.31-7.42 (m, 2H), 9.33 (br s, 1H). ¹³C NMR (126 MHz, CDCl₃): 178.8, 142.6, 131.5, 130.2, 129.7, 127.1, 122.7, 35.4, 30.2. MS m/z 227.0/229.0 (calc'd: C₉H₈BrO₂ [M-H]⁻, 227.0). This material (5.32 g, 23.2 mmol) was dissolved in anhydrous DCM (75 mL) and treated with t-BuOH (6.61 mL, 69.6 mmol), DMAP (3.41 g, 27.9 mmol). The mixture was cooled in an ice bath, DCC (5.75 g, 27.9 mmol) was added. The mixture was refluxed overnight, and the resulting suspension was filtered through a pad of SiO₂, rinsing with DCM. The filtrate was exchanged to THF and treated with a small amount of aqueous AcOH and Norit for 30 min. The volatiles were then removed, and the residue was triturated with 1:1 hexanes:DCM and filtered through a pad of SiO₂, rinsing with the same. The filtrate was evaporated to give ester **S9** (5.22 g, 79%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 1.41 (s, 9H), 2.52 (t, J = 7.7 Hz, 2H), 2.87 (t, J = 7.7 Hz, 2H), 7.10-7.17 (m, 2H), 7.32 (ddd, J = 6.8, 2.1, 2.1 Hz, 1H), 7.34-7.37 (m, 1H). ¹³C NMR (126 MHz, CDCl₃); δ 172.0, 143.2, 131.6, 130.1, 129.4, 127.2, 122.5, 80.7, 36.9, 30.8, 28.2,

(*E*)-3-(3-(3-hydroxyprop-1-en-1-yl)phenylpropionic acid *tert*-butyl ester (24): Bromide S9 (5.22 g, 18.3 mmol), vinyl boronate S10⁵ (6.55 g, 22.0 mmol), Na₂CO₃ (5.82 g, 54.9 mmol), and dioxane:H₂O (5:1, 48 mL) were sparged vigorously with argon for 10 min. The apparatus was opened briefly to introduce Pd(PPh₃)₄ (212 mg, 0.18 mmol), and sparging was continued for 5 min. The mixture was heated to reflux for 2 days, then cooled, and the volatiles were removed by rotary evaporation. The aqueous remainder was diluted, and extracted with EtOAc (x2). The combined extract was washed with brine, dried over Na₂SO₄, concentrated, reconstituted in hexanes:EtOAc (9:1), and filtered through a pad of SiO₂ rinsing with the same. The filtrate was concentrated to give 6.86 g of a red oil. This material was dissolved in THF (55 mL) and treated with Bu₄NF solution (36 mL, 36 mmol), and stirred for 30 min. The mixture was concentrated and partitioned between H₂O and EtOAc. The organic phase was washed with H₂O (x2), brine, dried over Na₂SO₄ and concentrated. Purification by column chromatography on SiO₂ eluted with 15→30% EtOAc in hexanes afforded **24** (3.37 g, 71%) as a pale yellow oil. R_f: 0.44 (7:3 hexanes : EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 1.41 (s, 9H), 2.54 (t, *J* = 7.8 Hz, 2H), 2.90 (t, *J* = 7.8 Hz, 2H), 4.31 (br d, *J* = 5.6 Hz, 2H), 6.35 (dt, *J* = 15.9, 5.6 Hz, 1H), 6.58 (dt, *J* = 15.8, 1.4 Hz, 1H), 7.06-7.11 (m, 1H), 7.20-7.25 (m, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 172.4, 141.2, 136.9, 131.3, 128.8, 128.6, 127.9, 126.6, 124.5, 80.6, 63.9, 37.2, 31.2, 28.2. MS *m*/z 285.1 (calc'd: C₁₆H₂₂NaO₃ [M+H]⁺, 285.3).

endo-pyrroloindoline 26: 5-Fluoro-L-tryptophan methyl ester (59 mg, 0.25 mmol) was freshly freed from its hydrochloride, and was combined with cinnamyl alcohol **24** (72 mg, 0.28 mmol) and Pd(PPh₃)₄ (14 mg, 0.013 mmol). The vessel was evacuated and backfilled with argon (x3), then DCM (4.2 mL) – previously sparged with argon for 20 min – was added, and the mixture was cooled in an ice bath. Et₃B solution (300 µL, 1.0 M in hexanes) was added, and the reaction was warmed to and held at 6 °C overnight. The reaction was quenched by addition of 5% aq. K₂CO₃ (50 mL) and extracted with DCM (x3).The combined extract was dried over K₂CO₃ and concentrated. Purification by column chromatography on SiO₂ eluted with 75→85% EtOAc in hexanes afforded **26** (96 mg, 80%) as a faintly yellow oil contaminated by ~8 mol% triphenylphosphine oxide. R_f: 0.32 (7:3 hexanes : EtOAc). ¹H NMR (400 MHz, CDCl₃): δ 1.40 (s, 9H), 2.39 (dd, *J* = 13.0, 7.9 Hz, 1H), 2.48 (dd, *J* = 13.0, 3.4 Hz, 1H), 2.51 (t, *J* = 8.0 Hz, 2H), 2.53 (dd, *J* = 13.5, 8.0 Hz, 1H), 2.63 (dd, *J* = 13.5, 6.6

Hz, 1H), 2.86 (t, J = 7.8 Hz, 2H), 3.38 (s, 1H), 3.89 (br dd, J = 7.3, 3.1 Hz, 2H), 4.91 (s, 1H), 6.05 (ddd, J = 15.4, 8.0, 7.3 Hz, 1H), 6.39 (br d, J = 15.7 Hz, 1H), 6.46 (dd, JHH = 8.4 Hz, $J_{HF} = 4.2$ Hz, 1H), 6.70-6.79 (m, 2H), 7.04 (br d, J = 7.6 Hz, 1H), 7.11 (br s, 1H), 7.12 (br d, J = 7.8 Hz, 1H), 7.18 (dd, J = 7.8, 7.6 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 174.2, 172.3, 157.3 (d, $J_{CF} = 236$ Hz), 145.6, 141.2, 137.3, 133.7, 132.2 (d, $J_{CF} = 9.9$ Hz), 128.7, 127.5, 126.4, 125.2, 124.1, 114.7 (d, $J_{CF} = 23.3$ Hz), 111.0 (d, $J_{CF} = 23.8$ Hz), 110.2 (d, $J_{CF} = 8.1$ Hz), 83.2, 80.5, 59.9, 57.9 (d, $J_{CF} = 1.6$ Hz), 52.1, 41.9, 41.2, 37.1, 31.1, 28.2. MS *m/z* 481.2 (calc'd: C₂₈H₃₄FN₂O₄ [M+H]⁺, 481.6).

Intermediate 27: Pyrroloindoline 26 (581 mg, 1.21 mmol) was dissolved in DMF, and Boc-L-phenylalanine and iPr₂EtN (505 µL, 2.9 mmol) were added. The mixture was cooled to 0 °C, treated with HBTU (550 mg, 1.45 mmol), and allowed to warm to rt. After 40 min, the mixture was diluted with 1:1 brine : 5% aq. K₂CO₃ and extracted with EtOAc (x2). The combined extract was washed with brine. dried over Na₂SO₄ and concentrated. The residue was dissolved in THF:MeOH:H₂O (3:1:1, 12 mL) and treated with LiOH•H2O (102 mg, 2.42 mmol). The mixture was stirred for 3.5 hrs, then additional LiOH (50 mg, CO₂tBu O Me 1.21 mmol) was added. After 2 hrs, additional LiOH (50 mg, 1.21 mmol) was again added. The mixture was stirred for 1.5 hrs, then guenched by the addition of Et₃N•HCl (830 mg, 6.0 mmol), он HN concentrated, and further dried in vacuo. The resulting residue was dissolved in DMF (12 mL) and Ĥ treated with iPr₂EtN (843 µL, 4.84 mmol), L-threonine amide (171 mg, 1.45 mmol), and then by a соин, BocHN HBTU (550 mg, 1.45 mmol). After stirring for 1 hr, additional L-threonine amide (85 mg, 0.72 mmol) and HBTU (225 mg, 0.72 mmol) were added, and stirring continued for 2.5 hrs. The mixture was concentrated to ~ 4 mL by rotary evaporation, and partitioned between 5% ag. K₂CO₃ and EtOAc. The aqueous phase was extracted with EtOAc (x1), and the combined organic phase was washed sequentially with H₂O and brine, dried over Na₂SO₄ and concentrated. Purification by column chromatography on SiO₂ eluted with $0 \rightarrow 8\%$ MeOH in CHCl₃ afforded **27** (598 mg, 61%) as a white foam. An analytical sample was

chromatography on SiO₂ eluted with $0 \rightarrow 8\%$ MeOH in CHCl₃ afforded **27** (598 mg, 61%) as a white foam. An analytical sample was obtained by preparative HPLC (19x250mm C18, 40;75-100% ACN + 0.1 v% HCO₂H, 18 mL/min). ¹H NMR (500 MHz, DMSO-d₆, ~8:4:1 mixture of rotamers, data is of major): δ 0.66 (d, J = 6.1 Hz, 3H), 1.30 (s, 9H), 1.34 (s, 9H), 2.33 (dd, J = 13.3, 4.2 Hz, 1H), 2.49 (t, J = 7.8 Hz, 2H), 2.48-2.55 (m, 2H), 2.56 (dd, J = 13.5, 8.8 Hz, 1H), 2.66 (dd, J = 13.8, 6.3 Hz, 1H), 2.77 (t, J = 7.3 Hz, 2H), 2.88 (dd, J = 14.0, 11.8 Hz, 1H), 3.10 (dd, J = 14.0, 1.7 Hz, 1H), 3.79-3.88 (m, 2H), 4.64 (dd, J = 9.5, 4.5 Hz, 1H), 4.74 (ddd, J = 10.9, 8.1, 2.4 Hz, 1H), 4.88 (br s, 1H), 6.17 (ddd, J = 15.7, 7.9, 7.9 Hz, 1H), 6.22 (d, J = 3.8 Hz, 1H), 6.47 (d, J = 15.7 Hz, 1H), 6.60 (dd, J_{HH} = 8.2, J_{HF} = 4.4 Hz, 1H), 6.70-6.74 (m, 1H), 6.76 (br s, 1H), 6.78 (br dd, J = 8.8, 8.8 Hz, 1H), 7.03-7.09 (m, 2H), 7.11-7.27 (m, 5H), 7.26-7.36 (m, 2H), 7.44 (d, J = 7.9 Hz, 1H), 7.48 (apt d, J = 7.5 Hz, 2H). ¹³C NMR (126 MHz, DMSO-d₆, major rotamer): δ 173.5, 171.8, 171.5, 170.5, 156.7 (d, $J_{CF} = 233$ Hz), 155.8, 144.9, 137.9, 136.9, 135.9, 133.6, 129.9, 128.43, 128.40 (d, $J_{CF} = 20.0$ Hz), 127.9, 127.2, 126.5, 126.2, 124.9, 123.6, 114.3 (d, $J_{CF} = 23.2$ Hz), 111.7 (d, $J_{CF} = 8.0$ Hz), 110.3 (d, $J_{CF} = 24.0$ Hz), 82.0, 79.7, 78.3, 65.5, 60.6, 57.98, 57.97, 57.5, 52.8, 36.2, 30.4, 28.1, 27.73, 27.70 (2), 19.5. ¹⁹F NMR (282 MHz, DMSO-d₆, trifluoroacetate salt, mixture of rotamers): δ -73.5, -125.1 (major), -127.0 (minor). MS m/z 814.4 (calc'd: C4₅H₅₇FN₅O₈ [M+H]⁺, 814.4).

Cyclization of 27 to lactam 9d: Intermediate **27** (570 mg, 0.70 mmol) was dissolved in anhydrous DCM (7 mL) and cooled in an ice bath. Pre-cooled TFA (7 mL) was added, and the initially colorless mixture was stirred for 3.5 hours over which it turned dark pink. The mixture was then concentrated by rotary evaporation (bath 30 °C) and further dried *in vacuo*. The resulting faintly brown residue was dissolved in DMF (10 mL) and rendered basic by the addition of iPr₂EtN (1.5 mL). This solution was added via syringe pump to a stirred solution of HBTU (1.33 g, 3.5 mmol) in DMF (130 mL) over a period of 1 hr. Stirring was continued for 20 min, and the mixture was then concentrated to ~5 mL by rotary evaporation and partitioned between 5% K₂CO₃ (aq.) and EtOAc. The aqueous phase was extracted with ethyl acetate (x2) and the combined organic phase was washed with H₂O (x1), brine, dried over Na₂SO₄ and concentrated. The resulting residue was triturated with warm MeOH and filtered to give, 169 mg of a white solid. The remaining solution was purified by column chromatography on SiO₂ eluted with 0→10% MeOH in CHCl₃ to give additional 112 mg. Macrocycle **9d** (combined 281 mg, 63% from **27**) obtained in this manner was spectroscopically identical to material isolated previously from acid-promoted cyclization of **7**.

D.4. Reaction of trifunctional template 27 with Trp-Trp-Tyr

Acyclic cinnamyl carbonate (S11). Compound S11 was prepared according to General Procedure A. The reaction was worked up by partitioning between sat. NaHCO₃ and EtOAc. The organic phase was then washed with sat. NaHCO₃, 1N HCl, H₂O, brine, dried over Na₂SO₄ and concentrated. Purification was accomplished by column chromatography on SiO₂ eluted with 0→10% MeOH in CHCl₃ afforded S11 as a colorless film. A yield was not recorded. ¹H NMR (CD₃OD, 500 MHz, ~1:1 mixture of diastereomers): δ 1.28 (s, 9H), 1.37 (s, 9H), 1.44 (s, 9H), 1.45 (s, 9H), 1.53-1.69 (m, 2H), 1.92-2.00 (m, 1H), 2.06 (ddd, J = 14.0, 8.1, 5.8 Hz, 1H), 2.33-2.45 (m, 2H), 2.46-2.54 (m, 1H), 2.53-2.62 (m, 2H), 2.62-2.74 (m, 3H), 2.74-3.12 (m, 16H), 3.37-3.49 (m, 2H), 3.54-3.66 (m, 2H), 3.73-3.84 (m, 2H), 4.40 (dd, J = 7.8, 6.2 Hz, 1H), 4.44-4.52 (m, 3H), 4.52-4.58 (m, 2H), 4.55 (br d, J = 6.3 Hz, 2H), 4.60 (br d, J = 6.3 Hz, 2H), 5.30-5.39 (m, 1H), 5.45 (dd, J = 8.1, 6.4 Hz, 1H), 6.13 (dt, J = 15.9, 6.2 Hz, 1H), 6.17 (dt, J = 15.9, 6.2 Hz, 1H), 6.44 (br d, J = 15.9 Hz, 1H), 6.50 (br d, J = 15.9 Hz, 1H), 6.65 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 8.4 Hz, 2H), 6.74-6.77 (m, 2H), 6.83 (s, 1H), 6.86-6.93 (m, 4H), 6.93-7.03 (m, 7H), 7.04-7.15 (m, 6H), 7.15-7.22 (m, 2H), 7.29 (apt t, J = 7.7 Hz, 1H), 7.32 (apt t, J = 7.8 Hz, 1H), 7.40-7.46 (m, 3H), 7.48 (d, J = 7.9 Hz, 1H). ¹³C NMR (CD₃OD, 126 MHz, ~1:1 mixture of diastereomers): δ 177.0, 176.9, 176.5, 176.4, 176.0, 175.9, 174.38, 174.36, 174.05, 174.03, 173.4, 173.3, 163.1, 161.2, 157.2, 155.5, 154.93, 154.92, 137.92, 137.91, 137.89, 137.84, 134.03, 134.00, 133.90, 133.87, 133.75, 133.71, 131.34, 131.26, 130.8, 130.73, 130.69, 129.1, 129.0, 128.7, 128.6, 128.5, 128.0, 127.9, 127.84, 127.78, 127.3, 127.2, 124.5, 124.3, 124.1, 122.6, 122.54, 122.52, 120.0, 119.93, 119.90, 119.44, 119.38, 119.31, 119.28, 116.6, 116.5, 116.4, 116.3, 116.2, 112.4, 112.3, 110.7, 110.64, 110.57, 110.51, 83.0, 82.9, 81.7, 81.6, 68.29, 68.27, 61.0, 60.6, 56.2, 56.1, 56.0, 55.9, 55.3, 55.2, 46.0, 44.4, 44.3, 38.6, 38.4, 37.6, 32.8, 32.6, 32.1, 31.8, 30.7, 28.7, 28.61, 28.55, 28.4, 28.3, 28.2, 28.0, 26.2, 26.0. MS m/z 958.3 (calc'd: C₅₃H₆₁FN₇O₉, [M-Boc+2H]⁺, 958.8); 940.5 (calc'd: C₅₃H₅₉FN₇O₈, [M-OCO₂tBu+2H]⁺, 940.4).

