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Supplementary Methods

Data retrieval and preprocessing

Single cell analysis of primary mouse bone-marrow-derived dendritic cells

Single cell gene expression data for primary mouse bone-marrow-derived dendritic cells [1] were downloaded
both as raw counts and TPM values from the conquer (consistent quantification of external rna-seq data)
project [2] which uses Salmon [3]. A number of cells exhibited a low number of mapped reads and genes
expressed (Supplementary Fig. 1) that were removed.

In the original publication [1], a number of cluster disrupted cells that exhibit high expression of Serpinb6b
and low expression of Lyz1were identified. We therefore removed any cells whose log2(TPM+1) expression
of Serpinb6b exceeded 2.5 and in which Lyz1 was not expressed (Supplementary Fig. 2).

Finally, there exhibited large variation in the number of genes expressed in each cell (Supplementary Fig. 3a)
that correlated highly with the first principal component of the data (Supplementary Fig. 3B). Such an effect
is known to be caused by underlying technical effects in single-cell RNA-seq data [4]. We therefore removed
it using the normaliseExprs function in the R package Scater [5]. For the final analysis we retained 7,500
highly variable genes.

The Cancer Genome Atlas

For both COAD and BRCA studies, TPMmatrices were retrieved from a recent transcript-level quantification
of the entire TCGA study [6]. Clinical metadata, including the phenotypic covariates used in PhenoPath, were
retrieved using the RTCGA R package [7]. Transcript level expression estimates were combined to gene level
expression estimates using Scater [5].

A PCA visualisation of the COAD dataset (Supplementary Fig. 4a) showed two distinct clusters based on
the plate of sequencing. Rather than try to correct such a large batch effect, we retained samples with a PC1
score of less than 0 and a PC3 score greater than -10, and removed any “normal” tumour types. For input to
PhenoPath we used the 4,801 genes whose median absolute deviation in log(TPM+1) expression was greater
than

√
1
2 .

A PCA visualisation of the BRCA dataset (Supplementary Fig. 4b) showed a loosely dispersed outlier pop-
ulation that separated on the first and third principal components. We performed Gaussian mixture model
clustering using the R package mclust[8], and removed samples designated as cluster 2 in Supplementary
Fig. 4b, giving 1,135 samples for analysis. For input to PhenoPath we used the 4,579 genes whose variance in
log(TPM+ 1) expression was greater than 1 and whose median absolute deviation was greater than 0.
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Model Specification

The overall generative model for PhenoPath is given by the following Bayesian hierarchical construction,

αpg ∼ N (0, τ−1
α )

λg ∼ N (0, τ−1
λ )

zn ∼ N (qn, τ
−1
q )

βpg ∼ N (0, χ−1
pg )

χ−1
pg ∼ Gamma(aβ , bβ)

τ−1
g ∼ Gamma(a, b)
µg ∼ N (0, τ−1

µ )

εng ∼ N (0, τ−1
g )

yng = µg +
∑
p

αpgxnp +

(
λg +

∑
p

βpgxnp

)
zn + εng

(1)

where the default values of the free hyperparameters are shown in Supplementary Table 2.

Co-ordinate ascent variational inference

We perform co-ordinate ascent mean field variational inference with an approximating distribution of the form

q
(
{zn}Nn=1, {µg}Gg=1, {τg}Gg=1, {λg}Gg=1, {αpg}

G,P
g=1,p=1{βpg}

G,P
g=1,p=1{χpg}

G,P
g=1,p=1

)
=

N∏
n=1

qz(zn)︸ ︷︷ ︸
Normal

G∏
g=1

qµ(µg)︸ ︷︷ ︸
Normal

qτ (τg)︸ ︷︷ ︸
Gamma

qλ(λg)︸ ︷︷ ︸
Normal

P∏
p=1

qα(αpg)︸ ︷︷ ︸
Normal

qβ(βpg)︸ ︷︷ ︸
Normal

qχ(χpg)︸ ︷︷ ︸
Gamma

(2)

Due to the model’s conjugacy the optimal update for each parameter θj given all other parameters θ−j can
easily be computed via

q∗j (θj) ∝ exp {E−j [log p(θj |θ−j ,X,Y)]} (3)

where the expectation is taken with respect to the variational density over θ−j . We must therefore calculate
each conditional distribution followed by its expectation.

The conditional distributions are given below (where θ|· can be interpreted as the conditional distribution of
variable θ conditioned on all other variables and the data). For simplicity we assume the summation is obvious
from the variable (i.e.

∑
p ≡

∑P
p=1, etc).

Conditional distribution of z

zn|· ∼ N

(∑
g τgkng(yng − µg −

∑
p αpgxnp) + τqqn∑

g τgk
2
ng + τq

, [
∑
g

τgk
2
ng + τq]

−1

)
(4)

where kng = λg +
∑
p βpgxnp.

Conditional distribution of αpg

αpg|· ∼ N

(
τg
∑
n(yng − µ̃

αp
ng)xnp

τg
∑
n x

2
np + τα

, [τg
∑
n

x2
np + τα]−1

)
(5)

3



where
µ̃αpng = µg + tn(λg +

∑
p′

βp′gxnp′) +
∑
p′ 6=p

αp′gxnp′ (6)

in which
∑
p′ 6=p denotes the summation over 1 to P excluding p.

