DOI: 10.1289/EHP2239

Note to readers with disabilities: *EHP* strives to ensure that all journal content is accessible to all readers. However, some figures and Supplemental Material published in *EHP* articles may not conform to 508 standards due to the complexity of the information being presented. If you need assistance accessing journal content, please contact ehp508@niehs.nih.gov. Our staff will work with you to assess and meet your accessibility needs within 3 working days.

Supplemental Material

Air Pollution and Performance-Based Physical Functioning in Dutch Older Adults

Femke de Zwart, Bert Brunekreef, Erik Timmermans, Dorly Deeg, and Ulrike Gehring

Table of Contents

- **Table S1.** Land-use regression models with model performance (leave-one-out cross-validation R^2 , R^2_{LOOCV}).
- **Table S2.** Distribution of baseline performance scores by participant characteristics (N=1,762 participants).
- **Table S3.** Residential exposure to air pollution Pearson correlations between pollutants.
- **Table S4.** Distribution of daily average air pollution concentrations on the days of the physical performance test for all study participants.
- **Table S5.** Adjusted associations between performance-based physical functioning and residential air pollution exposure from linear mixed model analyses with additional adjustment for air pollution concentrations during the week preceding the performance test.
- **Table S6.** Adjusted associations between physical performance (performance-based and self-reported) and residential air pollution exposure from linear mixed model analyses, restricted to participants who completed all three cycles of data collection.
- **Table S7.** Adjusted associations between physical performance (performance-based and self-reported) and residential air pollution exposure from linear mixed model analyses, restricted to participants who did not change address between three years prior to the 2005/2006 cycle and the last completed cycle.

- **Table S8.** Post hoc sensitivity analyses of residual confounding of the association between air pollution and performance-based physical functioning due to an unmeasured binary confounder (U).
- **Table S9.** Adjusted associations between physical performance (performance-based and self-reported) and residential air pollution exposure <u>from linear mixed model analyses without exposure-time since baseline interaction terms</u>.
- Figure S1. Flow-chart of the study sample.
- **Figure S2.** Adjusted associations between <u>self-reported</u> physical functioning and quartiles of residential air pollution exposure from linear mixed model analyses with p-values of F-tests for equality of means and trend tests using quartile midpoints (N=1,758 participants, n=4,405 observations).
- **Figure S3.** Adjusted <u>sex-specific associations</u> between performance-based physical functioning and residential air pollution exposure from linear mixed model analyses with exposure-sex interaction terms (N=1,735 participants, n=4,039 observations). Grey dots represent females, white dots represent males.

Supplemental material, Table S1. Land-use regression models with model performance (leave-one-out cross-validation R², R²_{LOOCV})

Exposure	Land-use regression model	R ² LOOCV
NO ₂	$-7.80 + 1.18 \times \text{REGIONALESTIMATE} + 2.30 \times 10^{-5} \times \text{POP_5000} + 2.46 \times 10^{-6} \times \text{TRAFLOAD_50} + 1.06 \times 10^{-4} \times \text{ROADLENGTH_1000} + 9.84 \times 10^{-5} \times \text{HEAVYTRAFLOAD_25} + 12.19 \times \text{DISTINVNEARC1} + 4.47 \times 10^{-7} \times \text{HEAVYTRAFLOAD_25_500}$	0.81
NO _x	$3.25 + 0.74 \times \text{REGIONALESTIMATE} + 4.22 \times 10^{-6} \times \text{TRAFLOAD} = 50 + 6.36 \times 10^{-4} \times \text{POP} = 1000 + 2.39 \times 10^{-6} \times \text{HEAVYTRAFLOAD} = 500 + 71.65 \times \text{DISTINVMAJOR1} + 0.21 \times \text{MAJORROADLENGTH} = 25$	0.82
PM _{2.5} abs	$0.07 + 2.95 \times 10^{-9} \times \text{TRAFLOAD}_500 + 2.93 \times 10^{-3} \times \text{MAJORROADLENGTH}_50 + 0.85 \times \text{REGIONALESTIMATE}$ + $7.90 \times 10^{-9} \times \text{HLDRES}_5000 + 1.72 \times 10^{-6} \times \text{HEAVYTRAFLOAD}_50$	0.89
PM ₁₀	$23.71 + 2.16 \times 10^{-8} \times \text{TRAFMAJORLOAD} = 500 + 6.68 \times 10^{-6} \times \text{POP} = 5000 + 0.02 \times \text{MAJORROADLENGTH} = 50$	0.60
PM _{2.5}	9.46 + 0.42 × REGIONALESTIMATE + 0.01 × MAJORROADLENGTH_50 + 2.28 × 10 ⁻⁹ × TRAFMAJORLOAD_1000	0.61
PM _{coarse}	$7.59 + 5.02 \times 10^{-9} \times \text{TRAFLOAD} 1000 + 1.38 \times 10^{-7} \times \text{PORT} 5000 + 5.38 \times 10^{-5} \times \text{TRAFNEAR}$	0.38