Pyrrolo tetrahydro-β-carboline (30). Intermediate **S11** (147 mg, 138 μmol) was dissolved in AcOH:H₂O (2:1, 15.7 mL) and stirred at rt for 4 hr. The mixture was concentrated to give **30** (106 mg, 88%) as a colorless film. An analytical sample was obtained by preparative HPLC purification. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 1.43 (s, 9H), 1.90-2.00 (m, 2H), 2.56-2.64 (m, 2H), 2.69 (dd, *J* = 13.9, 7.9 Hz, 1H), 2.79-2.88 (m, 2H), 2.99 (dd, *J* = 14.6, 9.5 Hz, 1H), 3.05-3.13 (m, 2H), 3.20 (d, *J* = 15.6 Hz, 1H), 6.37 (dt, *J* = 15.9, 6.2 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 2H), 6.67 (br d, *J* = 16.0 Hz, 1H), 6.92-6.98 (m, H), 6.98 (d, *J* = 8.5 Hz, 2H), 6.99-7.03 (m, 1H), 7.03-7.06 (m, 2H), 7.12 (d, *J* = 2.0 Hz, 1H), 7.16 (dd, *J*_{HF} = 9.7, *J*_{HH} = 8.3 Hz, 1H), 7.21 (br d, *J* = 8.1 Hz, 1H), 7.29 (br s, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.36 (br d, *J* = 7.8 Hz, 1H), 7.40 (ddd, *J*_{HH} = 8.3, 2.0 Hz, 1H), 7.47 (dd, *J*_{HF} = 7.3 Hz, *J*_{HH} = 2.0 Hz, 1H), 7.59 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 8.15 (d, *J* = 7.8 Hz, 1H), 9.19 (br s, 1H), 10.78 (s, 1H), 10.81 (d, *J* = 1.6 Hz, 1H). MS *m*/z 765.3 (calc'd: C₄₅H₄₂FN₆O₅, [M-Boc+2H]⁺, 765.3).

31d: This peak contained two isomeric products that were not identified

Analytical HPLC method:			
<u>Column</u> : Waters XBridge™			
C18, 4.6x250mm, 5µm.			
<u>Solvent A</u> : H ₂ O + 0.1%v			
TFA			
Solvent B: ACN + 0.1%v			
TFA			
Flow rate: 1 00 ml/min			

0

2

25

26

31

42

42

60

42

42

<u>Column</u>: Waters XBridge™ C18, 10x250mm, 5µm. <u>Solvent A</u>: H₂O + 0.1%v

TFA <u>Solvent B</u>: ACN + 0.1%v

TFA

Flow rate: 7.00 ml/min

lime	%В	
0	42	L
2	42	L
16	50	L
16.2	100	L
19	100	L
19.5	42	

method B: <u>Column</u>: Waters XSelect™ C18, 10x250mm, 5µm. <u>Solvent A</u>: H₂O + 0.1%v TFA <u>Solvent B</u>: ACN + 0.1%v TFA <u>Flow rate</u>: 6.00 ml/min For re-purification of 31e

Time	%В
0	43
1	43
31	54

	13C	1H ,	key correlation
1	291	3.57 (dd, J = 16.8, 5.6 Hz, 1H), 3.67 (dd, J = 16.8, 5.1 Hz, 1H)	HMBC 1→2,3,30,38
2	126.7	6.24 (ddd, J = 15.8, 5.6, 5.1 Hz, 1H)	TOCSY 2→1,3 HMBC 2→4
3	128.9	5.87 (d, <i>J</i> = 15.8 Hz, 1H)	
4	133.3	-	
5	124.6	7.34-7.37 (m, 1H) overlap	HMBC 5→7 TOCSY 5→7,9
6	114.6	7.09 (dd, J_{HF} = 9.9 Hz, J_{HH} = 1.8 Hz, 1H)	HBMC 6→4,7
7	159.4 (d, <i>J</i> ≈		
1'	240 Hz)	-	
8	123.4	-	
9	129.9	6.69 (dd, J _{HF} = 7.4 Hz, J _{HH} = 1.8 Hz, 1H)	HMBC 9→5,7
10	27.6	2.76-2.82 (m, 1H) overlap, 3.00 (dd, J = 13.5, 5.2 Hz, 1H)	HMBC 10→8,11,12
11	42.2	2.78-2.84 (m, 1H) overlap	
12	173.3	-	
13	29.2	1.95 (ddd, J = 12.7, 9.5, 9.5 Hz, 1H), 2.26 (dd, J = 12.7, 8.0 Hz, 1	HMBC 13→10,11,12 COSY 13→14
14	51.2	4.32 (dd, <i>J</i> = 9.5, 8.0 Hz, 1H)	HMBC 14→25
15	47.3	4.97 (d, <i>J</i> = 8.3 Hz, 1H)	HMBC 15→14,16,26 COSY 15→16
16	23.6	2.78-2.84 (m, 1H) overlap, 2.94 (d, J = 16.8 Hz, 1H) overlap	HMBC 16→15,17,25,26
17	102.9	-	
18	126.2	-	
19	117.8	7.33-7.36 (m, 1H) overlap	
20	118.2	6.88-6.92 (m, 1H) overlap	HMBC 20→18
21	120.2	6.95 (ddd, <i>J</i> = 7.9, 7.1, 1.0 Hz, 1H)	HMBC 21→19
22	110.4	7.17 (br d, <i>J</i> = 7.9 Hz, 1H)	HMBC 22→18
23	135.6	-	
24	-	10.81 (s, 1H)	HMBC 24→17,18,23,25
25	133.7	-	
26	169.9	-	
27	-	8.33 (d, <i>J</i> = 7.8 Hz, 1H)	
28	54.7	4.19 (ddd, <i>J</i> = 7.8, 7.8, 7.8 Hz, 1H)	HMBC 28→29,39 COSY 28→27
29	25.6	2.93-2.97 (m, 2H) overlap	HMBC 29→28,30,31,38
30	106.4	-	
31	128.8	-	
32	117.9	7.51 (d, <i>J</i> = 7.9 Hz, 1H)	HMBC 32→36
33	120.2	6.99 (ddd, <i>J</i> = 7.9, 7.0, 0.9 Hz, 1H)	
34	117.9	7.03 (ddd, <i>J</i> = 8.0, 7.0, 1.1 Hz, 1H)	HMBC 34→36
35	110.2	7.27 (d, <i>J</i> = 8.0 Hz, 1H)	
36	134.8	-	
37	-	10.89 (s, 1H)	HMBC 37→30
38	133.4	-	
39	171.3	-	
40	-	7.33-7.36 (m, 1H) overlap	HMBC 40→39
41	52.7	4.23 (ddd, <i>J</i> = 7.7, 6.2, 6.2 Hz, 1H)	HMBC 41→43 COSY 41→40
42	36.9	2.69 (dd, J = 13.4, 6.2 Hz, 1H), 2.77-2.81 (m, 1H) overlap	HMBC 42→43
43	126.7	-	
44	130.2	6.90 (d, <i>J</i> = 8.3 Hz, 2H)	
45	114.5	6.61 (d, <i>J</i> = 8.3 Hz, 2H)	HMBC 45→43,46
46	155.7	-	
47	-	9.14 (br s, 1H)	
48	171.8	-	
49	-	6.89 (br s, 1H) overlap, 7.29 (br s, 1H)	HMBC 49→48 TOCSY 49'→49

	13C	1H	key correlation
1	37	3.59-3.68 (m, 1H), 3.85-3.95 (m, 1H)	
2	130.5	6.30 (ddd, J = 15.8, 6.2, 4.9 Hz, 1H)	COSY 2→1,1' HMBC 2→4
3	128.5	5.98 (br d, J = 15.8 Hz, 1H)	
4	133.3	-	
5	125.4	7.13-7.18 (m. 1H)	HMBC 5→9
6	114.7	7.02-7.07 (m. 1H)	HMBC 6→4
_	159.7 (d. J ≈		
7	250 Hz)	-	
8	124.1	-	
9	129.5	6 99-7 03 (m 1H)	HMBC 10→8.9.12
10	28.3	2 86-2 92 (m. 1H) overlap, 3 01-3 08 (m. 1H)	HMBC 11→12
11	42.2	2 87-2 94 (m. 1H) overlap	
12	173.2	-	
13	29.3	$2.00 (ddd J = 11.6 \ 10.1 \ 9.9 \ Hz \ 1H) \ 2.32 \ 2.40 \ (m \ 1H)$	L COSY 13→11 TOCSY 13→10 10' 11 13' HMBC 13→12
14	51.2	4.57 (and t $l = 8.3$ Hz 1H)	HMBC $14 \rightarrow 17$ COSY $14 \rightarrow 13$
15	48.1	5 22 (d J = 7 9 Hz 1H)	HMBC 15-12 17 26
16	24.7	2.80-2.86 (m 1H) overlap 2.94 (br dd 1 = 16.2.8.1 Hz 1H)	
17	103.1		
18	126.3	-	
10	110.0	721 (d l = 81 Hz 1H)	
20	120.7	7.21 (d, 5 - 6.1112, 111)	
20	118.2	[-6.07-7.01 (m. 1H)]	
22	117.7	7 34 (d = 7.8 Hz 1H)	HMBC 22 \17 18 20 COSV 22 \21
22	125.6	7.54 (d, 5 – 7.6112, 111)	
20	155.0	- 10.80 (c. 1H)	
24	124.2		
20	170.1	-	
20	170.1	= (br.d. 1 = 5.0 Hz, 1H)	
21	-	[0.30 (b) 0, 3 - 3.0 nz, 1 n)	
20	32.7	4.31-4.37 (III, I∏) 2.14 (dd 1 = 15.5, 2.4 Ц→, 1Ц), 2.22 (dd 1 = 15.5, 10.2 Ц→, 1Ц)	HMBC 20→39 TOC31 20→21,29
29	20.9	3. 14 (du, J – 15.5, Z.4 HZ, TH), 3.52 (du, J – 15.5, 10.5 HZ, TH)	
30	111.1	-	
20	120.0	-	
22	131.2	- 6 77 (d. l = 7 1 Hz, 1H)	
24	120.0	$(0.77)(0, J - 7.1 \Pi Z, \Pi)$	
34	121	[0.93-0.97] (III, III) Overlap	
30	126.6	$7.19(0, J = 0.2 \Pi Z, 1\Pi)$	CUST 35→34
27	130.0	-	
3/	- 100	10.01 (UI U, J = 1.0 ΠZ, 1Π) 7.00 7.21 (m. 14)	I IIVIDU 37→30,31,30,30
30	170.2	7.00-7.21 (III, TH)	
10	170.3	- 19.25 (br.a. 111)	
40	-		
41	53.1	4.42 (uuu, $J = 6.7, 7.9, 4.7 HZ, 1H)$	
42	30.1	[2.74 (uu, J = 14.4, 8.7 HZ, 1H), 2.84 (00, J = 14.4, 4.7 HZ, 1H)	ן וטטסד 42→40,41 HIVIBU 42→39,43,48
43	12/.8		
44	129.8	[7.01] (0, J = 8.3 HZ, 2H)	
45	115	b.73 (0, J = 8.3 HZ, 2H)	IMMBC 45→43,46
46	155.8		
47	-	9.28 (DFS, 1H)	IHMBC 47→46
48	1/2.8		
149	-	10.88 (Dr.S. 1H). (.31 (Dr.S. 1H)	

•	13C	1H	key correlation
1	37.5	3.54 (br dd, J = 16.6, 6.7 Hz, 1H), 3.60 (br dd, J = 16.6, 5.4 Hz,	HMBC 1→2,3,33,34
2	129.6	6.36 (ddd, J = 15.8, 6.7, 5.4 Hz, 1H)	HMBC 2→4,33 TOCSY 2→1,3
3	129.3	6.11 (br d, J = 15.8 Hz, 1H)	
4	133.6	-	
5	125.5	7.30 (ddd, JHH = 8.4, 2.0 Hz, JHF = 5.1 Hz, 1H)	TOCSY 5→6,9 HMBC 5→9
6	114.6	7.12 (dd, JHF = 10.0, JHH = 8.4 Hz, 1H)	HMBC 6→4,8
7	159.9 (d,		
'	J≈240 Hz)	-	
8	124.5	-	
9	128.8	7.00-7.03 (m, 1H) overlap	HMBC 9→3,5
10	28.4	2.92-3.00 (m, 1H) overlap	HMBC 10→8,11,12,13
11	41.3	2.81-2.87 (m, 1H)	COSY 11→13,13'
12	173.7	-	
13	29.7	2.06 (ddd, J = 12.5, 9.0, 9.0 Hz, 1H), 2.29 (ddd, J = 12.5, 7.5, 2.	6 Hz, 1H)
14	50.7	4.97 (dd, J = 9.0, 7.5 Hz, 1H)	HMBC 14→25
15	48.2	5.00 (d, J = 8.2 Hz, 1H)	HMBC 15→12,14,26
16	24.2	2.93-2.98 (m, 1H) overlap, 3.05 (br d, J = 14.8 Hz, 1H)	HMBC 16→17,25
17	103.1	-	
18	126.2	-	
19	117.4	7.34 (d, J = 7.7 Hz, 1H)	HMBC 19→23
20	118.2	6.91-6.95 (m, 1H) overlap	
21	120.4	6.97-7.00 (m, 1H) overlap	HMBC 21→23 COSY 21→22
22	110.6	7.22 (d, J = 8.0 Hz, 1H)	HMBC 22→20
23	135.8		
24	-	10.93 (s, 1H)	HMBC 24→17,18,23,25
25	133.5	-	
26	170.5		
27	-	[8.28 (d, J = 8.1 HZ, 1H)]	
28	52.3	[4.62 (ddd, J = 8.1, 7.1, 7.1 Hz, 1H)	[HMBC 28→26,29,39
29	27.9	2.88 (ad, J = 14.6, 6.8 HZ, 1H), 3.08 (ad, J = 14.6, 7.3 HZ, 1H)	HMBC 29→30
30	109	-	
22	127.2	- 7 27 (br.o., 14)	
32	117.4		
34	120.9	- 6 92 6 95 (m. 1H) overlap	
35	111	7.27 (d = 8.2 Hz = 1H)	
36	134.9	-	
37	-	10.74 (br d = 1.6 Hz 1H)	HMBC 37-30 31 36 38
38	123.9	698-700(m1H) overlap	HMBC 38-36
39	170.8	-	
40	-	$7.50 (br d_{1} = 7.6 Hz_{1} H)$	HMBC 40→39
41	53.3	4 17 (ddd J = 7.6 6.8 6.8 Hz 1H)	$COSY 41 \rightarrow 42 HMBC 41 \rightarrow 39 42 43 48$
42	36.3	2.46-2.56 (m. 2H) overlap	HMBC 42→41.43.48
43	127.1	-	
44	129.8	6.77 (d. J = 8.5 Hz. 2H)	HMBC 44→46
45	114.5	6.56 (d, J = 8.5 Hz, 2H)	
46	155.6	-	
47	-	9.12 (br s, 1H)	
48	172.2	-	
49	-	6 83 (brs 1H) 7 17 (brs 1H)	HMBC 49→48_TOCSY 49→49'