Conditional distribution of βpg

βpg|· ∼ N

(
τg
∑
n(yng − µ̃

βp
ng)xnpzn

τg
∑
n z

2
nx

2
np + χpg

, [τg
∑
n

z2
nx

2
np + χpg]

−1

)
(7)

where
µ̃βpng = µg + znλg +

∑
p′

αp′gxnp′ + zn
∑
p′ 6=p

βp′gxnp′ (8)

Conditional distribution of τg

τg|· ∼ Gamma

(
a+

N

2
, b+

∑
n

(yng − µ̃τng)2

2

)
(9)

where

µ̃τng = µg +
∑
p

αpgxnp +

(
λg +

∑
p

βpgxnp

)
λn. (10)

Conditional distribution of χpg

χpg|· ∼ Gamma

(
aβ +

1

2
, bβ +

β2
pg

2

)
(11)

Conditional distribution of λg

λg|· ∼ N

(
τg
∑
n zn(yng − µ̃λng)

τg
∑
n z

2
n + τλ

, [τg
∑
n

t2n + τλ]−1

)
(12)

where

µ̃λng = µg +
∑
p

αpgxnp +

(∑
p

βpgxnp

)
zn (13)

Conditional distribution of µg

µg|· ∼ N
(
τg
∑
n(yng − νng)
Nτg + τµ

, [Nτg + τµ]−1

)
(14)

where

νng =
∑
p

αpgxnp +

(
λg +

∑
p

βpgxnp

)
zn (15)
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Conditional expectation of z

E−zn [µznτzn ] =
∑
g

[aτg
bτg

(
mλg +

∑
p

mβpgxnp

)
×
(
yng −mµg −

∑
p

mαpgxnp

)]
+ τqqn

E−zn [τzn ] =
∑
g

aτg
bτg

(
m2
λg + s2

λg + 2mλg

∑
p

mβpgxnp

+
∑
p

(m2
βpg + s2

βpg )x2
np +

∑
p,p′:p 6=p′

mβpgmβp′gxnpxnp′
)

+ τq

(16)

where we have used the fact that

E−zn [(λg +
∑
p

βpgxnp)
2] =

(
m2
λg + s2

λg + 2mλg

∑
p

mβpgxnp

+
∑
p

(m2
βpg + s2

βpg )xnp +
∑

p,p′:p 6=p′
mβpgmβp′gxnpxnp′

) (17)

and for several variables that E−zn [θ2] = Var−zn [θ] + E−zn [θ]2.

Conditional expectation of αpg

E−αpg [µpgτpg] =
aτg
bτg

∑
n

(
yng −mµg −mzn(mλg +

∑
p′

mβp′gxnp)

−
∑
p′ 6=p

mαp′gxnp′
)
xnp

E−αpg [ταpg ] =
aτg
bτg

∑
n

x2
np + τα

(18)

Conditional expectation of βpg

E−βpg [µβpgτβpg ] =
aτg
bτg

∑
n

[
yng −mµg −

m2
zn + s2

zn

mzn

mλg

−
∑
p′

mαp′gxnp′ −
m2
zn + s2

zn

mzn

∑
p′ 6=p

mβp′gxnp

]
mznxnp

E−βpg [τβpg ] =
aτg
bτg

∑
n

(m2
zn + s2

zn)x2
np +

aχpg
bχpg

(19)

where in both cases we have used the fact that E−βpg [z2
n] = Var−βpg [zn] + E−βpg [zn]2.

Conditional expectation of τg
E−τg [aτg ] = a+

N

2

E−τg [bτg ] = b+
1

2

∑
n

fng
(20)
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where

fng = E−τg

(yng − µg −∑
p

αpgxnp −

(
λg +

∑
p

βpgxnp

)
zn

)2


= E−τg

[
µ2
g + 2µg

∑
p

αpgxnp2µgznλg

+ 2µgzn
∑
p

βpgxnp − 2yngµg + +(
∑
p

αpgxnp)
2

2znλg
∑
p

αpgxnp + 2zn(
∑
p

αpgxnp)(
∑
p

βpgxnp)

− 2yng
∑
p

αpgxnp + z2
nλ

2
g + 2λgz

2
n

∑
p

βpgxnp

− 2λgznyng + z2
n(
∑
p

βpgxnp)
2

− 2yngzn
∑
p

βpgxnp + y2
ng

]

(21)

For this we require the identities

E[θ2] = Var[θ] + E[θ]2

E[(
∑
p

γpgxnp)
2] =

∑
p

x2
npE[γ2

pg] +
∑

p,p′:p 6=p′
xnpxnp′E[γpgγp′g]

(22)
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This gives
fng = m2

µg + s2
µg+

+ 2mµg

∑
p

mαpgxnp

+ 2mµgmznmλg

+ 2mµgmzn

∑
p

mβpgxnp

− 2yngmµg

+
∑
p

(m2
αpg + s2

αpg )x2
np +

∑
p,p′:p 6=p′

mαpgmαp′gxnpxnp′

+ 2mznmλg

∑
p

mαpgxnp

+ 2mzn(
∑
p

mαpgxnp)(
∑
p

mβpgxnp)

− 2yng
∑
p

mαpgxnp

+ (m2
zn + s2

zn)(m2
λg + s2

λg )

+ 2(m2
zn + s2

zn)mλg

∑
p

mβpgxnp

− 2mλgmznyng

+ (m2
zn + s2

zn)
[∑

p

(m2
βpg + s2

βpg )x2
np

+
∑

p,p′:p 6=p′
mβpgmβp′gxnpxnp′

]
− 2mznyng

∑
p

mβpgxnp)

+ y2
ng

(23)

Conditional expectation of χpg

E−χpg [aχpg ] = aβ +
1

2

E−χpg [bχpg ] = bβ +
1

2

(
m2
βpg + s2

βpg

) (24)

where again we have used the fact that E−χpg [β2
pg] = Var−χpg [βpg] + E−χpg [βpg]

2.