DISTINVMAJOR1: inverse distance (m⁻¹) to the nearest road of the local road network; DISTINVNEARC1: Inverse distance to the nearest road; HEAVYTRAFLOAD_X: Total heavy-duty traffic load of all roads in X m buffer (sum of (heavy-duty traffic intensity *length of all segments)); HLDRES_X: Sum of high density and low density residential land in X m buffer; MAJORROADLENGTH_X: Road length of major roads in X m buffer; POP_X: Number of inhabitants in X m buffer; PORT: port in X m buffer; REGIONALESTIMATE: Regional estimate; ROADLENGTH_X: Road length of major roads in X m buffer; TRAFLOAD_X: Total traffic load of all roads in X m buffer (sum of (traffic intensity * length of all segments)); TRAFMAJORLOAD_X: Total traffic load of major roads in X m buffer (sum of (traffic intensity * length of all segments)); TRAFNEAR: Traffic intensity on nearest road;

Supplementary material, Table S2. Distribution of baseline performance scores by participant characteristics (N=1,762 participants).

	P	erformance-ba	ased	Self-reported		
Covariate	N	Mean (std)	p-value ^a	N	Mean (std)	p-value ^a
Age at performance measurement			<0.0001			<0.0001
≤ 65 years	606	12.8 (2.5)		630	33.9 (2.8)	
65 – 70 years	676	12.4 (2.8)		714	33.4 (3.6)	
70 – 75 years	905	11.9 (2.9)		946	33.1 (3.6)	
75 – 80 years	750	10.8 (3.3)		801	32.3 (4.2)	
80 – 85 years	559	9.3 (3.7)		598	30.5 (5.4)	
> 85 years	609	7.0 (3.6)		716	27.0 (7.0)	
Female sex			<0.0001			<0.0001
Male	1896	11.1 (3.3)		1985	32.8 (4.1)	
Female	2209	10.5 (3.9)		2420	30.9 (5.8)	
Educational level			<0.0001			
Low	1892	10.1 (3.8)		2073	30.8 (5.8)	
Medium	1409	11.1 (3.6)		1494	32.2 (4.6)	
High	804	11.9 (3.2)		838	33.3 (3.7)	
Smoking			0.0009			<0.0001
Never smoker	1264	10.4 (4.0)		1382	31.0 (5.8)	
Ex-smoker	2169	10.9 (3.6)		2298	32.1 (4.6)	
Current smoker	672	11.2 (3.3)		725	32.1 (5.2)	
Alcohol consumption			<0.0001			<0.0001
Non drinker	572	9.0 (4.1)		651	28.8 (6.8)	
Light drinker	2143	10.8 (3.7)		2287	31.8 (5.0)	
Moderate drinker	1147	11.7 (3.2)		1209	33.0 (3.9)	
Excessive drinker	243	11.7 (3.3)		258	32.9 (3.9)	

Supplementary material, Table S2. (continued)