1	13C	1H	key correlation
1	38.8	2.57-2.62 (m, 1H), 2.86 (dd, J = 12.5, 10.4 Hz, 1H)	HMBC 1→30,38 ROESY 1'→29',32,38; 1→38
2	126.9	6.08-6.16 (m, 1H) overlap	HMBC 2→4,5,9
3	130	6.59 (d, J = 15.8 Hz, 1H)	TOCSY 3→1,2 HMBC 3→4 ROESY 3→29'
4	133.6	-	
5	126.6	7.06-7.10 (m, 1H) overlap	HMBC 5→2
6	114.6	7.04-7.10 (m, 1H) overlap	HMBC 6→4,8
7	159.7 (d, J ≈		
1 '	250 Hz)	-	
8	130	-	
9	128	7.45 (d, 4JHF = 7.2 Hz, 1H)	HMBC 9→4,8
10	28.7	2.93-2.99 (m, 1H) overlap, 3.02-3.08 (m, 1H) overlap	HMBC 10→11,12 TOCSY 10→11,13,13',14
11	43.2	3.00-3.06 (m, 1H) overlap	
12	173.6	-	
13	29.2	2.13-2.21 (m, 1H), 2.27-2.34 (m, 1H)	HMBC 13'→12
14	51.3	4.42 (dd, J = 8.0, 8.0 Hz, 1H)	HMBC 14→13,17,25 ROESY 14→9,10
15	45	5.66 (d, J = 7.4Hz, 1H)	HMBC 15→12,14,16,26
16	23.6	2.93-3.05 (m, 2H) overlap	HMBC 16→15,26 TOCSY 16→15,16'
17	103.2	-	
18	126.6	-	
19	118.1	7.38 (d, J = 7.6 Hz, 1H)	HMBC 19→23
20	118.5	6.95 (dd, J = 7.6, 7.0 Hz, 1H)	[HMBC 20→18,22 COSY 20→19
21	120.6	6.99 (dd, J = 7.7, 7.0 Hz, 1H)	HMBC 21→19,23
22	110.7	7.22 (d, J = 7.7 Hz, 1H)	[COSY 22→21 HMBC 22→17,18
23	135.7	-	
24	-	10.88 (S, 1H)	$\frac{ ROESY 24 \rightarrow 22,14 HMBC 24 \rightarrow 17,23,25 }{ ROESY 24 \rightarrow 22,14 HMBC 24 \rightarrow 17,23,25 $
20	134.1	-	
20	109	-	
20	61.9		
20	42	(1, 10, (10, 3 - 10.0, 7.1112, 111)) 1 79 (dd 1 = 13.6 7.2 Hz 1H) 2.45 (dd 1 = 13.6 10.2 Hz 1H)	HMBC 20-30 10031 20-23,23 100231 20-30
30	57.3		
31	135.8	-	
32	122.1	7 14-7 19 (m. 1H) overlap	HMBC 32→34 36
33	119.2	6.83 (dd J = 7.4, 7.4 Hz 1H)	
34	128.1	7.14-7.19 (m, 1H) overlap	HMBC 34→32
35	110	6.78 (d, J = 8.1 Hz, 1H)	COSY 35→34_TOCSY 35→32.33.34
36	147.5	-	
37	-	7.33 (d, J = 4.7 Hz, 1H)	HMBC 37→31 ROESY 37→35
38	82.2	6.12 (d, J = 4.7 Hz, 1H)	
39	170	-	
40	-	7.43 (d, J = 9.0 Hz, 1H)	ROESY 40→29
41	52.1	4.10-4.16 (m, 1H)	HMBC 41→43, 48
42	38.4	2.23 (dd, J = 13.4, 8.8 Hz, 1H), 2.59 (dd, J = 13.4, 4.7 Hz, 1H) o	HMBC 42→43,48
43	126.9	-	
44	130.1	6.46 (d, J = 8.3 Hz, 2H)	HMBC 44→46
45	114.5	6.29 (d, J = 8.3 Hz, 2H)	HMBC 45→43,46
46	155.4	-	
47	-	9.01 (s, 1H)	HMBC 47→45,46
48	172.1	-	
49	-	6.68 (br s, 1H), 7.20 (br s,1 H)	HMBC 49→48 TOCSY 49→49'

	13C	1H	key correlation
1	46.1	4.72 (dd, J = 15.3, 8.0 Hz, 1H), 5.02 (dd, J = 15.3, 3.5 Hz, 1H)	HMBC 1'→38
2	124.9	6.08 (ddd, J = 15.6, 8.0, 3.5 Hz, 1H)	TOCSY 2→1,3 HMBC 2→4
3	130.8	6.40 (br d, J = 15.6 Hz, 1H)	HMBC 3→5,9
4	132.3	-	
5	127	7.25-7.29 (m, 1H) overlap	HMBC 5→9 TOCSY 5→6,9
6	120.9	7.13-7.19 (m, 1H) overlap	HMBC 6→7,8
7	160.0 (d,		
'	J≈230 Hz)	-	
8	124.3	-	
9	127.8	7.10 (br d, JHF = 6.8 Hz, 1H)	HMBC 9→10
10	26.4	2.89-2.95 (m, 1H) overlap, 2.97-3.02 (m, 1H) overlap	
11	41.4	2.76-2.81 (m, 1H) overlap	
12	174.5	-	
13	28.2	2.76-2.81 (m, 1H) overlap	HMBC 13→10,12,14 COSY 13'→11
14	50.7	4.96 (dd, J = 6.9, 6.9 Hz, 1H)	
15	48.6	5.13 (d, J = 7.7 Hz, 1H)	COSY 15→16 HMBC 15→14,26
16	24.5	2.94-3.06 (m, 2H) overlap	HMBC 16→17
17	103	-	
18	126	-	
19	117.5	7.36 (d, J = 7.7 Hz, 1H)	HMBC 19→23 COSY 19→20
20	118.3	6.93 (dd, J = 7.7, 7.0 Hz, 1H)	HMBC 20→22
21	120.4	6.99 (dd, J = 8.0, 7.0 Hz, 1H)	HMBC 21→23
22	110.5	7.22 (d, J = 8.0 Hz, 1H)	
23	135.5	-	
24	-	10.90 (s, 1H)	
25	133.4	-	
26	170.4	-	
27	-	8.53 (d, J = 8.9 Hz, 1H)	HMBC 27→26 COSY 27→28
28	52.3	4.48 (dd J = 12.5, 8.9 Hz, 1H)	COSY 28→29
29	27.5	2.85 (dd, J = 14.9, 12.5 Hz, 1H), 2.95-3.00 (m, 1H) overlap	HMBC 29→28,30,36,38
30	110.7	-	
31	127.3	-	
32	118	7.55 (d, J = 7.7 Hz, 1H)	HMBC 32→36 COSY 32→33
33	118.3	7.04-7.08 (m, 1H)	
34	120.9	7.13-7.19 (m, 1H) overlap	
35	109.5	7.50 (d, J = 8.0 Hz, 1H)	HMBC 35→31 COSY 35→34
36	135.8	-	
37	-	-	
38	124.5	7.13 (s, 1H)	HMBC 38→30,31
39	170.8	-	
40	-	7.59 (d, J = 7.4 Hz, 1H)	HMBC 40→39 COSY 40→41
41	53	4.29 (ddd, J = 7.4, 6.9, 5.9 Hz, 1H)	HMBC 41→48
42	36.6	2.67 (dd, J = 13.6, 6.2 Hz, 1H), 2.74-2.79 (m, 1H)	HMBC 42→43,44,48
43	126.6		
44	130	[6.87 (d, J = 8.1 Hz, 2H)	HMBC 44→46
45	114.5	6.60 (d, J = 8.1 Hz, 2H)	
46	155.6		
47	-	9.14 (s, 1H)	HMBC 47→45,46
48	172.1	-	
49	-	[7.07 (br s, 1H), 7.42 (br s, 1H)	IOCSY 49→49'

D.5. Cartesian Coordinates and Energies

end	o- S8a			
С	-3.65254	-1.89937	-1.30364	
С	-5.04592	-1.87265	-1.21534	
С	-5.67208	-1.11016	-0.23219	
С	-4.93516	-0.35776	0.68429	
Н	-3.16165	-2.49622	-2.06652	
Н	-5.64267	-2.45273	-1.90989	
Н	-6.75505	-1.10162	-0.17023	
н	-5.43144	0.23239	1.44747	
С	-2.91538	-1.16441	-0.39134	
Ĉ	-3.55309	-0.40120	0.58810	
Ň	-2 60454	0 28788	1 37671	
н	-2 86217	0 44020	2 34264	
Ċ	0.05221	1 03266	-0 33344	
č	_1 31057	-0 34132	1 15404	
č	-1 42475	-0.95636	-0.26333	
č	-0.05287	0.33030	1 15781	
ц	1 07725	0.22242	0.55852	
н Ц	1.07725	0.71040	1 20512	
	-1.03000	0.02199	-1.39312	
	-0.00429	-0.12012	-2.00900	
H	-1.07029	-1.09267	1.91032	
	-0.21921	0.03291	1.07160	
Č	0.61154	0.89928	2.07488	
0	1.52393	1.77517	1.96261	
C	0.51748	0.17503	3.38150	
н	1.25290	0.60148	4.06088	
Н	-0.47749	0.28040	3.82026	
Н	0.72233	-0.89108	3.25017	
С	-0.57253	-2.22769	-0.44730	
Н	-1.00702	-3.01964	0.17237	
Н	-0.66708	-2.55236	-1.48915	
С	0.87211	-2.01609	-0.09990	
С	1.84650	-1.82457	-0.99427	
С	5.90415	-0.72593	-0.21476	
С	5.14560	-1.31083	0.79772	
С	3.83169	-1.68920	0.55772	
С	3.24980	-1.48727	-0.70109	
С	4.02771	-0.91275	-1.71303	
С	5.34283	-0.53116	-1.47233	
Н	6.93286	-0.43830	-0.02628	
Н	5.58694	-1.48391	1.77361	
Н	3.26709	-2.17653	1.34729	
Н	3.59649	-0.76649	-2.70004	
Н	5.93104	-0.08871	-2.26929	
Н	1.59110	-1.87991	-2.05355	
Н	1.10891	-1.96191	0.96268	
С	0.05989	2.54748	-0.52321	
0	0.75937	3.25196	0.23997	
Ň	-0.58782	3.09381	-1.53696	
н	-1.14792	2.51037	-2.13755	
C	-0.52695	4.52842	-1.80230	
Ĥ	0.51377	4 85242	-1 84832	
н	-1 01413	4 72381	-2 75583	
н	-1 03444	5 08264	-1 01033	
н	1 30123	2 4 9 5 6 4	1 15336	
Flec	tronic energy =	= -1206 2966	2	
Zord	- noint electron	1200.2300	1205 838057	
Enth	$p_{\text{point}} = -1205 \text{ g}$	12183	1200.000001	
Erec	aipy 1200.0	12105		
Free	File energy = -1205.095940 Free energy with quasibarmenia approximation = -1205.099244			
Free	$\frac{1}{2}$ under $\frac{1}{2}$	258 18 2170 1	7 200.000241	
SCE	(1)R07v_D/6 2	11+C(d n)_ 9	(nitromethane) = -1206 651067	
501	30F(wbsix-D/0-3)+FG(u,p)-SiviD(nitromethane)) = -1206.651967			

С	0.13178	3.07047	-1.74284	
С	0.55336	4.37135	-1.46768	
С	0.57434	4.83884	-0.15470	
С	0.17761	4.02984	0.91015	
Н	0.11792	2.70129	-2.76436	
Н	0.86730	5.02110	-2.27656	
Н	0.90530	5.85195	0.04669	
Н	0.19246	4.40270	1.92882	
С	-0.25039	2.25787	-0.68750	
С	-0.22975	2.73638	0.61967	
Ň	-0.67979	1.75229	1.53460	
н	-0.14337	1.71789	2.39143	
С	-2.94794	-0.20474	-0.11034	
Ĉ	-0.76119	0.49343	0.82521	
č	-0 79239	0 84967	-0.68533	
č	-2 30489	0 84971	-1 01130	
н	-3 92593	0 13862	0 24705	
н	-2 50301	0.70403	-2 07566	
н	-2.50531	1 82257	-0.75330	
L L	0.06734	0.19206	1 06437	
N	2 02078	-0.10200	1.05573	
C	-2.02370	0.25050	2 22720	
0	-2.37207	-0.70403	2.227.39	
č	-3.40972	-1.49930	2.33019	
	-1.00200	-0.47944	3,40000	
	-0.01302	-0.03711	3.29000	
	-1.923/7	-1.130/1	4.207 10	
	-1./303/	0.30300	3.74923 1.54383	
	0.00213	-0.10000	-1.34202	
н	-0.11608	0.13879	-2.59424	
Н	-0.44125	-1.15552	-1.43945	
Č	1.45529	-0.21252	-1.17917	
C	2.04814	-1.28870	-0.05218	
Č	6.13462	-1.69270	0.53466	
C	5.34772	-2.81718	0.30678	
C	4.01748	-2.00948	-0.06907	
C	3.45536	-1.39882	-0.23430	
Č	4.25465	-0.27476	0.01214	
C .	5.58261	-0.42158	0.38911	
н	7.17260	-1.80530	0.82914	
н	5.77035	-3.80965	0.42223	
H	3.40894	-3.55155	-0.25038	
н	3.83311	0.72194	-0.07763	
н	6.18879	0.45849	0.57702	
н	1.45651	-2.19847	-0.53317	
Н	2.02299	0.69872	-1.35246	
С	-3.21985	-1.61320	-0.65216	
0	-3.68961	-2.45801	0.13531	
N	-3.02142	-1.90019	-1.92996	
Н	-2.62090	-1.20455	-2.53786	
С	-3.34910	-3.21328	-2.47846	
Н	-3.21789	-3.17824	-3.55851	
Н	-2.69564	-3.97808	-2.05437	
Н	-4.38437	-3.46421	-2.24307	
Н	-3.69341	-1.93509	1.43346	
Elec	tronic energy =	-1206.2939	65	
Zerc	point electron	ic energy = -	1205.834231	
Enth	nalpy = -1205.8	808495		
Free	e energy = -120	05.89108		
Free	e energy with q	uasiharmonic	c approximation = -1205.884366	
Frec	Frequencies = 20.3237 21.1131 27.0296 20.0715 20.6065 27.0291			
SCF	⁻ (ωB97x-D/6-3	811+G(d,p)–S	MD (nitromethane)) = -1206.650935	
end	o- S9a			

С	0.59409	2.21537	-1.07645
С	0.33928	3.34287	-0.29516
С	-0.14201	3.23030	1.01152

С	-0.37199	1.98243	1.58888	
Н	-0.33696	4.12706	1.58875	
Н	-0.74652	1.88542	2.60194	
С	0.14414	-1.24759	0.11475	
С	0.44101	-0.42690	-1.09927	
С	0.36448	0.96897	-0.51704	
С	-0.10339	0.88550	0.79026	
Н	0.99257	2.31439	-2.07947	
Н	0.51867	4.32753	-0.71179	
Ν	-0.24202	-0.49480	1.10221	
Н	-0.61064	-0.84250	1.97795	
Н	0.04505	-2.32360	0.14684	
С	1.74465	-0.82532	-1.80664	
Н	1.61801	-1.82814	-2.22689	
Н	1.92816	-0.13551	-2.63360	
С	2.95921	-0.81523	-0.87686	
Н	3.79430	-1.25184	-1.43822	
Н	3.22134	0.36237	1.38033	
С	3.38691	0.64506	-0.61737	
0	3.58330	1.37977	-1.57255	
Ν	3.52598	1.01258	0.67417	
С	3.83793	2.37700	1.05470	
Н	2.94399	2.89849	1.41081	
Н	4.21828	2.89119	0.17274	
Н	4.59950	2.38821	1.83684	
Ν	2.63501	-1.58233	0.31259	
С	3.55030	-2.26179	0.89741	
С	5.00271	-2.35028	0.53559	
Н	5.42814	-1.35033	0.42236	
Н	5.54659	-2.89276	1.30715	
Н	5.12265	-2.87782	-0.41528	
C	-0.77362	-0.65213	-2.08855	
Ĥ	-0.52679	-0.07919	-2.98821	
H	-0.79561	-1.71010	-2.37155	
С	-2.09042	-0.22094	-1.51523	
Č	-2.98993	-1.07354	-1.01547	
C	-6.65317	-0.09222	0.95299	
Č	-6.46983	-1.35001	0.38694	
C	-5.27168	-1.65893	-0.24661	
Č	-4.24381	-0.71377	-0.33465	
Č	-4.43442	0.54385	0.25320	
С	-5.63119	0.85259	0.88613	
H	-7.58653	0.14996	1.44988	
Н	-7.25982	-2.09158	0.43794	
Н	-5.13512	-2.64021	-0.69304	
н	-3.63668	1.28114	0.22914	
Н	-5.76712	1.83056	1.33613	
Н	-2.27433	0.84988	-1.47725	
H	-2.80304	-2.14445	-1.11880	
0	3.24607	-2.99305	1.97199	
Ĥ	2.29872	-2.91197	2,13856	
Flect	onic energy :	= -1206 2607	11	
Zero-	point electror	ic energy = -2	1205.801033	
Entha	$E_{1200} = 1200.001000$			
Free	energy = -1200.7	05.859012		
Free	energy with a	uasiharmonio	approximation = -1205.852514	
Frea	iencies = 19	2280 22.9073	30,1530 18,9306 22,7503 29,7355	
SCF	SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.62461			

exo-S9b

С	0.00459	0.55603	2.13886
С	-0.50069	1.79903	2.52378
С	-0.98593	2.71026	1.58168
С	-0.97519	2.41311	0.22050
Н	-1.37843	3.66450	1.91378
Н	-1.34927	3.11525	-0.51602