Conditional expectation of λg

E−λg [µλgτλg ] =
aτg
bτg

∑
n

mzn

(
yng −mµg

−
∑
p′

mαp′gxnp′ −
m2
zn + s2

zn

mzn

(
∑
p′

mβp′gxnp′)

)

E−λg [τλg ] =
aτg
bτg

∑
n

(m2
zn + s2

zn) + τλ

(25)
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Conditional expectation of µg

E−µg [µµgτµg ] =
aτg
bτg

∑
n

(
yng −

∑
p′

mαp′gxnp′

−mzn(mλg +
∑
p′

mβp′gxnp′)

)

E−µg [τµg ] =
aτg
bτg

N + τµ

(26)

To assess convergence of the CAVI algorithm we need to calculate the evidence lower bound (ELBO) at every
iteration (or every ith iteration). The ELBO is given by

ELBO = E[log p(Y|Θ)] + E[log p(Θ)]−E[log q(Θ)] (27)

where all expectations are taken with respect to the approximating distribution Q(·) and Θ denotes the full
parameter set. Note that we are implicitly conditioning on the data wherever appropriate, so p(Y|Θ) ≡
p(Y|Θ,X). For this we require the result that if θ ∼ Gamma(a, b) then E[log θ] = φ(a) − log b where φ is
the digamma function φ(x) = Γ′(x)

Γ(x) .

Derivation of E[log p(Y|Θ)] We have

log p(Y|Θ) =
∑
n

∑
g

logN (yng|µng, τ−1
g ) (28)

where µng = µg +
∑
p αpgxnp + zn

(
λg +

∑
p βpgxnp

)
. Then

E[log p(Y|Θ)] ∝
∑
g

[
N

2
E[log τg]−

E[τg]

2

∑
n

E[(yng − µng)2]

]

=
∑
g

[
N

2
(φ(aτg )− log bτg )−

aτg
2bτg

∑
n

fng

] (29)

where fng is defined as above and we have dropped additive terms since we are only concerned by changes in
the ELBO.

Derivation of E[log p(Θ)] We consider E[log p(zn)] which generalises to all parameters with Gaussian
priors. We have

E[log p(zn)] = E

[
1

2
log

τq
2π
− τq

2
(zn − qn)2

]
=

1

2
log

τq
2π
− τq

2
E[z2

n − 2znqn + q2
n]

=
1

2
log

τq
2π
− τq

2

(
m2
zn + s2

zn − 2mznqn + q2
n

) (30)

Next consider E[log p(τg)] which generalises to all parameters with Gamma priors. We have

E[log p(τg)] ∝ E[log(τa−1
g e−τgb)]

= (a− 1)E[log τg]− bE[τg]

= (a− 1)(φ(aτg )− log bτg )−
aτg
bτg

b

(31)
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Thus the expression across all parameters up to a constant value is given by

E[log p(Θ)] ∝ −τq
2

∑
n

(m2
zn + s2

zn − 2mznqn)

− τµ
2

∑
g

(m2
µg + s2

µg )− τλ
2

∑
g

(m2
λg + s2

λg )

+
∑
g

[
(a− 1)(φ(aτg )− log bτg )−

aτg
bτg

b

]
−
∑
p

∑
g

[τα
2

(m2
αpg + s2

αpg ) +
aχpg
2bχpg

(m2
βpg + s2

βpg )

− (aβ − 1)(φ(aχpg )− log bχpg )−
aχpg
bχpg

bβ

]
(32)

Derivation of E[log q(Θ)] We consider E[log qz(zn)] which naturally generalises to all parameters whose
approximating distributions are Gaussian. We have

E[log qz(zn)] ∝ E

[
−1

2
log s2

zn −
1

2s2
zn

(zn −mzn)2

]
= −1

2
log s2

zn −
1

2s2
zn

E[z2
n − 2znmzn +m2

zn ]

= −1

2
log s2

zn −
1

2s2
zn

E[m2
zn + s2

zn − 2m2
zn +m2

zn ]

∝ −1

2
log s2

zn

(33)

Similarly we consider E[log qτ (τg)] which generalises to all parameters whose approximating distribution is
Gamma. We have

E[log qτ (τg)] = E[aτg log bτg + (aτg − 1) log τg − τgbτg − log Γ(aτg )]

= aτg log bτg + (aτg − 1)(φ(aτg )− log bτg )− aτg − log Γ(aτg )
(34)

Summing this across all parameters gives

E[log q(Θ)] = −1

2

∑
n

s2
zn

+
∑
g

(
− 1

2
s2
µg −

1

2
s2
λg + aτg log bτg + (aτg − 1)(φ(aτg )− log bτg )

− aτg − log Γ(aτg )
)

+
∑
g

∑
p

(
− 1

2
s2
αpg −

1

2
s2
βpg

+ aχpg log bχpg + (aχpg − 1)(φ(aχpg )− log bχpg )− aχpg − log Γ(aχpg )
)

(35)

Simulation Setup

We sought to quantify the extent to which having a joint model of pseudotimes and interactions aids identifica-
tion of the interactions and the extent to which such interactions confound trajectory inference using traditional
methods. Mathematically, PhenoPath infers the posterior distribution p(z,β|Y) of the pseudotimes z and in-
teraction parameters β given the data Y. The two step procedure we compare against is analogous to first
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inferring an estimate of the pseudotimes ẑ|Y before inferring an estimate of the interaction parameters given
the fixed pseudotimes β̂|ẑ,Y.