	P	erformance-ba	ased	Self-reported		
Covariate	N	Mean (std)	p-value ^a	N	Mean (std)	p-value ^a
Physical activity past 2 weeks			<0.0001			<0.0001
< 78 min/day	905	9.9 (4.0)		1024	30.0 (6.7)	
78 – 199 min/day	2126	11.0 (3.6)		2257	32.1 (4.6)	
≥ 199 min/day	1074	11.1 (3.5)		1124	32.6 (4.1)	
Depression			<0.0001			<0.0001
No	3572	11.1 (3.5)		3793	32.3 (4.6)	
Yes	533	9.1 (4.1)		612	28.5 (6.8)	
Chronic diseases			<0.0001			<0.0001
0	979	12.4 (2.8)		1033	34.0 (2.9)	
1	1509	11.3 (3.3)		1613	32.6 (4.1)	
2 or more	1617	9.4 (3.9)		1759	29.6 (6.2)	

^a F-test taking into account the correlation between repeated observations within the same participant.

Supplementary material, Table S3. Residential exposure to air pollution – Pearson correlations between pollutants.

	NO ₂	NO _x	PM _{2.5} abs	PM _{2.5}	PM ₁₀	PM coarse
NO ₂	1.00	0.91	0.88	0.43	0.87	0.89
NO _x		1.00	0.86	0.43	0.88	0.87
PM _{2.5} abs			1.00	0.69	0.92	0.82
PM _{2.5}				1.00	0.48	0.36
PM ₁₀					1.00	0.90
PM coarse						1.00

Supplementary material, Table S4. Distribution of daily average air pollution concentrations on the days of the physical performance test for all study participants.

Pollutant	Mean (SD)	Min	Median	Max	IQR
NO ₂ (μg/m ³)	18.6 (7.1)	7.4	17.1	47.8	11.1
PM_{10} (µg/m ³)	23.9 (10.1)	6.7	21.9	69.0	15.0

Supplemental material, Table S5. Adjusted ^a associations ^b between performance-based physical functioning and residential air pollution exposure from linear mixed model analyses with additional adjustment for air pollution concentrations during the week preceding the performance test ^c.

		Mean		
Pollutant	Increment	difference	(95% CI)	p-value
NO ₂	8.9 μg/m ³	-0.22	(-0.42; -0.02)	0.028
NO_x	$13.5 \mu g/m^3$	-0.20	(-0.36; -0.03)	0.019
PM _{2.5} abs	0.31 10 ⁻⁵ m ⁻¹	-0.12	(-0.29; 0.06)	0.182
$PM_{2.5}$	$1.4 \mu g/m^3$	0.18	(-0.05; 0.41)	0.130
PM_{10}	$1.5 \mu g/m^3$	-0.21	(-0.36; -0.07)	0.004
PM_{coarse}	$0.8 \mu g/m^3$	-0.18	(-0.31; -0.05)	0.008

- Adjusted for age, sex, education level, smoking, alcohol consumption, depression, physical activity, area-level socio economic status defined as the status score of the four-position postcode, air pollution concentrations on the day of the performance test, and cross-products of time since baseline with education, alcohol consumption, and depression.
- Associations are presented as mean difference in physical performance score with 95% confidence intervals (CI) for an interquartile range increase in air pollution exposure and were derived from models with exposure and exposure-time since baseline interaction.
- Associations with NO_2 and NO_x were adjusted for NO_2 concentrations on the day of the test, all other associations were adjusted for PM_{10} concentrations on the day of the test.
- N=1,676 participants, n = 4,005 observations for NO_2 and NO_x and N=1,674 participants, n = 3,974 observations for all other associations due to some missings for air pollution concentrations on the test day.

Supplemental material, Table S6 Adjusted ^a associations ^b between physical performance (performance-based and self-reported) and residential air pollution exposure from linear mixed model analyses, restricted to participants who completed all three cycles of data collection.