С	0.33276	-0.52295	-1.36394
С	0.47106	-0.98909	0.04801
С	0.02747	0.24904	0.78789
С	-0.45731	1.17882	-0.12723
Н	0.37603	-0.14507	2.87923
н	-0.51969	2.06314	3.57525
N	-0.27886	0.62293	-1.42282
н	-0.53518	1 09553	-2 28064
н	0.56051	-1 00427	-2 25464
\hat{c}	1 99056	1 50094	0 37763
Ц Ц	2 12256	2 30601	0.37103
н Ц	2.10000	1 02065	1 20102
	1.09720	-1.92900	0.22204
	2.92041	-0.30010	0.26204
н	2.77760	0.29429	1.12801
Н	4.91294	-0.40853	-1.31057
С	4.31135	-1.01409	0.52417
0	4.50409	-1.60760	1.57292
Ν	5.22014	-0.85164	-0.45913
С	6.55539	-1.41253	-0.38085
Н	7.30981	-0.63441	-0.52067
Н	6.67333	-1.85316	0.60882
Н	6.69866	-2.19059	-1.13590
Ν	2.76598	0.27483	-0.99732
С	2.76223	1.55356	-1.04788
С	2.94323	2.54547	0.06311
Ĥ	2.15189	2,43490	0.81083
н	2 91876	3 55786	-0.33656
н	3 90186	2 37977	0.56100
Ċ	-0 58008	-2 15777	0.25207
й	-0.30000	3 05150	0.23440
	-0.17773	-3.05159	1 22007
	-0.09001	-2.30073	1.32007
Č	-1.95000	-1.03037	-0.25455
C	-2.89564	-1.25140	0.49360
C	-0.81855	-0.04891	-0.69695
C	-6.50151	-0.20355	0.64878
C	-5.21808	-0.58687	1.02100
C	-4.23565	-0.83355	0.05569
С	-4.56480	-0.66061	-1.29497
С	-5.84527	-0.27575	-1.66812
Н	-7.81905	0.25151	-0.98948
Н	-7.25418	-0.02636	1.40956
Н	-4.97724	-0.71160	2.07311
Н	-3.81158	-0.81784	-2.06186
Н	-6.08544	-0.14651	-2.71831
Н	-2.16503	-2.08667	-1.29374
Н	-2.66911	-1.06103	1.54340
0	2.54828	2,14082	-2.23377
Ĥ	2,55695	1.44317	-2.90410
Flee	tronic energy :	= -1206.2564	15
Zer	p-point electror	ic energy = -	1205 797275
Enth	p = -12057	70267	1200.101210
Eree	= energy = -120	15 856223	
Free	energy with a	uasiharmoni	= -1205 848641
Ero		17/0 23 6109	2 28 4571 18 2608 23 5533 28 2041
SCE	$\frac{1}{10000000000000000000000000000000000$	11+C(d n)	(nitromethane) = 1206 625014
501	(00977-0/0-0	5111G(u,p)=c	$\sin D (\sin \theta) = -1200.023014$
000	o 610o		
ena	0.04007	0 44440	0.00057
	-0.01327	-2.41140	-0.2000/
	-0.3886/	-3.43120	0.04432
	0.18826	-3.16034	1.88514
	0.55650	-1.86235	2.24211
Н	0.35536	-3.96952	2.58690
н	1.00935	-1 64896	3 20386

	0.00000	0.00002	E .00000
Н	1.00935	-1.64896	3.20386
С	0.14536	1.15725	0.33796
С	-0.32396	0.18234	-0.71414
С	-0.25845	-1.11749	0.06195

C C	0.06138 -0.43709	0.65067 1.91897	2.04339 2.34548
exo-S1	0b		
50F (l	nRA1X-D\Q-	311+G(0,p)–SN	vid (nitrometnane)) = -1206.643914
Freque	encies = 17	.7690 20.5309	26.5737 15.961 20.3445 25.9945
Free e	nergy with	quasiharmonic	approximation = -1205.87002
Free e	nergy = -12	205.877745	
∠er0-p Enthali	nv = -1205	791944	200.010700
	oint electro	= -1200.27859	o 205 818735
H Electro		1.01910	-1.04/00
H	2.32174	-1.16204	-1.13570
H	6.29290	-1.64859	1.11197
н	4.00580	-1.31711	0.27017
Н	5.20486	2.41100	-1.50274
Н	7.49245	2.08270	-0.63652
Н	8.04684	0.04760	0.67104
С	6.05628	-0.76047	0.53514
С	4.76869	-0.57561	0.05053
С	4.44578	0.56286	-0.70007
С	5.44153	1.51885	-0.92912
Ċ	6.73108	1.33453	-0.44344
Č	7.04236	0.19290	0.28807
č	3.09559	0.79340	-1.23707
C	2.13278	-0.12116	-1.38730
н	0 72101	1 19194	-2 33621
н	0 41034	-0 52312	-2 60753
C	-4.049/U 0 74733	-1.13490 0 20402	-1 86121
	-3.50517	-2.3/33/	-0.52430
Н	-5.318/4	-2./5526	-0.55601
C	-4.58828	-1.98196	-0.32551
0	-5.77447	-0.78371	-2.03402
С	-4.90218	-0.78415	-1.19549
N	-4.16468	0.37905	-0.97087
Н	-4.34823	1.07337	-1.68676
Н	-3.49005	2.97127	2.95526
Н	-3.53873	4.13189	1.61399
н	-5.05264	3.45181	2.25384
С	-4.00823	3.23866	2.03202
Ň	-3.95055	2.13935	1.08152
õ	-1.69880	2.05514	1.03661
п С	-4.79715	1.74101	0.65463
п ц	-2.11420	-0.44529 1 7/151	0.01032
С Ц	-2.88044	0.44846	-0.31333
H	-1.90379	-0.27605	-2.07072
Н	-1.68525	1.45080	-1.82420
С	-1.70890	0.48451	-1.30811
Н	0.40207	2.19098	0.16195
Н	1.03799	0.96644	2.17191
N	0.58792	0.51701	1.38624
н	-0.65840	-4.45119	0.39456
н	-1 04578	-2 63396	-1 25447
C	0 31301	-0 87504	1 30666

C	0.06138	0.65067	2.04339
С	-0.43709	1.91897	2.34548
С	-0.95065	2.75677	1.35031
С	-0.97484	2.35839	0.01596
Н	-1.33411	3.73422	1.61943
Н	-1.36289	3.00331	-0.76394
С	0.22142	-0.71466	-1.37176
С	0.45842	-1.05450	0.06470
С	0.04494	0.24105	0.71898
С	-0.46428	1.10076	-0.24969
Н	0.44942	0.00633	2.82576
Н	-0.42803	2.26316	3.37377

Ν	-0.32967	0.44771	-1.50299			
Н	-0.53627	0.88455	-2.39511			
Н	0.40954	-1.34899	-2.23008			
С	1.90339	-1.51637	0.34341			
Н	2.14114	-2.35601	-0.32083			
Н	1.97287	-1.91235	1.35862			
С	2.95720	-0.41102	0.17837			
н	2.78099	0.34939	0.94414			
н	5.17814	0.15496	-0.97752			
С	4.34891	-0.99492	0.48398			
0	4.46954	-1.81950	1.37534			
Ν	5.37111	-0.50806	-0.24494			
C	6.73541	-0.94518	0.00048			
Ĥ	6.86017	-2.00086	-0.25354			
H	7.41158	-0.34577	-0.60831			
н	6 98645	-0.81589	1 05526			
н	2 81654	-0.34245	-1 93926			
N	2 83565	0 24108	-1 11206			
Ċ	2 48769	1 55601	-1.35678			
õ	2 00916	1 85821	-2 43758			
č	2 72659	2 55665	-0 25017			
й	1 97039	2.00000	0.53590			
н	3 71050	2.42660	0.20761			
н	2 65000	3 55268	-0.68334			
Ċ	-0 54872	-2 21370	0.44722			
й	-0.34072	-3 14601	0.02828			
н	-0.49861	-2 30202	1 53628			
Ċ	-1 95229	-1.05432	-0.02417			
č	2 82077	-1.30+32	0.65007			
č	-2.02377	0.04152	0.58080			
č	6.03200	0.04132	0.41620			
č	-0.03290	0.72931	0.41029			
ĉ	-4.77505	0.29491	0.02073			
č	4.10031	-0.02470	0.22002			
ĉ	-4.00007	1 09400	1 16506			
ц	-0.14220	-1.00490	-1.10590			
LI LI	6 49114	1 50069	0.88374			
ц Ц	-0.40114	0.93135	1 60231			
ц Ц	-4.24300	2 41265	1 20662			
	-4.40222	-2.41303	-1.20002			
	-0.00231	-1.03021	-1.92920			
	-2.22090	-2.30323	-1.00079			
	H -2.51843 -0.80980 1.62415					
Electronic energy = -1206.271678						
\angle ero-point electronic energy = -1205.812548						
$E_1(1)aipy = -1205.78562$						
riee	e energy = -120	000010.0.0	\sim opprovimation - 1005 00000			
Free energy with quasinarmonic approximation = -1205.863948						
rec	Frequencies = 17.9357 23.6279 31.9068 17.6562 23.1809 30.5095					
SCF (ω B9/X-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.645547						

endo-S11a

С	-0.50878	1.57609	-0.34865
С	-1.55569	2.21608	0.27854
С	-2.21965	1.63211	1.38185
С	-1.84693	0.39952	1.88545
Н	-3.03652	2.16972	1.85133
Н	-2.35254	-0.03910	2.73859
С	0.79130	-1.69865	0.61280
С	0.90649	-0.61560	-0.25342
С	-0.10546	0.31142	0.13628
С	-0.79674	-0.25527	1.23912
Н	0.03938	2.04176	-1.16080
Н	-1.87169	3.19411	-0.06776
Ν	-0.21511	-1.47541	1.50847
Н	-0.44099	-2.07614	2.28368
Н	1.44588	-2.55452	0.71506

С	1.96711	-0.45785	-1.30209	
Н	2.23313	-1.44354	-1.69935	
н	1.60742	0.15509	-2.13175	
С	3,25819	0.19706	-0.75830	
Ĥ	4.04110	0.06857	-1.51327	
н	4 44476	1 71201	0.86853	
C	3 07871	1 71939	-0.62161	
õ	2 32861	2 32102	1 38030	
N	2,02001	2.32102	0.33720	
C	2 94250	2.30200	0.55720	
	3.04330	3.13120	0.04133	
	4.77011	4.17554	0.17470	
н	3.73133	3.96808	1.60286	
н	3.01060	4.16772	-0.01378	
н	3.07501	-0.28366	1.25804	
N	3.71492	-0.40961	0.48048	
С	4.27544	-1.67931	0.53700	
0	4.05159	-2.40138	1.49076	
С	5.17753	-2.08406	-0.60584	
Н	4.59636	-2.29344	-1.51008	
Н	5.90009	-1.29959	-0.84468	
Н	5.70351	-2.99219	-0.31589	
С	-0.63597	-2.54943	-1.46369	
Ĥ	-0.19352	-1.91889	-2.22653	
H	-0.14651	-3.49729	-1.27058	
C	-1 86786	-2 25865	-0.93885	
č	-2 47292	-1 03559	-1 23326	
C C	-6.06038	0.60075	0 25445	
C C	-5 62052	-0.63156	0.75047	
ĉ	-4 45010	_1 18800	0.27424	
č	3 60460	0 51976	0.21464	
ĉ	-3.09409	-0.51670	1 107/1	
Č	-4.14404	1 20205	-1.10/41	
	-0.02410	1.20200	-0.71104	
н	-6.98344	1.03021	0.62973	
н	-6.20162	-1.14963	1.50492	
н	-4.11639	-2.14296	0.66516	
Н	-3.55728	1.26039	-1.93146	
Н	-5.67085	2.23792	-1.08877	
Н	-2.32530	-2.94802	-0.23800	
Н	-1.96467	-0.40832	-1.96323	
Elect	ronic energy :	= -1206.2486	92	
Zero-	point electror	nic energy = -	1205.791499	
Enthalpy = -1205.763839				
Free energy = -1205.850423				
Free energy with quasiharmonic approximation = -1205.843558				
Frequencies = 19.3215 28.6206 31.0126 18.1164 26.3444 30.9326				
SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.606497				
exo-S	exo-S11b			

0.35249	1.43927	0.32179		
1.34110	1.86757	1.17296		
2.05123	0.95328	1.99246		
1.77453	-0.39720	1.99265		
2.82866	1.33210	2.64709		
2.31904	-1.08562	2.62879		
-0.64136	-2.05874	-0.11058		
-0.86466	-0.71996	-0.47163		
0.04952	0.05540	0.28033		
0.77170	-0.83791	1.12063		
-0.20894	2.15160	-0.27309		
1.57826	2.92339	1.23415		
0.28288	-2.09937	0.90506		
0.60459	-2.93757	1.35960		
-1.29615	-2.89334	-0.31935		
-1.90707	-0.25059	-1.43596		
-2.15660	-1.05260	-2.13364		
-1.53257	0.60282	-2.01185		
	0.35249 1.34110 2.05123 1.77453 2.82866 2.31904 -0.64136 -0.86466 0.04952 0.77170 -0.20894 1.57826 0.28288 0.60459 -1.29615 -1.90707 -2.15660 -1.53257	0.35249 1.43927 1.34110 1.86757 2.05123 0.95328 1.77453 -0.39720 2.82866 1.33210 2.31904 -1.08562 -0.64136 -2.05874 -0.86466 -0.71996 0.04952 0.05540 0.77170 -0.83791 -0.20894 2.15160 1.57826 2.92339 0.28288 -2.09937 0.60459 -2.93757 -1.29615 -2.89334 -1.90707 -0.25059 -2.15660 -1.05260 -1.53257 0.60282		

С	-3.21469	0.18112	-0.73533
Н	-3.92329	0.46846	-1.51852
Н	-4.77991	0.26877	1.22427
С	-3.85688	-1.02367	-0.02178
0	-3.63486	-2.16335	-0.41517
Ν	-4.67298	-0.70945	0.99992
С	-5.43535	-1.70279	1.73128
Н	-5.22760	-1.63416	2.80183
н	-6.50752	-1.56789	1.56657
Н	-5.14157	-2.68650	1.36636
Н	-2.42539	1.16447	0.93980
Ν	-3.04433	1.31486	0.15026
С	-2.99579	2.63710	-0.27030
0	-2.36380	3.45401	0.37111
С	-3.77839	2.99651	-1.51329
Н	-3.31085	2.57628	-2.40983
Н	-4.80616	2.62672	-1.46332
Н	-3.78618	4.08142	-1.60277
С	0.68405	-2.17577	-1.98058
Н	0.32493	-3.18935	-2.12035
Н	0.22209	-1.43039	-2.61775
С	1.95426	-1.94213	-1.44948
С	2.46743	-0.66566	-1.41065
С	5.97873	0.79728	0.44515
С	5.69100	-0.56843	0.51846
С	4.55501	-1.07203	-0.08964
С	3.68504	-0.21394	-0.79008
С	3.98570	1.15847	-0.84693
С	5.12642	1.66053	-0.23655
Н	6.87303	1.18534	0.92115
Н	6.36084	-1.23438	1.05095
Н	4.34624	-2.13480	-0.02735
Н	3.31356	1.82828	-1.37452
Н	5.35123	2.71957	-0.29422
Н	2.47882	-2.76410	-0.97375
H	1.88770	0.10766	-1.91207
Electr	onic energy	= -1206.24628	8
Zero-	point electror	hic energy = $-$	1205.789749
Entha	100 = -1205.	/61895	
Free e	energy = -12	05.849304	4005 044040
Free e	energy with c	uasinarmonic	2 = -1205.841912
Frequ	encies = 20.	2143 23.7933	32.251018.163923.179131.7262
30r (mpa/x-n/o-	511+G(u,p)-S	$\operatorname{MUD}\left(\operatorname{Introlletione}\right) = -1200.010209$
0,0,-1-	6400		
enao-	0 40652	1 22000	2 0 9 2 9 4
C C	-0.40003	1.22909	2.00304

-0.40000	1.22909	2.00304
-0.13915	2.18622	3.01285
0.15055	3.53157	2.61217
0.19361	3.93006	1.30299
-0.61249	0.20601	2.37915
-0.13768	1.94560	4.06915
0.35140	4.26428	3.38721
0.42184	4.95249	1.02659
-0.38883	1.59327	0.70180
-0.06808	2.94353	0.32482
-0.05979	3.04689	-1.00249
0.12544	3.89376	-1.51660
-2.28571	-0.96706	0.06393
-0.36785	1.77242	-1.62923
-0.61790	0.88060	-0.45413
-0.93509	-0.56614	-0.58167
-2.26585	-0.69658	1.12379
-0.13670	-1.13705	-0.09338
-0.94782	-0.86101	-1.63444
-2.12867	-3.35027	0.87623
-2.14029	-4.51590	0.55139
	-0.40033 -0.13915 0.15055 0.19361 -0.61249 -0.13768 0.35140 0.42184 -0.38883 -0.06808 -0.05979 0.12544 -2.28571 -0.36785 -0.61790 -0.93509 -2.26585 -0.13670 -0.94782 -2.12867 -2.14029	-0.40033 1.22909 -0.13915 2.18622 0.15055 3.53157 0.19361 3.93006 -0.61249 0.20601 -0.13768 1.94560 0.35140 4.26428 0.42184 4.95249 -0.38883 1.59327 -0.06808 2.94353 -0.05979 3.04689 0.12544 3.89376 -2.28571 -0.96706 -0.36785 1.77242 -0.61790 0.88060 -0.93509 -0.56614 -2.26585 -0.69658 -0.13670 -1.13705 -0.94782 -0.86101 -2.12867 -3.35027 -2.14029 -4.51590