To do this we simulated RNA-seq data where a certain proportion of the genes exhibited different behaviour
over pseudotime depending on the external covariate status. We then re-inferred the pseudotimes using a
variety of algorithms (including PhenoPath), and performed post-hoc differential expression (DE) analysis
testing for interaction effects between the trajectory and the covariate using common DE algorithms. In-depth
details about the simulation, inference, and results are detailed below.

Mean function The first consideration is how we expect expression to change over pseudotime. We model
this using non-linear sigmoid functions that have been successfully used to model single-cell RNA-seq evo-
lution along trajectories previously (see e.g. [9]). Here, mean the expression of gene g in cell n at time tn is
modelled as µ(tn, µ

(0)
g , kg, δg) = 2µ

(0)
g σ(kg(tn − δg)) where σ(x) = (1 + exp(−x))−1, and µ(0), k, and δ

are gene-specific parameters corresponding to the half-peak expression, rate of increase (or decrease) in ex-
pression over (pseudo)-time, and the point in pseudotime at which the rate of change is maximal respectively.
Crucially, these parameters may be the same for all cells or dependent on the external covariate status of a
cell, leading to interactions and ultimately different behaviour over pseudotime dependent on covariate status
(Supplementary Fig. 5a). For each simulation, a certain proportion of genes were modelled as having differ-
ent behaviour over pseudotime given the covariate status (the interaction). This mean function represents the
behaviour of log-counts.

Noise model To simulate RNA-seq counts we used the negative binomial (NB) distribution that is the
favoured noise model for RNA-seq counts (see e.g. [10, 11]). Here, the probability of observing yng counts
in cell n and gene g is given by

p(yng|µng, φ) =
Γ(φ+ yng)

yng!Γ(φ)

(
µng

φ+ µng

)yng ( φ

φ+ µng

)yng
(36)

where φ is a size parameter that relates the variance to the mean via Var[yng] = µng+
µng
φ . For our simulations

we created both a low noise models where φ = µng/3+1 (corresponding to near-Poissonian noise, suggested
by the authors of Polyester [12] for low-noise simulations) and a high noise model where φ = 1 corresponding
to overdispersed NB noise. The mean for each gene and cell used was 2µ(tn,µ

(0)
g ,kg,δg)−1, where the function

µ is defined above.

It is worth emphasising just how misspecified this model is with respect to the PhenoPath model:

1. The important gene specific parameters (λ,α,β) do not exist

2. The change in expression over time is modelled by non-linear sigmoid functions

3. The noise model is negative binomial, giving discrete, non-negative counts rather than the Gaussian
noise model assumed by PhenoPath

Pseudotime inference Pseudotime inferencewas performedwith PhenoPath, Monocle 2, DPT, and TSCAN.
All algorithms were run with default parameter choices, with the exception of Monocle 2 and Wishbone. In
Monocle 2 we set norm_method = “none” was used to ensure differing normalisation methods weren’t
responsible for different results. In the case of Wishbone, we found poor performance using the default pa-
rameters on our simulated data. After several attempts to get the best fit, we found the parameters that worked
best were setting the number of nearest neighbours in the diffusion map calculation to 25% the total number
of cells, the number of nearest neighbours in the trajectory analysis to 20% the number of cells, the number
of way-points to 20% the number of cells, and using the first two diffusion components.

In all cases input data were the log-transformed counts normalised by total library size, with a pseudocount
of 1 added to avoid divergence issues when x→ 0.
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Differential expression Differential expression was performed with PhenoPath, Limma voom, ([13]) DE-
Seq2, and MAST [14]. Raw counts were used for Limma voom and DESeq2 (as recommended), while log-
normalised values were provided to MAST which is designed to work with log(TPM + 1). In all cases (with
the exception of PhenoPath where differential expression testing is implicit in model inference), the mod-
els of expression ~x:pseudotime (interaction) was compared to the nested model expression ~x +
pseudotime (no interaction). Default parameters were used for all methods.

AUC calculation Areas under the receiver-operator curves (AUCs) where calculated using the AUC R pack-
age. For differential expression analyses that report p-values, 1 − p−value was used to rank genes for the
likelihood of exhibiting a covariate interaction. For PhenoPath, we took the probability of observing 0 under
the approximating distribution q(mβpg , sβpg ) as inversely ranking genes for covariate interactions, and so 1−
this value was used for input to the AUC function.

Simulation parameters The simulation parameters are described in Supplementary Table 3. In total, 6
different percentages of genes showing interactions were simulated across 2 noise regimes, 2 different cell
numbers, with 40 replicates in each condition. Pseudotime inference using 4 different algorithms was then per-
formed on this, with differential expression then performed using 4 different algorithms on the non PhenoPath
pseudotimes. In total this gives

(6× 2× 2× 40)× (1 + 3× 4) = 35, 520

different differential expression workflows, representing a comprehensive benchmarking of PhenoPath. The
overall simulation and inference workflow can be seen in Supplementary Fig. 5b.