		Performance-based ^c			Self-reported ^d			
Pollutant	Increment	Mean difference	(95% CI)	p-value	Mean difference	(95% CI)	p-value	
NO ₂	$8.9 \mu g/m^3$	-0.26	(-0.49; -0.04)	0.022	0.12	(-0.18; 0.42)	0.441	
NO_x	$13.5 \mu g/m^3$	-0.21	(-0.40; -0.03)	0.027	0.15	(-0.10; 0.40)	0.242	
PM _{2.5} abs	0.31 10 ⁻⁵ m ⁻¹	-0.17	(-0.37; 0.03)	0.092	0.07	(-0.20; 0.33)	0.610	
PM _{2.5}	$1.4 \mu g/m^{3}$	0.16	(-0.11; 0.43)	0.251	-0.09	(-0.44; 0.27)	0.627	
PM_{10}	$1.5 \mu g/m^{3}$	-0.24	(-0.41; -0.07)	0.005	0.11	(-0.11; 0.34)	0.319	
PM_{coarse}	$0.8 \ \mu g/m^{3}$	-0.21	(-0.36; -0.05)	0.008	0.12	(-0.08; 0.33)	0.236	

Adjusted for age, sex, education level, smoking, alcohol consumption, depression physical activity, area-level socio economic status defined as the status score of the four-position postcode, and cross-products of time since baseline with education, alcohol consumption and depression.

Associations are presented as mean difference in physical performance score with 95% confidence intervals (CI) for an interquartile range increase in air pollution exposure and were derived from models with exposure and exposure-time since baseline interaction.

N=1,022 participants, n = 3,066 observations

d N=1,165 participants, n = 3,495 observations

Supplemental material, Table S7. Adjusted ^a associations ^b between physical performance (performance-based and self-reported) and residential air pollution exposure from linear mixed model analyses, restricted to <u>participants who did not change address between three years</u> prior to the 2005/2006 cycle and the last completed cycle.

		Performance-based ^c			Self-reported ^d			
Pollutant	Increment	Mean difference	(95% CI)	p-value	Mean difference	(95% CI)	p-value	
NO ₂	8.9 μg/m ³	-0.38	(-0.60; -0.15)	0.001	0.17	(-0.12; 0.46)	0.252	
NO_x	$13.5 \mu g/m^3$	-0.27	(-0.46; -0.09)	0.004	0.28	(0.03; 0.52)	0.026	
PM _{2.5} abs	0.31 10 ⁻⁵ m ⁻¹	-0.25	(-0.44; -0.05)	0.014	0.06	(-0.20; 0.31)	0.662	
$PM_{2.5}$	$1.4 \mu g/m^3$	0.03	(-0.23; 0.29)	0.823	-0.19	(-0.52; 0.15)	0.276	
PM_{10}	$1.5 \mu g/m^3$	-0.29	(-0.46; -0.13)	0.001	0.14	(-0.07; 0.36)	0.188	
PM_{coarse}	$0.8 \mu g/m^3$	-0.24	(-0.39; -0.09)	0.001	0.18	(-0.01; 0.38)	0.069	

Adjusted for age, sex, education level, smoking, alcohol consumption, depression, physical activity, area-level socio economic status defined as the status score of the four-position postcode, and cross-products of time since baseline with education, alcohol consumption and depression.

Associations are presented as mean difference in physical performance score with 95% confidence intervals (CI) for an interquartile range increase in air pollution exposure and were derived from models with exposure and exposure-time since baseline interaction.

N=1,247 participants, n = 3,042 observations

d N=1,287 participants, n = 3,218 observations

Supplemental material, Table 8. Post hoc sensitivity analyses of residual confounding of the association between air pollution and performance-based physical functioning due to an unmeasured binary confounder (U).