С	-1.69910	-2.87860	2.24930
Н	-2.46748	-2.26612	2.73052
Н	-1.51359	-3.76188	2.85777
Н	-0.77260	-2.29639	2.19228
С	2.01988	0.92738	-1.75432
С	2.49908	-0.31499	-1.63968
С	5.85431	-1.66563	0.63664
С	5.68924	-0.30176	0.40191
С	4.61013	0.15431	-0.34223
С	3.67195	-0.74630	-0.86333
С	3.85618	-2.11385	-0.63003
С	4.93576	-2.57155	0.11694
Н	6.70249	-2.01962	1.21289
Н	6.41281	0.40727	0.79046
Н	4.51130	1.21787	-0.53620
Н	3.14567	-2.82743	-1.03953
Н	5.06390	-3.63538	0.28607
Н	1.97306	-1.11735	-2.15994
Н	2.50862	1.75501	-1.24386
С	-3.40814	-0.11590	-0.55390
0	-3.15532	1.01342	-0.96725
Ν	-4.62816	-0.66234	-0.56340
Н	-4.73159	-1.59876	-0.20177
С	-5.78117	0.06244	-1.07197
Н	-5.68794	0.23119	-2.14758
Н	-6.67865	-0.52308	-0.87730
Н	-5.86762	1.03151	-0.57624
Ν	-2.55105	-2.37792	-0.02714
Н	-2.68017	-2.76346	-0.95576
С	0.78314	1.26340	-2.53444
Н	0.97516	2.03657	-3.28724
Н	0.41920	0.38637	-3.07786
Н	-1.29861	1.85617	-2.20101
Electro	onic energy	= -1206.26907	77
Zero-point electronic energy = -1205.811117			

Enthalpy = -1205.78361

Free energy = -1205.76361Free energy = -1205.871697Free energy with quasiharmonic approximation = -1205.863297Frequencies = 15.0188 17.4051 26.4670 14.2611 16.3115 26.4469 SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.635761

exo-S12b

С	3.87596	0.23927	-1.59853
С	5.22382	0.07271	-1.67596
С	5.91187	-0.76665	-0.73992
С	5.27787	-1.44086	0.26964
Н	3.35019	0.87942	-2.29778
Н	5.79795	0.57726	-2.44366
Н	6.98763	-0.86939	-0.84034
Н	5.82197	-2.06684	0.96662
С	3.16240	-0.44700	-0.56728
С	3.87730	-1.28179	0.36001
Ν	3.01900	-1.81617	1.22514
Н	3.27073	-2.42034	1.99165
С	-0.17852	1.11501	-0.08441
С	1.65588	-1.39508	0.95016
С	1.83123	-0.46601	-0.21753
С	0.72058	0.20535	-0.94622
Н	-0.68590	0.48405	0.65279
Н	0.07489	-0.56784	-1.37827
Н	1.13584	0.79002	-1.77281
С	-2.52739	1.90793	-0.64149
0	-3.26919	2.28630	-1.52294
С	-2.97654	1.62908	0.77235
Н	-3.98499	2.02232	0.88617
Н	-3.00794	0.55030	0.95540

Н	-2.31409	2.09067	1.51071
С	-0.72560	-2.22157	0.74823
С	-1.57780	-2.28505	-0.27958
С	-5.60153	-0.87798	-0.08166
С	-5.05204	-1.54927	1.00831
С	-3.75307	-2.03963	0.94361
С	-2.98823	-1.86673	-0.21703
С	-3.56263	-1.22214	-1.31796
С	-4.85573	-0.71662	-1.24590
Н	-6.61196	-0.48746	-0.02632
Н	-5.63781	-1.69578	1.90959
Н	-3.33567	-2.57827	1.78891
Н	-2.98402	-1.08842	-2.22800
Н	-5.27454	-0.18851	-2.09472
Н	-1.21393	-2.62911	-1.24907
Н	-1.08036	-1.85230	1.71091
С	0.71449	2.07156	0.72662
0	1.67705	1.60344	1.33423
Ν	0.35505	3.35985	0.72802
Н	-0.43505	3.61564	0.15357
С	1.06820	4.38333	1.46992
Н	0.41335	4.84549	2.21223
Н	1.90843	3.90934	1.97619
Н	1.44229	5.15435	0.79230
Ν	-1.17280	1.74979	-0.91215
Н	-0.94881	1.92948	-1.88225
С	0.72018	-2.60671	0.68740
Н	0.93631	-3.34737	1.46585
Н	0.97566	-3.06470	-0.27331
H	1.28395	-0.81120	1.79957
Elect	ronic energy	= -1206.2769	62
Zero	-point electror	nic energy = -	1205.81826
Enth	alpy = -1205.7	791216	
Free	energy = -120	05.875586	
Free	energy with c	luasiharmonio	c = -1205.870073
Freq	uencies = 21 .	/826 32.8/90	38.6054 21.4997 32.8436 38.4241
SCF	(mRA1X-D/Q-2	511+G(a,p)-S	S(U) (nitromethane)) = -1206.63836
040			
513	0.0704.4	4 00554	0.22010
(38/314	1 26551	

С	3.87314	1.26551	-0.33618
С	5.12156	1.34583	0.25503
С	5.75570	0.19986	0.76947
С	5.15685	-1.04638	0.69849
Н	3.39658	2.15358	-0.74101
Н	5.62305	2.30551	0.32470
Н	6.73369	0.29508	1.22995
Н	5.64720	-1.93003	1.09471
С	3.23895	0.01723	-0.41489
С	3.89594	-1.11946	0.10322
Ν	3.06673	-2.19695	-0.10525
Н	3.27084	-3.14765	0.14980
С	0.28332	1.43008	-0.51221
С	1.91006	-1.78036	-0.73317
С	1.97482	-0.42388	-0.94241
С	0.91510	0.45029	-1.53500
Н	1.00939	2.21908	-0.28947
Н	0.11614	-0.16732	-1.95600
Н	1.30885	1.05992	-2.35308
С	-0.34655	1.23095	1.92826
0	-0.53980	0.48950	2.88233
С	-0.41813	2.73726	2.03738
Н	-1.16075	3.14429	1.34502
Н	-0.68896	2.99212	3.06057
Н	0.54753	3.19180	1.79523
С	-0.43648	-2.47405	-0.26161
С	-1.58725	-2.07740	-0.81202

С	-5.11342	-0.61675	1.12264			
С	-3.91804	-0.69446	1.83339			
С	-2.77092	-1.19744	1.23058			
С	-2.79655	-1.62177	-0.10630			
С	-4.00233	-1.52706	-0.81318			
С	-5.15297	-1.03957	-0.20362			
Н	-6.00584	-0.21973	1.59552			
Н	-3.86407	-0.34824	2.86025			
Н	-1.84879	-1.20130	1.80336			
Н	-4.03402	-1.83654	-1.85446			
Н	-6.07867	-0.98005	-0.76736			
Н	-1.64853	-2.04241	-1.90050			
Н	-0.34093	-2.55187	0.82117			
С	-0.89806	2.11610	-1.21261			
0	-0.70199	2.98201	-2.05311			
Ν	-2.12339	1.65060	-0.88461			
Н	-2.19739	0.90784	-0.20490			
С	-3.31209	2.12744	-1.55653			
Н	-3.43684	3.20390	-1.40946			
Н	-3.25431	1.94131	-2.63341			
Н	-4.17539	1.60333	-1.14547			
Ν	-0.07940	0.71434	0.69120			
Н	0.10236	-0.27982	0.69656			
С	0.81234	-2.76173	-1.05432			
Н	1.16954	-3.77768	-0.84577			
Н	0.58615	-2.72443	-2.12553			
Electr	onic energy :	= -1205.91487	71			
Zero-	Zero-point electronic energy = -1205.468035					
Enthalpy = -1205.441092						
Free energy = -1205.525293						
Free energy with quasiharmonic approximation = -1205.519686						
Frequ	Frequencies = 18.8574 30.2699 39.4726 16.6743 30.1767 39.3951					
SCF (SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.22147					

endo-S14a

С	-0.92522	2.46514	1.20445
С	-0.71926	3.58500	0.39637
С	-0.25072	3.43226	-0.90666
С	-0.00951	2.16557	-1.44143
Н	-1.28421	2.58094	2.22297
Н	-0.92192	4.57666	0.78585
Н	-0.08725	4.30979	-1.52419
Н	0.32567	2.04334	-2.46640
С	-0.66166	1.20720	0.68994
С	-0.22526	1.06170	-0.62662
Ν	-0.09805	-0.29728	-0.98959
Н	0.82265	-0.54579	-1.33075
С	-2.86855	-1.00670	0.81659
С	-0.53473	-1.10542	0.15562
С	-0.68520	-0.14479	1.37826
С	-2.03675	-0.51753	2.00440
Н	-3.63100	-1.73387	1.10065
Н	-2.52049	0.31876	2.51184
Н	-1.90248	-1.33244	2.72309
Н	0.18992	-1.90425	0.33315
Ν	-1.87180	-1.65648	-0.02511
С	-2.19194	-2.75909	-0.77935
0	-3.33206	-3.18804	-0.82629
С	-1.05173	-3.39679	-1.54713
Н	-0.56011	-2.66444	-2.19344
Н	-0.29821	-3.80656	-0.86646
Н	-1.46238	-4.20543	-2.14937
С	0.49755	-0.27105	2.36846
Н	0.30479	0.39627	3.21699
Н	0.52479	-1.29660	2.75596
С	1.79616	0.08102	1.70675

С	2.68880	-0.80551	1.25828
С	6.12343	0.13698	-1.11780
С	6.11088	-1.00263	-0.31867
С	4,99151	-1.30447	0.44868
Ċ	3,86864	-0.46958	0.44016
Ċ	3 88540	0.66311	-0 38543
č	5.00525	0.06640	1 15006
U U	5.00525 6.00561	0.90049	-1.15000
	0.99501	0.37230	-1.7 1907
н	6.97456	-1.05904	-0.29359
н	4.98794	-2.19408	1.07300
н	3.00679	1.30074	-0.44231
Н	5.00078	1.84815	-1.78344
Н	2.55104	-1.86186	1.49337
Н	1.95640	1.13939	1.51129
С	-3.60520	0.17458	0.16115
Ō	-4.36174	0.85607	0.83812
Ň	-3 35307	0.38819	-1 14933
Ц	2 60754	0.00010	1 57201
C	2 92051	1 59054	1 91047
U U	-3.62031	1.00004	-1.01947
н	-3.05044	2.36097	-1.81780
н	-4.09752	1.35006	-2.85089
н	-4.69483	1.94900	-1.28298
Elect	tronic energy =	-1205.9107	36
Zero	-point electron	ic energy = -	1205.463152
Enth	alpy = -1205.4	3725	
Free	energy = -120	05.519795	
Free	energy with a	uasiharmonio	approximation = -1205 513857
Fred	uencies = 21 (2134 27 5511	32 7545 21 6447 26 2233 32 5417
SCE	$(0.07 \times D/6)^2$	211+C(d n) S	MD (nitromothano)) = 1206 212065
501	(00377-0/0-0	5111G(u,p)=C	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
exo-	5140		
С	-0.57873	3.21114	-1.62264
С	-0.46768	4.55963	-1.26976
С	-0.62483	4.94323	0.05939
С	-0.89625	4.00873	1.05986
Н	-0.45243	2.90396	-2.65751
н	-0.25591	5.30425	-2.02926
н	-0.53157	5,99114	0.32761
н	-1 01974	4 31729	2 09293
C	0.83630	2 27536	0.63817
č	1 00045	2.27330	0.00017
C N	-1.00045	2.07007	0.09001
N	-1.29748	1.57550	1.49828
н	-1.03691	1.57878	2.47282
С	-2.81803	-0.84753	-0.31312
С	-0.99660	0.35576	0.76552
С	-1.02933	0.77812	-0.72937
С	-2.47176	0.39643	-1.14899
н	-3.88922	-0.87103	-0.09493
н	-2 57254	0 19990	-2 21822
н	-3 15286	1 20767	-0.88179
ц	0.03160	0.06227	1 07331
NI NI	-0.03100	-0.00227	0.00007
	-2.02075	-0.00030	0.09007
C	-2.31844	-1.14462	2.15144
0	-1.65049	-0.80599	3.11768
С	-3.48455	-2.10262	2.26311
Н	-3.43801	-2.89167	1.50808
Н	-4.42921	-1.56566	2.13011
Н	-3.46813	-2.54212	3.25918
С	0.01961	0.06612	-1.60732
Ĥ	-0 07089	0 48040	-2 62013
Ц	-0 22203		_1 68579
\hat{c}	-0.22200	0.00001	1 11220
Č	1.42429	0.22005	-1.11223
	2.19843	-0.79954	-0./400/
C C	0.20962	-0./3/81	0.75297
С	5.53353	0.46310	0.54657
~	1 00000	0 46212	0.06256

С	3.57682	-0.74029	-0.23103			
С	4.26770	-1.93799	-0.01458			
С	5.57055	-1.94020	0.47135			
Н	7.22538	-0.73395	1.13509			
Н	6.02292	1.40647	0.76738			
Н	3.72185	1.41013	-0.08037			
Н	3.77420	-2.88164	-0.23240			
Н	6.08471	-2.88278	0.63038			
Н	1.78670	-1.80573	-0.84159			
Н	1.79052	1.24876	-1.04182			
С	-2.52552	-2.14425	-1.08490			
0	-3.15124	-2.41038	-2.09873			
Ν	-1.55062	-2.94063	-0.58431			
Н	-1.04597	-2.62533	0.22845			
С	-1.16277	-4.15665	-1.26746			
Н	-0.27211	-4.56531	-0.78887			
Н	-1.96205	-4.90206	-1.22832			
Н	-0.94746	-3.95095	-2.31941			
Elec	tronic energy	= -1205.9069	97			
Zero	Zero-point electronic energy = -1205.459681					
Enthalpy = -1205.433402						
Free energy = -1205.518502						
Free energy with quasiharmonic approximation = -1205.510678						
Frequencies = 10.9079 20.6879 25.8092 7.4167 19.8246 25.6251						
SCF (ωB97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.210815						
endo	endo- S15a					

С	-1.03463	4.18378	6.98339
С	-1.89573	4.70232	7.96101
С	-2.41990	5.98905	7.81197
С	-2.10124	6.78301	6.70569
Н	-0.62408	3.18157	7.09492
Н	-2.15401	4.10553	8.83107
Н	-3.09091	6.38561	8.56996
Н	-2.51445	7.78205	6.59895
С	-0.72103	4.95757	5.87512
С	-1.24447	6.25423	5.73954
Ν	-0.73102	6.86775	4.59877
Н	-1.26357	7.57666	4.10858
С	-1.35126	3.88029	2.93560
С	-0.12768	5.85865	3.74400
С	0.19464	4.66123	4.69148
С	-0.22139	3.41047	3.88555
Н	-1.29789	3.33743	1.98438
Н	-0.53040	2.59393	4.54290
Н	0.62469	3.05410	3.28536
Н	0.74394	6.27940	3.23497
Ν	-1.02374	5.28232	2.71740
С	-1.57092	6.12007	1.77917
0	-1.30848	7.32213	1.79051
С	-2.48531	5.51212	0.73092
Н	-2.67987	6.27391	-0.02526
Н	-2.04194	4.63212	0.25048
Н	-3.43209	5.21227	1.19115
Н	1.84948	3.79010	5.81363
Н	2.33014	4.48780	4.25246
С	-2.78929	3.71312	3.50608
0	-3.47404	4.69679	3.75862
Ν	-3.25404	2.43271	3.68490
С	-4.57469	2.24351	4.27254
Н	-4.96751	3.21720	4.56007
Н	-5.25550	1.77218	3.55087
Н	-4.50491	1.59678	5.15641
С	1.67031	4.61882	5.11916
Н	1.94906	5.54707	5.62798
С	-2.57135	1.20674	3.30552