Modelling zero-inflation In the simulations where we modelled zero inflation the overall strategy is to set
a proportion p ∈ {0.05, 0.1, 0.2, 0.5, 0.8, 0.9} of the non-zero counts to zero. In every dataset simulated (of
raw counts), there is an existing proportion of genes b which are already zero due to being simulated using a
negative-binomial likelihood. If there areNG counts in total (forN cells andG genes), the original proportion
of zero counts was b, while the new number of zero counts is bNG + (1 − b)pNG. Therefore, we choose p
of the (1− b)NG to be set to zero.

Zero inflation in scRNA-seq data is a non-random process that depends on the latent true expression. In
particular, as the expression increases, the probability of observing a zero falls. This process can be well-
modelled using logistic regression [15]. Using an unpublished scRNA-seq dataset of thymic epithelial cells,
we computed the empirical dropout probability of each gene (proportion of zero reads) along with the sample
mean, to which we fitted a logistic regression model in R, giving an intercept of 1.75 and expression coefficient
of −0.04. Therefore, when choosing the p(1− b)NG counts to set to zero, the probability a particular count
at level x is selected is given by pset to zero = 1

1+exp(−(1.75−0.04x)) .

Supplementary Results

Simulation study

We first compared accuracy of pseudotime inference across the range of conditions and pseudotime algo-
rithms. The summarised results for 200 cells and the low noise case can be seen in Supplementary Fig. 5c.
For a low fraction of genes exhibiting interactions between the covariate and latent space (5-10%) Monocle
2 appears to marginally outperform PhenoPath in the accuracy of pseudotime inference, possibly due to the
non-linear nature of the simulated data and the linearity assumptions inherent to PhenoPath. We note how-
ever that PhenoPath does outperform two state-of-the-art nonlinear pseudotime inference methods within this
range.
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However, as the fraction of genes exhibiting interactions exceeds 10% the ability of PhenoPath to handle mul-
tiple covariates clearly becomes beneficial. The accuracy of PhenoPath’s pseudotime inference is independent
of the underlying fraction of genes exhibiting interactions between the covariate and latent space, while the
performance of all other algorithms reduces drastically as this fraction increases. This pattern is evident across
all benchmarking configurations studied (Supplementary Fig. 6). Since this fraction is unknown a priori we
suggest it is necessary to use PhenoPath or a similar covariate-adjusted latent variable model to perform in-
ference in such cases.

We then compared the ability of eachworkflow to detect covariate-trajectory interactions (i.e. does the status of
the covariate affect how the gene changes over pseudotime?). For each dataset generated and each pseudotime
fit for each dataset we performed differential expression analyses to detect covariate-trajectory interactions.
For PhenoPath pseudotime we used PhenoPath’s estimate of interaction significance as this is jointly estimated
along with the pseudotimes. The accuracy of each workflow’s ability to detect covariate-trajectory interactions
was assessed using the area under the receiver-operator curve (AUC).

The results for 200 cells with the low noise regime and differential expression performed using Limma Voom
can be seen in Supplementary Fig. 5d. On this simulated dataset (where the interactions have large effect
sizes) PhenoPath and differential expression using Monocle 2 and TSCAN pseudotimes performs with near
perfect AUCs (median AUC across 40 replicates = 1). However, as the fraction of genes exhibiting covariate-
trajectory interactions increases, this performance reduces drastically for all workflows other than PhenoPath.
Indeed, this pattern is replicated across all experiments and differential expression algorithms with both high
noise (Supplementary Fig. 7) and low noise (Supplementary Fig. 8). As before, given the underlying fraction
of genes that exhibits covariate-trajectory interactions is unknown a priori we suggest it is necessary to use
PhenoPath for such analyses.

We were puzzled to discover some AUCs less than 0.5, apparently showing workflows performing worse than
at random. We were initially worried that this was due to an error in implementation (though the fact that most
workflows have AUCs near 1 when the pseudotimes are approximately correct acts as a positive control) so
investigated one of the worst performing cases where pseudotime was inferred withMonocle 2 and differential
expression performed with MAST.

In this dataset we examined one gene that had no interaction simulated but which the workflow identified has
showing an interaction. The expression is shown against the true and inferred pseudotimes in Supplementary
Fig. 9a&b respectively. It demonstrates that the inferred pseudotime in fact runs from samples with one
covariate status into those of another. The fact that Monocle 2 attempts to find a trajectory with a degree
of smoothness means these are joined at a “peak” in expression, resulting in the gradient of change over
pseudotime of the gene for each covariate status being different and thus an interaction inferred. Essentially
Monocle 2 has taken the pseudotime for one covariate status, flipped it, and rejoined the two separately where
the expression is most similar.

We can then examine what happens to genes with covariate-dependent regulation along the trajectory, an ex-
ample of which is shown in Supplementary Fig. 9c. The consequence of Monocle 2 reversing the pseudotimes
for samples corresponding to one covariate status is that samples for both covariate statuses now have iden-
tical gradients over pseudotime, meaning no interaction is picked up using standard differential expression
analyses. Therefore, we see how not only does performing separate pseudotime-DE analyses workflows for
covariate-trajectory interactions reduce the power to detect interactions, it in fact means we can perform worse
than by random guessing due to the characteristics of the trajectories inferred.