Outcome	Performance-based p	Performance-based physical functioning		
Exposure contrast	4th vs 1st quartile of N	NO₂ exposure		
Effect estimate (exposure – outcome)	-0.46 points			
Difference in outcome per year	-0.30 points			
Sensitivity analysis specifications and results				
Hypothetical relation of U to cognitive outcome (U - outcome)				
Difference in cognitive outcome, U = 1 vs U = 0	-0.6 points	-1.5 points		
Years apart in age associated with the same difference in outcome	2 years	5 years		
Resulting relation of U to exposure required to produce the reported effect estimates	nte			
Difference in the prevalence of U, high vs low exposure ^a	77%	31%		
Equivalent minimum relative odds (OR) of high exposure, $U = 1$ vs $U = 0$	59.2	3.6		

For details on the method used please see Vanderweele TJ and Arah OA. 2011. Unmeasured confounding for general outcomes, treatments, and confounders: Bias formulas for sensitivity analyses. Epidemiology 22(1):42-52.

Prevalence differences are absolute not relative differences. Given the difference in U prevalence shown, the minimum OR of high exposure is the smallest OR across all possible pairs of U prevalence.

Supplemental material, Table S9. Adjusted ^a associations ^b between physical performance (performance-based and self-reported) and residential air pollution exposure <u>from linear mixed model analyses without exposure-time since baseline interaction terms</u>.

		Performance-based ^c			Self-reported ^d			
Pollutant	Increment	Mean difference	(95% CI)	p-value	Mean difference	(95% CI)	p-value	
NO ₂	8.9 μg/m³	-0.22	(-0.40; -0.04)	0.014	0.21	(-0.06; 0.47)	0.121	
NO_x	$13.5 \mu g/m^3$	-0.17	(-0.32; -0.02)	0.022	0.23	(0.01; 0.46)	0.037	
PM _{2.5} abs	0.31 10 ⁻⁵ m ⁻¹	-0.12	(-0.27; 0.04)	0.142	0.10	(-0.14; 0.33)	0.413	
PM _{2.5}	$1.4 \mu g/m^3$	0.08	(-0.13; 0.28)	0.456	-0.16	(-0.46; 0.15)	0.311	
PM_{10}	$1.5 \mu g/m^3$	-0.19	(-0.32; -0.06)	0.005	0.17	(-0.03; 0.36)	0.096	
PM_{coarse}	$0.8 \mu g/m^3$	-0.16	(-0.29; -0.04)	0.008	0.20	(0.02; 0.38)	0.031	

Adjusted for age, sex, education level, smoking, alcohol consumption, depression, physical activity, area-level socio economic status defined as the status score of the four-position postcode, and cross-products of time since baseline with education, alcohol consumption and depression.

Associations are presented as mean difference in physical performance score with 95% confidence intervals (CI) for an interquartile range increase in air pollution exposure.

N=1,695 participants, n = 4,105 observations

d N=1,758 participants, n = 4,405 observations

Supplemental material, Figure S1. Flow-chart of the study sample.

Supplemental material, Figure S2. Adjusted ^a associations ^b between <u>self-reported</u> physical functioning and quartiles of residential air pollution exposure from linear mixed model analyses with p-values of F-tests for equality of means and trend tests using quartile midpoints (N=1,758 participants, n=4,405 observations).

- Adjusted for age, sex, education level, smoking, alcohol consumption, depression, physical activity, area-level socio economic status defined as the status score of the four-position postcode, and cross-products of time since baseline with education, alcohol consumption and depression.
- Associations are presented as mean difference in physical performance score in the different quartiles as compared to the 1st quartile with 95% confidence intervals and were derived from models with exposure and exposure-time since baseline interaction.

Supplemental material, Figure S3. Adjusted ^a <u>sex-specific associations</u> ^b between performance-based physical functioning and residential air pollution exposure from linear mixed model analyses with exposure-sex interaction terms (N=1,735 participants, n=4,039 observations). Grey dots represent females, white dots represent males.

- Adjusted for age, education level, smoking, alcohol consumption, depression, physical activity, area-level socio economic status defined as the status score of the four-position postcode, and cross-products of time since baseline with education, alcohol consumption and depression.
- Associations are presented as mean difference in physical performance score with 95% confidence intervals (CI) for an interquartile range increase in air pollution exposure and were derived from models with exposure and exposure-time since baseline interaction.