Н -2.32067 0.60370 4.18958 Н -3.22398 0.60231 2.66135 Н -1.65214 1.40681 2.75763 Electronic energy = -936.844819 Zero-point electronic energy = -936.484379 Enthalpy = -936.464246 Free energy = -936.530557 Free energy with quasiharmonic approximation = -936.52905 Frequencies = 40.5034 59.6520 83.5486 40.1877 59.4894 83.4812 SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -937.0819949

exo-S15b 3.03630 С 3.57444 -0.88876 С 3.29890 4.01553 -1.85403 С 4.49228 1.99511 -2.01088 С 4.01201 0.94383 -1.22182 Н 4.58968 2.66512 -0.76318 -2.47660 Н 4.40428 4.09933 Н 5.25455 1.78896 -2.75794-0.06749 Н 4.38772 -1.35092 С 2.55899 2.54202 -0.09405 С 3.03895 1.23251 -0.26480 Ν 2.36992 0.35749 0.59590 Н 2.82871 -0.48422 0.92688 С 2.83422 2.87691 3.01142 С 1.73228 1.13896 1.63762 С 1.48694 2.53834 0.99245 С 1.75260 3.53952 2.13238 Н 3.82456 3.15176 2.63391 Н 0.83270 3.70539 2.70493 Н 2.08988 4.51413 1.76931 Н 0.82476 0.63369 1.98245 Ν 2.60224 1.43534 2.81521 С 3.31002 0.41023 3.39527 Ο 3.10762 -0.75866 3.06230 С 4.32914 0.76022 4.46526 Н 4.92788 1.64084 4.21411 Н -0.10572 4.97952 4.59782 Н 3.82744 0.96736 5.41730 Н -0.03454 3.65644 -0.09427 Н -0.69216 2.59050 1.16393 С 2.84112 3.44466 4.44906 0 3.74649 4.22650 4.73004 Ν 1.85932 3.11725 5.35268 С 1.88571 3.76808 6.65872 Н 2.84441 4.26869 6.78127 Н 1.07917 4.50990 6.74108 Н 1.74820 3.01989 7.44848 С 0.08015 2.68039 0.38987 Н -0.09613 1.90778 -0.36523 С 5.08918 0.65941 2.33606 Н -0.22697 2.98348 5.01851 Н 0.75854 1.76022 4.17348 Н 0.49510 1.63239 5.91438 Electronic energy = -936.842958 Zero-point electronic energy = -936.482804 Enthalpy = -936.462344 Free energy = -936.53017 Free energy with guasiharmonic approximation = -936.527984 Frequencies = 41.4265 45.8845 67.3297 41.397 45.4715 67.3206 SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -937.0800576

endo-S16a

С	4.73179	1.67609	0.38067
С	6.00386	1.38763	0.87756
С	6.21018	0.33926	1.77745

С	5.15073	-0.45521	2.21068
Н	7.20921	0.14061	2.14815
Н	5.30312	-1.27138	2.90771
С	1.68587	-0.22346	1.27241
С	2.19113	0.94969	0.49234
С	3.67017	0.89216	0.80064
С	3.90645	-0.14223	1.69825
Н	4.58448	2.49208	-0.31948
Н	6.84867	1.99068	0.56334
N	2.65346	-0.76487	1.95011
н	2.52321	-1.54112	2.58763
Н	0.65184	-0.56145	1.37925
C	1.81842	0.90358	-1.00373
н	0.75864	1.14214	-1.10925
н С	2.38241	1.69108	-1.51495
	2.04002	-0.40102	-1.09040
	2 00221	-0.34201	-2.13231
	3.99221	0.00114	-3.07090
0	3 87261	-0.90041	-1.07000
N	4 35723	-0.2000	-0.90097
C	5 78005	-0.20020	-2.46335
н	6 26555	0 13846	-3 20835
н	6 21469	-0 28924	-1 48007
н	5 95502	-1 54131	-2 70884
н	1 87903	-2 29185	-0 75493
N	1.30344	-1.50612	-1.04178
C	-0.05628	-1.59994	-1.10670
Õ	-0.76013	-0.72710	-1.58074
Č	1.55887	2.24061	1.15731
Ĥ	1.84763	2.24892	2.21459
Н	2.04963	3.09795	0.68536
С	0.07428	2.31855	0.98678
С	-0.52502	3.22398	0.20727
С	-4.67698	3.40244	-0.73641
С	-3.88135	4.53758	-0.86164
С	-2.52927	4.48038	-0.55061
С	-1.96273	3.28527	-0.09535
С	-2.77409	2.15365	0.01868
С	-4.13047	2.19604	-0.29631
Н	-5.73161	3.45257	-0.99107
Н	-4.31800	5.46671	-1.21213
Н	-1.90918	5.36601	-0.65598
н	-2.32112	1.21313	0.32211
н	-0.52162	1.56822	1.50463
Н	0.09007	3.98970	-0.26698
C	-4.98496	0.95806	-0.14539
н	-5.09606	0.73820	0.92434
H C	-5.99737	1.14876	-0.51119
	-4.41/20	-0.27223	-0.00019
	-3.32021	-0.32071	-0.79247
	-4.04242	-0.19371	-1.94979
ц Ц	3 58613	-1.00402	1.68820
C	-0.61014	-2 91103	-0 53682
N	-4 48661	-2.31103	0.72810
н	-5 05271	-2 89779	1 09823
N	-1 89633	-2 67221	0.08861
н	-2.74088	-3.04853	-0.32063
H	0.07800	-3.29087	0.22085
C	-5.06516	-1.54571	-0.38357
0	-6.04256	-2.04589	-0.90136
С	-2.04690	-1.79451	1.09124
0	-1.10272	-1.19577	1.61535
С	-3.59764	-2.18802	3.00418
Н	-2.82241	-1.78123	3.65460

	4 57407	1 05070	2 42000			
н	-4.5/48/	-1.95076	3.42986			
Н	-3.48441	-3.27612	2.96644			
С	-0.77283	-3.93603	-1.66051			
Н	-1.16697	-4.87587	-1.26687			
Н	-1.45367	-3.55549	-2.42693			
Н	0.19225	-4.13962	-2.12914			
Elec	tronic energy =	= -1738.9355 ⁻	18			
Zerc	-point electron	ic energy = -	1738.296163			
Enth	alpy = -1738.2	259123				
Free	e energy = -173	38.364203				
Free	Free energy with guasiharmonic approximation = -1738.356846					
Frequencies = 21,1605 27,6667 29,6960 19,5334 27,5609 29,6271						
SCF	SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1739.434113					

endo-S16a-2

C	1.67011	1.77407	-1.21336
С	2.05380	2.48436	-2.35274
C	3.35537	2.96196	-2.50625
C	4.32862	2.72967	-1.53364
н	3.62257	3.51153	-3.40186
Н	5.34653	3.08294	-1.65574
C	3.99196	0.84470	1.50200
	2.54095	0.87035	1.11/74
	2.02312	1.55373	-0.23055
	3.92120	2.01710	-0.42219
	0.00349	1.30392	-1.11240
	1.32440	2.00451	-3.13439
	4.09030	1.00274	0.70229
Ц	1 30232	0.40864	2 4 4 3 9 4
C	1 85023	-0.49004	2.44334
н	1.00020	-0.49777	2 00342
н	0 78340	-0.33496	0 94573
C	2 32129	-1 45345	0.00982
н	2 31641	-0 91271	-0.94360
н	3 35458	-3 64425	-0 72015
C	3 74697	-1.92802	0 24012
õ	4.56439	-1.20611	0.83335
Ň	4.07884	-3.12259	-0.24859
C	5.42547	-3.65751	-0.13543
Ĥ	5.47790	-4.59586	-0.68570
H	6.14985	-2.95400	-0.55129
Н	5.68030	-3.83997	0.91129
Н	1.24617	-3.12292	0.66767
Ν	1.40169	-2.56342	-0.16269
С	0.24116	-2.31067	-0.87186
0	0.08910	-1.31876	-1.55584
С	1.84314	1.81318	2.18217
Н	1.95830	1.34837	3.16765
Н	2.37338	2.77110	2.19728
С	0.39687	2.02495	1.85547
С	-0.03465	3.08053	1.15831
С	-3.93471	3.71612	-0.44659
С	-3.03038	4.76984	-0.35374
C	-1.76617	4.55960	0.18013
C	-1.39288	3.29032	0.63668
C	-2.31151	2.24262	0.52889
C	-3.58330	2.43983	-0.00503
н	-4.91925	3.88385	-0.87310
Н	-3.31275	5.75694	-0.70434
н	-1.05989	5.38227	0.24631
н	-2.01921	1.24320	0.84536
	-0.29300 0.60400	1.24100	2.13/12
\hat{c}	0.00400	1 28235	0.90000
ц	-4.04844 5 51005	1.20200	-0.09313
11	-0.01220	1.01//1	-0.40/90

Н	-4.75170	0.91307	0.92016	
С	-4.03188	0.12820	-0.97754	
Н	-2.97948	-0.08547	-0.76504	
Н	-4.10231	0.40991	-2.02930	
С	-3.52451	-1.73734	1.25978	
Н	-3.43773	-0.67447	1.50592	
С	-0.80452	-3.43169	-0.80451	
Ν	-4.54996	-1.94741	0.25588	
Н	-5.24725	-2.65756	0.43635	
Ν	-2.06000	-2.89777	-0.32305	
Н	-2.91572	-3.07936	-0.82775	
Н	-0.45510	-4.20589	-0.10851	
С	-4.89480	-1.10301	-0.78471	
0	-5.86156	-1.34674	-1.47864	
С	-2.12429	-2.16022	0.80211	
0	-1.12585	-1.85708	1.45393	
С	-3.87782	-2.49420	2.54150	
Н	-3.08840	-2.35738	3.28150	
Н	-4.81778	-2.11879	2.95195	
Н	-3.98386	-3.56540	2.34233	
С	-0.99210	-4.03427	-2.19359	
Н	-1.29780	-3.25681	-2.89751	
Н	-0.05798	-4.47535	-2.54786	
Н	-1.74998	-4.82137	-2.16986	
Electronic energy = -1738.930536				
Zero-point electronic energy = -1738.290076				
Enthalpy = -1738.25321				
Free energy = -1738.358399				

Free energy with quasiharmonic approximation = -1738.350313Frequencies = 20.4109 22.7503 31.2793 20.1752 22.1862 31.0461 SCF (ω B97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1739.427098

exo-S16b

0.81462	0.70652	1.34595
0.64773	0.16980	2.62335
1.71850	0.09870	3.51865
2.98747	0.55724	3.16720
1.56230	-0.32726	4.50322
3.82005	0.50574	3.86024
4.05905	1.87685	0.00081
2.60205	1.73581	-0.32072
2.07544	1.15257	0.97307
3.11985	1.06943	1.88829
-0.02019	0.74978	0.65485
-0.31934	-0.23301	2.90615
4.28597	1.58180	1.24899
5.19049	1.66851	1.69410
4.80011	2.36923	-0.61090
2.31183	0.89208	-1.57859
1.23545	0.92167	-1.75840
2.79329	1.37286	-2.43618
2.69905	-0.59206	-1.58884
2.44321	-0.94442	-2.59552
3.90188	-2.79280	-1.70289
4.19823	-0.82502	-1.39014
4.96710	0.11184	-1.14657
4.60309	-2.09636	-1.49662
5.99029	-2.51288	-1.37972
6.09378	-3.27486	-0.60406
6.35186	-2.91488	-2.32898
6.58551	-1.64072	-1.11349
2.32757	-1.54257	0.27171
1.97268	-1.44995	-0.66919
0.64775	-1.74438	-0.87147
0.03964	-1.36864	-1.85732
2.08544	3.21373	-0.54906
	0.81462 0.64773 1.71850 2.98747 1.56230 3.82005 4.05905 2.60205 2.07544 3.11985 -0.02019 -0.31934 4.28597 5.19049 4.80011 2.31183 1.23545 2.79329 2.69905 2.44321 3.90188 4.19823 4.96710 4.60309 5.99029 6.09378 6.35186 6.58551 2.32757 1.97268 0.64775 0.03964 2.08544	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Н	2.33588	3.81023	0.33482		
н	2.63603	3.62693	-1.40240		
C	0.61185	3.25281	-0.79702		
Ĉ	-0 28424	3 67289	0 10012		
č	-4 50101	3 24809	-0.36761		
ĉ	-3 98578	4 35236	0 30781		
č	-2 61430	4 40858	0.47111		
ĉ	1 74024	3 55294	0.07540		
č	-1.74024	3.00204	-0.07349		
Č	-2.2/41/	2.40402	-0.75299		
C I	-3.64903	2.27962	-0.89834		
н	-5.5/5/3	3.12939	-0.47036		
н	-4.66099	5.09616	0.71771		
Н	-2.21691	5.35396	1.00934		
н	-1.60505	1.69156	-1.14883		
Н	0.26204	2.88631	-1.75915		
Н	0.06330	4.10773	1.03748		
С	-4.17184	1.00700	-1.51863		
Н	-5.23393	1.09551	-1.75869		
Н	-3.65658	0.79231	-2.45952		
С	-3.95898	-0.15850	-0.55137		
Н	-4.50172	0.03391	0.38278		
Н	-2.89980	-0.22839	-0.27449		
С	-3.67037	-2.59625	1.02961		
Ĥ	-4.14530	-1.77621	1.57717		
C	0.04194	-2.64534	0.20289		
Ň	-4.09269	-2.60274	-0.35963		
H	-4 51053	-3 45156	-0 71744		
N	-1 39399	-2 61872	0 12377		
H	-1 85097	-2 77753	-0 76383		
н	0 29537	-2 24993	1 19254		
C	-4.39788	-1 49215	-1 12324		
õ	-4 95194	-1 60816	-2 19832		
č	-2 16090	-2 39476	1 21872		
õ	-1 70297	-2 10940	2 31821		
č	-4.06338	-3 01331	1 70201		
й	-3 73670	-3 90700	2 74346		
н	-5 14756	-4 04302	1 67270		
н	-3 50170	-4 76132	1 19568		
C	0 58086	-4.07488	0.07251		
ŭ	0.00300	4 70177	0.85150		
	0.15200	-4.70177	0.00210		
	1 67740	-4.49937	-0.90219		
Eloo	tronic operavi	-4.09019	0.10393		
Zoro	noint electror	= -1750.92440	UU 1720 204025		
Enth	-point electron	10 energy – -	1730.204033		
Enu	aipy = -1730.2	247020			
Free energy = $-1/30.303/41$					
Free energy with quasinarmonic approximation = -1738.345321					
Fiequencies = 19.0015 27.7001 30.4200 19.4041 27.7020 30.4214					
SUL	(009/ X-D/0-3	511+G(u,p)=S	p_{MD} (muomeurane)) = -1739.427349		
000	6170				
enac	-31/a 5 06000	1 04540	1 70976		

С	-5.26283	1.04540	-1.79876
С	-6.44796	0.35163	-2.05337
С	-6.54230	-1.00484	-1.75348
С	-5.46701	-1.69787	-1.19530
Н	-7.46712	-1.53564	-1.95538
Н	-5.54758	-2.75469	-0.96123
С	-2.05283	-0.47789	-0.61406
С	-2.82273	0.85322	-0.84144
С	-4.18801	0.36355	-1.25504
С	-4.29490	-0.99565	-0.95410
Н	-5.18356	2.10363	-2.03016
Н	-7.29648	0.86929	-2.48730
Ν	-3.10244	-1.48395	-0.37663
Н	-2.85193	-2.41838	-0.67461
Н	-1.44768	-0.75316	-1.48354

С	-2.84376	1.49560	0.57239		
Н	-2.72498	2.57915	0.51934		
Н	-3.80443	1.29556	1.05245		
С	-1.69481	0.85605	1.38008		
Н	-0.87784	1.55340	1.57193		
Н	-2.85905	-1.33608	1.87185		
С	-2.19662	0.38247	2.74793		
0	-2.15245	1.12514	3.71454		
Ν	-2.73882	-0.86206	2.75935		
С	-3.38245	-1.39248	3.93904		
Н	-3.01462	-0.83632	4.80164		
Н	-3.13972	-2.45121	4.06182		
Н	-4.47224	-1.28174	3.89407		
Ν	-1.20524	-0.22695	0.52833		
С	0.04726	-0.71397	0.75994		
0	0.74295	-0.28792	1.66906		
С	-2.12778	1.76044	-1.88251		
Н	-2.25950	1.31449	-2.87482		
Н	-2.64207	2.72784	-1.89232		
С	-0.66881	1.94358	-1.57919		
С	-0.15172	2.95383	-0.87678		
С	3.85811	3.01807	0.58251		
С	2.83479	3.63173	1.29684		
С	1.53937	3.64500	0.79591		
С	1.24795	3.02537	-0.42321		
С	2.29239	2.43953	-1.14390		
С	3.59738	2.42683	-0.65489		
Н	4.86415	2.97916	0.98610		
Н	3.04627	4.09376	2.25564		
Н	0.73982	4.11183	1.36475		
Н	2.08640	1.99725	-2.11657		
Н	-0.00941	1.12683	-1.87204		
Н	-0.81107	3.75356	-0.53800		
С	4.69445	1.75945	-1.45286		
Н	4.60565	2.04862	-2.50541		
Н	5.67178	2.09497	-1.09828		
С	4.63845	0.23171	-1.36909		
Н	5.31831	-0.20871	-2.11053		
Н	3.63283	-0.12635	-1.61431		
С	4.24417	-2.58835	-0.63876		
Н	4.69429	-2.42674	-1.62372		
С	0.53892	-1.88270	-0.09205		
Ν	4.70926	-1.57954	0.29652		
Н	5.08214	-1.89492	1.18162		
Ν	1.98082	-1.87116	-0.02108		
Н	2.39770	-1.33323	0.72947		
Н	0.25554	-1.78022	-1.14400		
С	5.05396	-0.28242	0.00111		
0	5.66419	0.39824	0.80664		
С	2.72767	-2.58936	-0.88243		
0	2.25536	-3.25151	-1.79913		
С	4.65235	-3.97879	-0.14881		
Н	4.29387	-4.73076	-0.85256		
Н	5.73949	-4.05312	-0.06593		
Н	4.20850	-4.18321	0.83132		
С	-0.03799	-3.19599	0.45922		
Н	0.31898	-4.02696	-0.15151		
Н	0.29112	-3.33352	1.49236		
Н	-1.13127	-3.18905	0.45392		
Elec	ctronic energy =	-1738.5452	04		
Zero	Zero-point electronic energy = -1737.917456				
Enth	nalpy = -1737.8	81177			
Free	Free energy = -1737.985514				
Free	e energy with q	uasiharmonio	c approximation = -	-1737.977293	
Free	Frequencies = 24.5910 28.6105 31.2155 24.4002 28.5094 31.15				