It is also worth emphasising the ease of which each analysis is performed. PhenoPath performs trajectory in-
ference and detection of covariate-trajectory interactions with a call to a single R function. All other workflows
we tested required the implementation of a bespoke bioinformatics pipeline.

Robustness to initialisation and hyperparameters

We sought to identify how robust PhenoPath is to the choice of hyperparameters and initialisation of the latent
space z. An exhaustive analysis of all configurations is impractical, so we varied four different quantities and
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compared the correlation in the inferred pseudotimes to those using the default PhenoPath values (section 1.2)
for the mouse dendritic cell dataset [1]. Note that none of the values tested coincide the defaults. These four
quantities were:

1. Percent change in the ELBO for optimisation to be considered converged, which we ranged across
the values 10−3, 10−4, 10−6. Note that since PhenoPath implements co-ordinate ascent variational
inference with exact updates for each parameter, this is the only free choice with respect to the variational
inference procedure

2. The hyperparameter τα, with values 0.1, 2, 5

3. The initialisation of z, which we took to be the capture times (scaled to have mean 0 standard deviation
1), initialisation from a different pseudotime algorithm (Monocle 2), and the first principal component
of the data corrupted by additive N (0, 1) noise

4. The quantity aβ
bβ
, which controls the mean of the Gamma prior onχ, which in turn controls the shrinkage

on the interaction coefficients β. The variance of this distribution was fixed to 10.

In total this gives 34 = 81 hyperparameter/initialisation conditions that were used to fit the mouse dendritic
cells dataset [1]. The pseudotimes reported by these fits were correlated with the pseudotimes using the
default PhenoPath values, the results of which can be seen in Supplementary Fig. 10. Across all parameter
combinations, the minimum correlation to the default values is 0.9993, suggesting PhenoPath is highly robust
to the initialisation of the latent space, hyperparameters, and variational inference algorithm.

Single-cell pseudotime is approximately linear

One common theme in many pseudotime inference algorithms is the emphasis on learning a non-linear mani-
fold embedded in the high dimensional space (see e.g. [16, 17]) which could in theory decrease the accuracy of
trajectories inferred with PhenoPath that assumes linear changes in expression over (pseudo-)time. Since the
pseudotimes are always unobserved it is impossible to precisely quantify the true non-linearity of the “pseu-
dotemporal manifold”. However, we can fit trajectories and compare the results with those inferred using the
“nonlinear” algorithms.

We assembled four single-cell RNA-seq datasets previously used in pseudotime analyses ([18, 19, 20, 21]) and
for each fitted pseudotimes usingMonocle 2 ([16]), Diffusion Pseudotime (DPT, [17]), and TSCAN ([22]) and
examined the correlation to the first principal component of the data (computed using prcomp in R), the results
of which can be seen in Supplementary Fig. 11a.

In the majority of cases the correlation of the pseudotime inferred to the first principal component of the
dataset exceeds 0.8, with the minimum value still greater than 0.5. We further fitted a linear model (using lm
in R) for each gene as a function of the pseudotime derived for each algorithm in each dataset and examined
the proportion of the transcriptome that has a significant linear trend (where significant is defined as the
Benjamini-Hochberg corrected p-value for the linear coefficient being less than 0.05). Supplementary Fig.
11b shows that for all datasets and algorithms at least half the transcriptome exhibits an approximately linear
trend.

PhenoPath is robust to highly variable gene selection

The trajectory inferred by pseudotime algorithms is obviously dependent on the genes used. A common
approach is to select a subset of highly variable genes (HVGs) ([23]), though the precise number of HVGs to
use is of course subjective and will affect the pseudotime inferred.

We tested the extent to which PhenoPath is robust to the number of HVGs used as input to the algorithm. For
the three datasets we studied we varied the number of HVGs used and examined the correlation to the latent
space derived using the 1000 HVGs, the results of which can be seen in Supplementary Fig. 12.
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Across each dataset we PhenoPath was generally robust to the number of HVGs selected, with the lowest
reported correlation of 0.45. We repeated this exercise using one of the leading pseudotimemethods (Monocle
2, [16]) to understand the extent to which such variability is inherent to all pseudotime algorithms (note that
the correlation reported in this case is to the Monocle 2 pseudotime on 1000 HVGs). We found that Monocle
2 was also sensitive to the set of HVGs included in the analysis.

Demonstration of PhenoPath with categorical variables

One of PhenoPath’s strengths is its ability to work with arbitrary design matrices incorporating binary, cat-
egorical, or continuous covariates. For this we simply construct a design matrix using the model.matrix
command in R (with no intercept as this is handled by the λ parameter) and pass this in as x to the model, e.g.
for three categories we would make the design matrix with

x <- factor(sample(1:3, N, replace = TRUE))
x_mat <- model.matrix(~ 0 + x)

then call PhenoPath with
fit <- phenopath(Y, x_mat)

for some expression matrix Y. We performed a small simulation study on toy data to demonstrate PhenoPath’s
ability to handle such input matrices. We simulated data for 80 genes and 100 cells from the PhenoPath mean
function, each of which belonged to one of three different “types”, and added N (0, 1) noise. PCA plots of
the expression data coloured by pseudotime and covariate status may be seen in Supplementary Fig. 13. We
subsequently re-inferred using the phenopath() function in R passing in a design matrix as described above
with all other parameters left as default.

The results can be seen in Supplementary Fig. 14. Supplementary Fig. 14a shows that inference of the
latent z values is highly accurate when compared to the true z values. We further examined the estimated
β values compared to the true simulated values, which exhibits high correlation with slight shrinkage due to
the automatic relevance determination (ARD) prior. However, the significance test for this is well calibrated,
exhibiting high sensitivity and specificity.

Note that categorical covariates must be converted to a one-hot encoding matrix that can substantially increase
the number of parameters to be inferred. If a categorical variable hasM levels thenM×G additional variables
are introduced for G genes.

Comparison to fitting separate pseudotimes for each covariate status

An alternative approach to that of the PhenoPath model is to split the samples based on covariate-status and
perform pseudotime inference separately on each before combining the results post-hoc. There are several
downsides to such an approach. Examining each set of cells separately leads to smaller numbers of samples
per test and therefore a reduction in power to detect interactions. Furthermore, if the covariate is continuous
one would have to resort to arbitrary binning of samples to perform such an analyses. This becomes even more
burdensome if multiple covariates are present. For example, if x1 has levels A and B and x2 has levels C and
D we would have to consider four different groups of samples (AC, AD, BC, BD) - and fit the pseudotimes
separately for each. The number of groups grows exponentially in the number of factors, meaningmany groups
will actually have few or no samples in it. PhenoPath circumvents all of these issues by default as part of its
integrated model.

Further subtle issues arise with respect to biological interpretation. Upon splitting the samples, how do you
know the inferred pseudotimes correspond to the same biological process? A recent study has looked into this
(preprinted after our original submission, [24]) that uses dynamic timewarping to “align”multiple trajectories.
This approach will not work if the covariate is continuous, becomes combinatorially hard with the number
of levels if x is categorical, and is taken care of by default in the PhenoPath model by modelling a common
process z for all samples.
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To demonstrate some of the downsides to such a split-analysis approach we took the mouse dendritic cells
dataset [1] and performed pseudotime inference separately for each stimulant status (LPS and PAM) using the
5000 HVG. Our first observation was that the R2 to capture time using Monocle was 0.64 and 0.55 for LPS
and PAM respectively, compared to 0.70 for PhenoPath.

It is worth considering the difficulties in interpretation of interactions when departing from linear models.
Consider the example of the gene Tnf from the mouse dendritic cells dataset [1], that is downregulated under
LPS stimulation but upregulated under PAM. If we split the dataset and perform DE analysis, Tnf will be
significant under both, fromwhich we could naively conclude there is no difference in regulation between LPS
and PAM. If using the default B-spline basis for Monocle 2 we could then turn to the coefficients to see if there
is any difference between them. However, the B-spline basis is nonparametric in nature making coefficients
hard to compare between two different datasets in an intuitive manner. We therefore restrict this analysis
to linear changes in expression over pseudotime, fitting models of the form y = βStimulantz and comparing
β̂LPS − β̂PAM to test for interactions.

We performed this analysis on the mouse dendritic cells dataset [1] as described above and compared the
inferred β̂LPS−β̂PAM to the PhenoPath β interaction parameters (Supplementary Fig. 15a), finding virtually no
correlation. After further analyses we discovered that the pseudotime for LPS cells was orientated “backwards”
with respect to true time (which is fine since all pseudotimes are equivalent up to a parity transformation),
and upon “re-orientating” it and performing the analysis again we found the estimates in good agreement
(Supplementary Fig. 15a).

While correcting the initially wrong orientation was easy given we had ground-truth capture times, such a
step is almost impossible if we do not. Given the orientation is essentially random, there is a 50% chance
that one trajectory will be orientated the wrong way compared to another, which obviously increases as the
number of trajectories we are trying to integrate does too. Furthermore we cannot appeal to steps such as
identifying which orientation gives the most coefficients in common, as it is precisely differences here we are
searching for in the first place. Finally, we note that while we can examine β̂LPS − β̂PAM to rank interactions
this does not provide a means of testing for significant interactions without complex mathematics to transform
the confidence intervals. PhenoPath circumvents all these issues by using an integrated model.

Effect of zero-inflation (dropout) on PhenoPath

We wished to quantify the effect of single-cell dropout on PhenoPath when PhenoPath was used with single-
cell data. Using the same simulation scheme as before, we simulated (with the “high” noise regime) datasets
where a fraction p ∈ {0.05, 0.1, 0.2, 0.5, 0.8, 0.9} of the non-zero counts are set to zero, with 40 replicates in
each condition (see section 1.4). We then re-inferred the pseudotimes using PhenoPath.

The results can be seen in Supplementary Fig. 16. The ability of PhenoPath to infer pseudotime is largely
unaffected by single-cell dropout until > 90% of non-zero counts are set to zero. We believe this is due to
the non-random nature of single-cell dropout - lowly expressed genes are more likely to be zeroed than highly
expressed genes, so in general inference will be robust to say a count of log(TPM + 1) = 1 being set to zero
than a count of log(TPM + 1) = 10 being set to zero.

BRCA Survival Analysis

We fitted a stratified (ER status) Cox proportional hazards model to the overall survival data for 720 TCGA
BRCA patients with survival and expression data using patient age at onset and PhenoPath pseudotime as co-
variates. This survival analysis indicated that the model coefficient associated with the pseudotime contribu-
tion was significant (p = 0.0032). Analysis of deviance between nested models, with and without pseudotime
as a covariate, indicated that the performance of the more complex model that includes pseudotime produces
a better fit to the survival data p = 0.004124. Proportional hazards tests and diagnostics based on weighted
residuals was performed to confirm that the proportion hazards assumption was not violated. Supplementary
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Fig. 17 suggests that under both ER+ and ER-, increasing pseudotime progression leads to reduced overall
survival.