Frequencies = 24.5910 28.6105 31.2155 24.4002 28.5094 31.1584 SCF (ωB97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1738.993872

exo-S1	17b		
С	5.80838	0.49731	0.01094
С	6.94395	-0.25664	-0.29519
С	6.80938	-1.48682	-0.93403
Č	5.55535	-1.99498	-1.27385
Ĥ	7.69612	-2.06590	-1.17256
Н	5.45726	-2.95840	-1.76351
C	2 26425	-0.38987	-0.87592
Ĉ	3 19257	0.62284	-0 13962
č	4 56063	0.00796	-0.33293
Ĉ	4 43447	-1 23237	-0.96438
н	5 90622	1 46118	0 50334
н	7 92917	0 11813	-0.03996
N	3 00370	_1 54017	-1 17471
н	2 84270	-2 07717	-1.00675
н	1 80370	-0.00072	-1.33073
C	2 71576	0.50762	1 33650
ц	3 54021	0.39702	2 02300
	2 27022	1 56367	2.02309
$\hat{\mathbf{C}}$	2.27952	0.40416	1.00093
с ц	2 04207	1 40969	1,40030
н	0.34440	1 00650	0.87370
$\hat{\mathbf{C}}$	0.51370	0.03110	2 40249
0	0.51379	-0.03119	2.40340
N	0.52256	-0.37 144	3.07000
C N	-0.41037	0.70012	1.00027
	1.07.092	1.23747	2.59309
п	-1.27090	1.49744	3.01120
	-1.90040	2.11010	2.09050
	-2.33103	0.44047	2.04200
	1.20035	-0.70770	0.07562
	0.19011	-1.50910	-0.35554
0	-0.03272	-1.00510	-1.55276
	3.10451	2.05733	-0.73260
н	3.04277	2.73898	-0.06453
	3.02779	2.00473	-1.09435
	1.00342	2.49470	-0.91407
	0.97579	3.24347	-0.00040
	-3.20045	3.01117	-0.20765
	-2.45820	4.08472	0.52245
C	-1.07982	4.51210	0.55648
	-0.47945	3.46706	-0.15470
C	-1.30400	2.59934	-0.87939
	-2.08872	2.75416	-0.91677
Н	-4.33830	3.94619	-0.22042
н	-2.91293	5.50188	1.07333
н	-0.46055	5.18799	1.13910
	-0.00529	1.70010	-1.41017
н	1.17744	2.08000	-1./8/50
П	1.47606	3.70444	0.78011
	-3.52379	1.75368	-1.07830
н	-4.54603	2.12209	-1.80131
П	-3.12383	1.01408	-2.08047
C	-3.54703	0.39308	-0.97916
н	-4.07779	0.45917	-0.02224
Н	-2.52495	0.08061	-0.73001
C	-4.41498	-2.19830	0.14931
Н	-5.05286	-1.46400	0.65428
	-0.03884	-2.28921	0.66541
IN LL	-4.33026	-1.92630	-1.2/604
Н	-4.//934	-2.58236	-1.90064
IN	-1.9/825	-2.41285	0.13636
н	-2.06826	-2.49166	-0.86878
Н	-0.73080	-1.78880	1.628/8
C	-4.14198	-0.69322	-1.86050
0	-4.38874	-0.52214	-3.04083

C O C H H C H H Electr Zero- Entha Free Free S C F (-3.06842 -3.03841 -5.00974 -5.07584 -6.01298 -4.37692 0.02764 0.08955 1.03896 -0.56218 ronic energy = point electror ilpy = -1737.8 energy with q iencies = 22.8 (wB97x-D/6-3)	-2.12051 -1.86408 -3.58972 -3.79290 -3.65173 -4.35380 -3.65544 -4.19484 -3.53941 -4.23997 = -1738.54945 iic energy = - 885601 37.989463 uasiharmonic 3308 28.1311 311+G(d,p)-S	0.88126 2.07662 0.36936 1.43930 -0.06147 -0.09254 0.87404 -0.07497 1.27443 1.58269 53 1737.922092 e approximation = -1737.98221 34.0100 22.6648 28.0433 33.944 MD (nitromethane)) = -1738.991441
endo-	TS-1a		
C	-0.80996	2.31968	1.03054
С	-0.65629	3.41859	0.18236
C	-0.19357	3.26089	-1.12405
С ц	0.11689	1.99843	-1.63285
Н	0.47375	1.87105	-2.64908
C	-0.22269	-1.18370	0.01070
С	-0.47791	-0.29706	1.21175
С	-0.49662	1.06356	0.54037
С	-0.04852	0.93061	-0.77081
Н	-1.10000	2.44935 4 41034	2.03000 0.54611
N	0.17675	-0.44982	-1.01401
Н	0.62265	-0.81115	-1.84407
Н	0.08002	-2.22039	0.08974
С	-1.75670	-0.70110	1.94874
н ц	-1.57748	-1.63690	2.48733
C	-2.88072	-0.90211	0.93258
Ĥ	-3.68946	-1.46621	1.40990
Н	-3.05402	0.21182	-1.39818
С	-3.50395	0.46268	0.56296
0	-3.90873	1.17636	1.46322
N C	-3.59709	0.76194	-0.75274 -1 18912
н	-4.80486	2.42123	-0.46945
H	-4.53500	1.97502	-2.17106
Н	-3.24821	2.78828	-1.23680
N	-2.28956	-1.64016	-0.17108
C	-2.98206	-2.44061	-0.89782
Н	-4.45312	-2.09140	-0.78370
H	-4.79129	-3.30787	-1.61499
Н	-4.66914	-3.21200	0.15402
С	0.75947	-0.41646	2.16865
Н	0.53648	0.22109	3.03093
Г	0.81459	-1.44///	2.53520 1.52543
c	2.96962	-0.88626	1.10020
С	6.60417	-0.02739	-0.97902
С	6.42187	-1.25391	-0.34822
С	5.23225	-1.52188	0.31952
C	4.21050 4 30072	-0.56/63 0 65600	U.37582 -0 27874
c	+.59912 5.58829	0.92577	-0.94420
Ĥ	7.53205	0.18439	-1.49954
Н	7.20657	-2.00239	-0.37377

н	5 09767	-2 47886	0.81661
н	3 60010	1 40180	-0.27877
н	5 72326	1 88049	-1 44190
н	2 20446	1.05399	1.37800
н	2 80998	-1 94631	1 30779
0	-2 40786	-3 14138	-1 87113
н	-1 45893	-2 97182	-1 89212
Flec	tronic energy :	= -1206 2593	24
Zer	p-point electror	hic energy = -	1205 800186
Enth	alpv = -1205.7	774216	
Free	e e nerav = -120	05.85643	
Free	e energy with a	uasiharmonio	approximation = -1205.850854
Fred	uencies = -10	5.5577 15.99	72 24.8230 -105.5538 15.7851 24.6182
SCF	ωB97x-D/6-3	311+G(d.p)–S	MD (nitromethane)) = -1206.624359
	(- (-)-/	(
exo-	TS-1h		
C	0 21651	1 32591	-2 06797
č	0.89194	2 54708	-2 01779
č	1.41602	3.02888	-0.81800
č	1 27180	2 31529	0.37245
Ĥ	1.94213	3.97681	-0.80605
H	1.68325	2.68582	1.30470
C	-0.48721	-0.78346	0.87967
Ĉ	-0.49835	-0.77267	-0.63565
Ĉ	0.06792	0.60757	-0.89343
Č	0.58727	1.11716	0.29287
Ĥ	-0.17476	0.94921	-3.00786
Н	1.01476	3.12719	-2.92540
Ν	0.29935	0.18665	1.32435
Н	0.63521	0.27467	2.27168
Н	-0.63837	-1.67639	1.47269
С	-1.90530	-1.01601	-1.17437
Н	-2.19287	-2.05593	-0.98110
Н	-1.95461	-0.85649	-2.25296
С	-2.86112	-0.06712	-0.44821
Н	-2.73347	0.93980	-0.86296
Н	-4.47076	-1.39932	1.04564
С	-4.31325	-0.46230	-0.75471
0	-4.76898	-0.18678	-1.84883
Ν	-4.98019	-1.12309	0.22157
С	-6.31700	-1.65289	0.01331
Н	-6.94750	-1.43611	0.87792
Н	-6.73455	-1.16968	-0.86943
Н	-6.29438	-2.73336	-0.15549
N	-2.45644	-0.10545	0.95024
С	-2.83379	0.81353	1.76881
С	-3.73135	1.96610	1.46395
н	-3.35581	2.52122	0.60038
н	-3.80276	2.62712	2.32604
Н	-4.72724	1.59207	1.20850
	0.50058	-1.8/229	-1.15421
н	0.03684	-2.85175	-0.99776
	1 95592	-1.72110	-2.23320
ĉ	1.00000	-1.01310	-0.50755
č	2.03023	-1.01002	-0.95150
č	6 03102	-0.32404 0.64351	0.30730
č	0.03102 1 81175	0.04001	-0.48285
č	4 14300	-0 81545	-0.28576
č	4 72041	-1 78617	0.53543
č	5.94686	-1.54091	1,15760
Ĥ	7.55269	-0.13806	1.44879

1.85583	-1.81316	-0.50755	
2.83625	-1.01062	-0.93150	
6.59849	-0.32404	0.96736	
6.03102	0.64351	0.14347	
4.81475	0.39648	-0.48285	
4.14300	-0.81545	-0.28576	
4.72941	-1.78617	0.53543	
5.94686	-1.54091	1.15760	
7.55269	-0.13806	1.44879	
6.53963	1.58841	-0.01691	

-1.12798

0.66323

1.78222

1.15159

-2.75031 -2.30567

Н Н

Н

Н

4.37292

4.24623 6.39660

Н 1.99880 -2.41181 0.39048 -0.39318 Н 2.65236 -1.81096 0 -2.41369 0.78014 3.02982 Н -1.95998 -0.05495 3.19925 Electronic energy = -1206.255067 Zero-point electronic energy = -1205.796521 Enthalpy = -1205.770159 Free energy = -1205.854413Free energy with quasiharmonic approximation = -1205.847407 Frequencies = -131.4952 20.4898 24.2649 -131.4931 20.1645 23.7061 SCF (ωB97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.621767

endo-TS-2a С -0.37530 2.37230 0.01152 С 0.65410 3.24023 0.34921 С 1.95626 3.05850 -0.14144 С 2.26894 2.00066 -0.98418 Н 2.73322 3.76089 0.13977 Н 3.27457 1.85350 -1.36215 С 0.01954 -0.54140 -2.16966 С -0.86586 0.17885 -1.35028 С -0.08447 1.29945 -0.83788 С 1.22829 1.14025 -1.31368 Н -1.37068 2.53506 0.41352 Н 0.44532 4.07905 1.00371 Ν 1.24564 -0.00353 -2.11874Н 2.04961 -2.62600 -0.33976 Н -0.20675 -1.40553 -2.77921С -2.36199 0.15763 -1.58170 Н -2.64720 1.18095 -1.85001 Н -2.56908 -0.47548 -2.44601 С -3.30493 -0.30451 -0.46171 Н -4.32102 -0.18366 -0.85181Н -3.96230 -1.55095 1.61851 С -3.15773-1.81790 -0.21613 Ο -2.68744 -2.54287 -1.08521 Ν -3.58396 -2.24336 0.98879 С -3.61471 -3.64578 1.35933 Н -3.10139 -3.80101 2.31117 Н -3.10938 -4.20983 0.57585 Н -4.64337 -4.00514 1.44674 Н -2.31565 0.48847 1.21942 0.47373 0.75831 Ν -3.21830 С -3.87603 1.67808 0.98006 0 -3.39126 2.48923 1.74526 С -5.18928 1.89813 0.26795 Н -5.85950 1.04051 0.37093 Н -5.65827 2.78089 0.69890 Н -5.02721 2.07804 -0.79986 С -0.17867 -1.41263 0.23532 Н -1.06833 -1.15104 0.79128 Н -0.27643 -2.31868 -0.35219 С 1.06548 -0.96954 0.69798 С 2.22772 -1.47800 0.17920 С -0.26898 6.22027 0.91908 С 5.17235 0.46881 1.47061 С 3.85938 0.08655 1.24741 C C -1.04917 3.57609 0.46395 4.64454 -1.77741 -0.09111 С 5.95628 -1.39302 0.13792 Н 7.24643 0.03273 1.10012 Н 5.38496 1.34315 2.07576 Н 0.67503 3.05389 1.67220 Н -2.65769 -0.69307 4.43577 Н 6.77321 -1.96504 -0.28731 Н 1.08964 -0.15698 1.41630

H 2.13422 -2.31268 -0.51596 Electronic energy = -1206.241391 Zero-point electronic energy = -1205.783924 Enthalpy = -1205.757261 Free energy = -1205.840946 Free energy with quasiharmonic approximation = -1205.835262 Frequencies = -163.9362 20.1600 26.8721 -163.9346 18.3189 26.6842 SCF (ωB97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.600955

exo-TS-2b

С	-0.88818	2.56401	-0.47963
С	-2.16825	3.04645	-0.68008
С	-3.14464	2.27200	-1.33845
С	-2.86601	0.99685	-1.79699
Н	-4.13483	2.68681	-1.49203
Н	-3.62072	0.39741	-2.29392
С	0.28032	-0.74121	-1.51215
С	0.61489	0.46230	-0.87860
С	-0.57300	1.27470	-0.94105
С	-1.57686	0.51367	-1.57338
Ĥ	-0.14302	3.17987	0.01408
н	-2.42440	4.04389	-0.34020
N	-1.00963	-0.70667	-1.91175
Н	-1.48717	-1.46456	-2.37175
н	0.91075	-1 60053	-1 68761
C	1 97905	1 02845	-0.57098
н	1 83128	1 96593	-0.02582
н	2 44645	1 30478	-1 52557
Ċ	3 01046	0 22518	0 24160
ц	2 58655	0.04860	1 20802
Ц	5 13466	-0.04000	1.20002
\hat{c}	3 39055	1 11120	-1.00337
0	2.50055	2 06112	0.43124
N	2.09720	-2.00112	-0.30011
	4.00010	-1.1400Z	-1.07012
	5.05548	-2.31937	-1.75801
	0.90910	-2.00/42	-1.30220
Н	4.30715	-3.10583	-1.66586
н	5.23033	-2.10762	-2.81554
Н	4.20974	1.96221	-0.06346
N	4.16275	1.09024	0.44/3/
C	5.05307	1.04831	1.51224
0	5.86503	1.93709	1.65291
C	4.95359	-0.14606	2.43432
Н	4.03215	-0.10306	3.02450
Н	4.95707	-1.09117	1.88370
Н	5.80266	-0.11762	3.11483
С	0.02908	-0.95408	1.06915
Н	0.85174	-1.64943	0.92424
Н	0.26072	-0.00353	1.53858
С	-1.29801	-1.35183	0.97537
С	-2.30694	-0.43742	1.19411
С	-6.48833	-0.88170	0.77507
С	-5.93626	0.36194	1.07006
С	-4.56271	0.48485	1.21791
С	-3.72341	-0.63496	1.06403
С	-4.29907	-1.88644	0.76494
С	-5.66969	-2.00541	0.62592
Н	-7.56269	-0.98324	0.66398
Н	-6.57663	1.22850	1.18976
Н	-4.12176	1.45042	1.44561
Н	-3.67466	-2.76721	0.65854
Н	-6.11164	-2.97095	0.40713
Н	-1.51944	-2.36062	0.64357
н	-2.00028	0.56715	1.48446

Electronic energy = -1206.243785

Zero-point electronic energy = -1205.786809

endo- TS-3a					
С	0.61426	1.60939	0.29633		
С	1.68252	2.20851	-0.32260		
С	2.30190	1.62084	-1.45692		
С	1.85428	0.43870	-2.00578		
Н	3.14870	2.12472	-1.91058		
н	2.32636	0.00427	-2.87967		
С	-0.80006	-1.62013	-0.68873		
Ĉ	-0.87286	-0 51897	0 18245		
Ĉ	0 14322	0.37627	-0 22069		
č	0 77325	-0 18386	-1.36873		
й	0 10324	2 07201	1 13322		
н	2 06354	3 15220	0.05072		
N	0 13080	-1 35205	-1 66840		
н	0.36361	-1.00200	-2 42570		
н Ц	1 54050	2 20947	-2.42370		
$\hat{\mathbf{C}}$	1 96326	-2.39047	1 20/91		
	2 00214	1 22004	1.29401		
	-2.00214	-1.33904	1.73452		
	-1.40319	0.26372	2.06019		
	-3.20081	0.25060	0.81503		
н	-3.92138	0.16018	1.03477		
Н	-4.54878	1.66068	-0.77576		
	-3.04632	1.76270	0.57303		
0	-2.23135	2.40785	1.21973		
N	-3.88303	2.28380	-0.34348		
С	-3.93933	3.70458	-0.62930		
Н	-4.85297	4.15130	-0.22749		
Н	-3.90039	3.87552	-1.70733		
Н	-3.07860	4.17613	-0.15627		
Н	-3.17956	-0.33626	-1.18310		
N	-3.74395	-0.43472	-0.34546		
С	-4.26236	-1.72188	-0.27485		
0	-4.07341	-2.50449	-1.18836		
С	-5.07148	-2.07083	0.95214		
Н	-4.42222	-2.20369	1.82403		
Н	-5.79838	-1.29016	1.18985		
Н	-5.58779	-3.01029	0.76198		
С	0.50292	-2.70787	0.87758		
Н	0.06146	-2.29781	1.77867		
Н	0.08065	-3.64528	0.53284		
С	1.79374	-2.33827	0.50727		
С	2.37680	-1.21228	1.05068		
С	6.05286	0.66414	0.12718		
С	5.68628	-0.48834	-0.57300		
С	4.49108	-1.12320	-0.28572		
С	3.64101	-0.61635	0.71736		
C	4.02209	0.55069	1.40484		
С	5.22055	1.18497	1.11413		
H	6.99357	1.15463	-0.09980		
н	6.34210	-0.88733	-1.33879		
Н	4.21964	-2.01989	-0.83262		
Н	3.36550	0.95498	2.16915		
н	5.50749	2.08000	1.65444		
н	2 28927	-2 88885	-0 28541		
н	1 82060	-0 71209	1 84183		
Flectro	nic energy -	-1206 24707	6		
Zero-p	Zero-point electronic energy = -1205 790976				
Enthal	$v_{\rm N} = -1205.76$	3991			
Free energy = -1205.84912					
Free energy with guesibarmonic enprovimation					

Free energy with quasiharmonic approximation = -1205.842646

Frequencies = -183.9717 20.6420 24.0857 -183.9699 19.3061 23.96	i99
SCF (wB97x-D/6-311+G(d,p)-SMD (nitromethane)) = -1206.605127	

exo-	TS-3b				
С	0.35249	1.43927	0.32179		
С	1.34110	1.86757	1.17296		
С	2.05123	0.95328	1.99246		
С	1.77453	-0.39720	1,99265		
Ĥ	2 82866	1 33210	2 64709		
ц	2 31004	1.00210	2 62870		
$\hat{\mathbf{C}}$	0.64126	2 05974	0.11059		
Č	-0.04130	-2.00074	-0.11036		
C	-0.86466	-0.71996	-0.47163		
С	0.04952	0.05540	0.28033		
С	0.77170	-0.83791	1.12063		
Н	-0.20894	2.15160	-0.27309		
Н	1.57826	2.92339	1.23415		
Ν	0.28288	-2.09937	0.90506		
н	0 60459	-2 93757	1 35960		
н	-1 29615	-2 89334	-0 31935		
C	1.20010	0.25050	1 / 3506		
Ц Ц	-1.90707	-0.25059	-1.45590		
	-2.15000	-1.05200	-2.15304		
П	-1.53257	0.60282	-2.01185		
C	-3.21469	0.18112	-0.73533		
н	-3.92329	0.46846	-1.51852		
Н	-4.77991	0.26877	1.22427		
С	-3.85688	-1.02367	-0.02178		
0	-3.63486	-2.16335	-0.41517		
Ν	-4.67298	-0.70945	0.99992		
С	-5.43535	-1.70279	1.73128		
н	-5.22760	-1.63416	2.80183		
H	-6.50752	-1.56789	1.56657		
н	-5 14157	-2 68650	1 36636		
н	-2 42530	1 16447	0.93980		
N	2.42000	1 31/86	0.15026		
C	2 00570	2 62710	0.13020		
Č	-2.99079	2.03710	-0.27030		
0	-2.30360	3.45401	0.37111		
	-3.77839	2.99051	-1.51329		
н	-3.31085	2.57628	-2.40983		
Н	-4.80616	2.62672	-1.46332		
н	-3.78618	4.08142	-1.60277		
С	0.68405	-2.17577	-1.98058		
Н	0.32493	-3.18935	-2.12035		
Н	0.22209	-1.43039	-2.61775		
С	1.95426	-1.94213	-1.44948		
С	2.46743	-0.66566	-1.41065		
С	5.97873	0.79728	0.44515		
С	5.69100	-0.56843	0.51846		
C	4.55501	-1.07203	-0.08964		
Ċ	3.68504	-0.21394	-0.79008		
č	3 98570	1 15847	-0.84693		
č	5 12642	1.66053	-0 23655		
й	6 87303	1 18534	0.02115		
ц Ц	6 36084	1.10004	1 05005		
	4 24624	2 12400	0.02725		
	4.34024	-2.13400	-0.02755		
н	3.31356	1.82828	-1.37452		
н	5.35123	2.71957	-0.29422		
н	2.47882	-2.76410	-0.97375		
Н	1.88770	0.10766	-1.91207		
Electronic energy = -1206.249609					
Zero-point electronic energy = -1205.792502					
Enth	Enthalpy = -1205.765618				
Free	Free energy = -1205.850501				
Free	energy with a	uasiharmonic	approximation = -1205.843929		
Freq	uencies = -18	4.8306 17.452	24 21.0985 -184.8301 15.7357 20.9413		
SCF	(ωB97x-D/6-3	311+G(d,p)–S	MD (nitromethane)) = -1206.607549		

endo	⊳-TS-4a		
С	-3.38162	-1.74318	-1.42529
С	-4.61838	-2.32287	-1.22461
С	-5.13545	-2.49005	0.07520
С	-4.43757	-2.08525	1.20035
Н	-6.10981	-2.95027	0.19820
Н	-4.84575	-2.21785	2.19574
С	-1.17443	-0.54920	1.24548
Ċ	-1.37440	-0.68195	-0.15221
Ĉ	-2 65621	-1 32004	-0.30173
č	-3 19339	-1 49244	0.98882
н	-2 98263	-1 62019	-2 42696
н	-5 20273	-2 65776	-2 07376
N	-0.20210	-2.00770	1 800/7
	2 40502	-0.99000	2 90909
	-2.40390	-0.95405	2.09000
	-0.44417	0.07669	1.73525
C	-0.61343	0.00002	-1.24971
н	0.29822	-0.55703	-1.50394
Н	-1.23809	0.00174	-2.14621
С	-0.20193	1.45753	-0.92633
Н	0.18207	1.89490	-1.85993
Н	-1.52075	3.16107	-2.28089
С	-1.45696	2.22732	-0.46936
0	-1.92623	2.06608	0.64904
Ν	-2.01211	3.01399	-1.41347
С	-3.22511	3.77567	-1.17076
Н	-3.00042	4.83093	-0.99276
Н	-3.70831	3.36450	-0.28546
Н	-3.89805	3.69078	-2.02603
Н	1.38680	0.58204	0.11646
Ν	0.81801	1.41804	0.09206
С	1.35679	2.43166	0.85879
0	2.25561	2,16246	1.63692
Č	0.78724	3.82034	0.71575
Ĥ	-0.15677	3.88931	1.26295
Н	1.50007	4.52239	1,14523
н	0.59628	4 08448	-0.32821
C	-0.03200	-2 14229	0.69609
й	-0 45623	-2 64062	1 56333
н	-0 28460	-2 67779	_0 21632
C	1 34645	-1 69776	0.78439
č	2 21/06	-1.83605	0.24502
č	6 29270	-1.03003	-0.24302
ĉ	0.20370 5 00115	1 59044	1 29402
č	4 46767	1 06090	1 22022
č	4.40707	-1.90000	-1.23022
Č	3.00307	-1.39721	-0.27000
Č	4.09000	-0.41000	0.59616
C	5.42912	-0.03093	0.52993
н	7.32425	-0.31350	-0.44961
н	6.46350	-2.02988	-2.01663
н	4.09101	-2.71086	-1.92039
Н	3.44149	0.09272	1.29830
Н	5.79691	0.73671	1.20171
Н	1.68114	-1.25819	1.72074
Н	1.86192	-2.35409	-1.13882
Elect	tronic energy	= -1206.2349	77
Zero	 point electror 	nic energy = -	1205.777476
Enth	alpy = -1205.7	750778	
Free	energy = -12	05.834634	
Free	energy with c	luasiharmonic	approximation = -1205.828743
Freq	uencies = -37	6.2497 24.40	78 29.3241 -376.2487 24.0023 29.2599
SCF	(ωB97x-D/6-3	311+G(d,p)–S	MD (nitromethane)) = -1206.595886

exo-TS-4b

С	-3.85106	-0.40460	1.77292
С	-5.20189	-0.67632	1.86433

С	-5.94380	-1.04412	0.72463			
С	-5.36293	-1.14781	-0.52822			
Н	-7.00320	-1.24975	0.83250			
Н	-5.94345	-1.43001	-1.39912			
С	-1.88989	-0.57338	-1.31773			
С	-1.88938	-0.27727	0.06667			
С	-3.24074	-0.49729	0.51360			
С	-4.00163	-0.86084	-0.61425			
Н	-3.28007	-0.12424	2.65210			
Н	-5.70308	-0.60736	2.82270			
Ν	-3.15917	-0.86465	-1.71286			
Н	-3.42904	-1.07043	-2.66088			
Н	-1.13263	-0.29601	-2.03478			
С	-0.81710	0.37665	0.88078			
Н	-1.31801	1.07642	1.55985			
Н	-0.33520	-0.37649	1.51774			
С	0.30419	1.12641	0.13404			
Н	0.75679	0.44779	-0.59413			
Н	0.56411	3.59838	0.58288			
C	-0.27429	2.28757	-0.69780			
0	-0.92678	2.03546	-1.70682			
N	-0.02743	3.52160	-0.23139			
C	-0.49245	4.72275	-0.89906			
н	-1.06062	4.41896	-1.////9			
н	-1.13618	5.30730	-0.23738			
н	0.35246	5.34064	-1.21279			
H	1.05533	1.4/3/0	2.09424			
	1.29093	1.01200	1.11205			
	2.00309	1.03/40	0.90700			
0	3.40232	1.70030	0.5244			
Ц Ц	3.13991	1.01401	-0.52440			
Ц	3 08210	0.50634	-0.33789			
н	2 54523	2 27130	-0.92343			
Ċ	-1 06778	-2 21456	-0 41514			
й	-1 32524	-2 40858	0.62324			
н	-1 70080	-2 79144	-1 08381			
Ċ	0.35213	-2 16190	-0 70302			
č	1.28721	-2.14649	0.27044			
č	5.45169	-1.44031	-0.20513			
Č	4.83488	-1.23940	1.02533			
С	3.48361	-1.52530	1.17475			
С	2.72600	-1.98310	0.08841			
С	3.36234	-2.19243	-1.14598			
С	4.71618	-1.92712	-1.28685			
Н	6.50827	-1.22575	-0.32394			
Н	5.39761	-0.85040	1.86572			
Н	3.00364	-1.35540	2.13403			
Н	2.80561	-2.58658	-1.99029			
Н	5.20322	-2.10072	-2.24020			
Н	0.64948	-2.08692	-1.74592			
Н	0.95233	-2.22013	1.30546			
Ele	ectronic energy =	= -1206.2378	86			
Zero-point electronic energy = -1205.780815						
Enthalpy = -1205.75399						
Free energy = -1205.837376						
Free energy with quasiharmonic approximation = -1205.83244						
Fre	equencies = -36	1.4792 32.33	51 35.1546 -361.4778 32.2412 35.0046			
SC	SCF (ωB97x-D/6-311+G(d,p)–SMD (nitromethane)) = -1206.602148					

On the prevalence of bridged macrocyclic pyrroloindolines formed in regiodivergent alkylations of tryptophan

Tristin E. Rose,[†] Brice H. Curtin,[†] Kenneth V. Lawson,[†] Adam Simon, K. N. Houk, Patrick G. Harran Department of Chemistry and Biochemistry, University of California Los Angeles 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569

Compound No.	Structure	Page #
6	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $	13
8b	HN HN O OH Me	14
8c		17
8d	CH ₃ CH ₃ CONH ₂ CONH ₂ CONH ₂ CONH ₂ CONH ₂	19

NMR Structural Data

7	Ph H ₃ C OH N H O N H O N H CONH ₂	22
9a		23
9b		26
9c		29
9d	F CONH2 H H H H H H CONH2 H H H H CONH2 H H H H H H H H H H H H H	32

10	$\begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\$	35
11a	$\mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \xrightarrow{\mathbb{H}_{2}} \mathbb{H}_{2} \xrightarrow{\mathbb{H}_{2}} \mathbb{$	36
11b	$H_{2}^{H} = H_{2}^{H} = H_{2}^{H}$	39
11c	$M_{e} + N_{H} + O_{H} + O_{H$	42
11d	$H_{2}N \xrightarrow{NH} H_{2}N \xrightarrow{NH} H_{$	45
-----	---	----
11a	$H_{3}C''' H_{1} H_{2}N H_{2}N H_{2}N H_{1}$	48
12	OCO ₂ tBu	51
16a		52
16b		55

16c		58
16d		61
13	$\begin{array}{c} OCO_{2}tBu \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	64
17a		65
17b		68
17c		71
17d		74

17e		77
14		80
18a		81
18b		84
18c		87
18d	Br NH HN HN HN HN OH O NH ₂	90

18e		92
15		94
19a	$HN \qquad HN \qquad HN \qquad HN^{2} \qquad HN^{$	95
19b		98
19c	Br NH NH2 OH ON NH OH ON NH	101

	1	
19d		104
S1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	108
S2a		109
S2b		111
S2c	$HN \rightarrow Br$ NH_{2} $O \rightarrow NH$ $O \rightarrow NH$ HO HO	114

S2d	$ \begin{array}{c} $	117
S 3	NH NH NH NH NH NH NH NH NH NH	120
S4a		121
S4b		124
S5		127
S6a	$HN \qquad HN \qquad Br \qquad HN \qquad Br \qquad HN \qquad H$	128

S6b	Br NH HN HN HN HN HN HN HN HN O O NH ₂	131
S6c	Br NH HN HN HN HN HN HN HN HN HN	133
S6d	HN HN HN HN HN	136
S7	$AC_{NH} = \begin{pmatrix} H \\ H \\ H \end{pmatrix} = \begin{pmatrix} H_{3} \\ H_{3} \end{pmatrix}$	139
21a		140
21b		142
22	$H_{3}C H_{1}C H_{3}C $	144
S8		145
S9	Br CO ₂ tBu	146

24	CO ₂ rBu	147
26		148
27	F CO ₂ fBu O Me O Me O H H H BocHN CONH ₂	150
S11		151
30	/Bu0 ₂ CO F H ^{IIII} HN HN HN HN HN HN HN HN HO H HN HO HO HO HO HO HO HO HO HO HO HO HO HO	152

31a		154
31b		157
31c		160
31e	$\begin{array}{c} OH \\ OH \\ H \\ H$	163
31f		167

Acyclic Precursor 6

Macrocyclic Product 8b

Acyclic Precursor 7

Acyclic Precursor 10

Macrocyclic Product 11a

Macrocyclic Product 11b

Macrocyclic Product 11c

Macrocyclic Product 11d

Macrocyclic Product 11e

Macrocyclic Product 16a

Macrocyclic Product 16b

Macrocyclic Product 16c

Macrocyclic Product 16d

Macrocyclic Product 17b

Macrocyclic Product 17c

Macrocyclic Product 17e

Macrocyclic Product 18b

Macrocyclic Product 18e

Acyclic Precursor 15

Macrocyclic Product 19a

Macrocyclic Product 19b

Macrocyclic Product 19c

Macrocyclic Product 19d

Macrocyclic Product S2a

121

124

Acyclic Precursor S3

Macrocyclic Product S4a

Macrocyclic Product S4c

3-(3-Bromophenyl)propionic acid S5

tert-Butyl 3-(3-bromophenyl)propanoate S6

Cinnamyl Alcohol 21

endo-Pyrroloindoline 23

tert-butyl ester 24

Acyclic Precursor S8

Tryptoline 27

Macrocyclic Product 28b

Macrocyclic Product 28e

Macrocyclic Product 28f