Identifying crossover points in BRCA

In PhenoPath we model gene expression evolving along the trajectories separately for each phenotype (or
covariate) considered. Unless the gradient of change along the trajectory is exactly equal for both phenotypes
(i.e. β = 0 exactly), the gene expression will cross at a given point in the trajectory.

Inference of this point would allow us to identify sections of the trajectory not affected by the covariate and
consequently sections of the trajectory that are. This is important as if the crossover point occurs towards the
beginning of the trajectory, it would mean gene expression is similar at the beginning but diverges as we move
along the trajectory. Similarly, if the crossover points occur towards the end of the trajectory, it would imply
the expression profiles for the two phenotypes are different at the beginning of the trajectory, but converge as
the trajectory progresses. An interpretation of this would be that the effect on expression from the trajectory
slowly dominates over the effect of phenotypes on the trajectory.

It is important to note that the latent trajectory values loosely follow a N(0, 1) distribution. This means the
‘middle’ of the trajectory is any value around zero, values of -1 or less could be thought of as the ‘beginning’
while values greater than 1 may be thought of as the ‘end’. Crucially, we can derive an analytical expression
from the PhenoPath parameters for the crossover point z∗.

The condition for the crossover point is that the predicted expression for each phenotype is identical. Therefore
(in the context of BRCA cancer)

yER+g (z∗g) = yER-g (z∗g) (37)

which leads to the condition

αgxER+ + (cg + βgxER+) z∗g = αgxER- + (cg + βgxER-) z
∗
g (38)

which is in turn solved by
z∗g = −αg

βg
. (39)

We fitted the crossover points z∗ for all significant genes in the BRCA dataset. We find that the vast majority
of the crossover times z∗ occur towards the end of the trajectory, with a median value of around 0.4. In other
words, at the beginning of the trajectory most genes are differentially expressed based on ER status, while as
the trajectory progresses it comes to dominate at the gene expression converges.
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Supplementary Figure 1: Quality control for single cell mouse dendritic cell data. Total number of genes
expressed (total_features) vs total number of reads mapping (total_counts) for mouse dendritic cells
[1].
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Supplementary Figure 2: Data filtering for disrupted mouse dendritic cells. Expression of Serpbinb6b
and Lyz1 across mouse dendritic cells [1]
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Supplementary Figure 3: Technical effects in single cell mouse dendritic cell data. A Histogram of
number of genes expressed across all mouse dendritic cells. B The correlation of the total number of genes
expressed to principal components.
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Supplementary Figure 4: Principal Components Analysis of batch effects in TCGA COAD and BRCA
data. PCA representations of the COAD (a) and BRCA (b) datasets, coloured by sequenced plate and GMM
cluster assignment respectively.
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Supplementary Figure 5: Benchmarking PhenoPath performance on simulated data sets. Comprehen-
sive benchmarking of PhenoPath demonstrates the necessity of a joint model of covariates and latent progres-
sion. a Genes were either simulated as evolving identically along pseudotime regardless of covariate status
(no interaction) or coming from one of four interacting types. b Multiple datasets with differing transcrip-
tional noise were quantified by different pseudotime algorithms and differential expression models leading to
35,520 different workflows. c Median Kendall’s-τ to true pseudotime for 200 cells in the low noise case. For
the smallest fraction of genes exhibiting interactions Monocle 2 performs best, though PhenoPath maintains
the best overall performance as the fraction of interactions increases. Error bars show the 95% interval over
40 replications. d Area under the curve for detecting interactions shows good performance for Monocle 2,
PhenoPath and TSCANwith a low fraction of genes interacting for 200 cells in the low noise case with Limma
Voom used for DE. However, as the fraction of interactions increases the performance of the other algorithms
quickly decreases, with some performing worse than would be expected at random.
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Supplementary Figure 6: Comparison of pseudotime algorithm performance in the presence of in-
teractions. Performance of various pseudotime algorithms as a function of the fraction of genes exhibiting
interactions, for both the low and high noise simulation cases and with 200 and 500 cells.
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Supplementary Figure 7: Comparison of joint pseudotime and differential expression pipeline perfor-
mance for detecting the presence of interactions. AUCs for detecting covariate-trajectory interactions for
all simulated datasets and pseudotime algorithms with differential expression performed using Limma Voom,
DESeq2, MAST, and Monocle 2 for the high noise regime. DESeq2 returned NA p-values for many fits due
to high magnitude outliers driven by the large overdispersion present (TSCAN only returns pseudotimes for a
subset of samples which we assume resulted in exclusion of the “unusual” samples).28



Supplementary Figure 8: Comparison of differential expression analysis algorithm performance for
detecting the presence of interactions. AUCs for detecting covariate-trajectory interactions for all simulated
datasets and pseudotime algorithms with differential expression performed using Limma Voom, DESeq2,
MAST, and Monocle 2 for the low noise regime.
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Supplementary Figure 9: Comparison of standard workflow performances in the presence of interac-
tions. A standard pseudotime-DE workflow can lead to severe mis-classification of covariate-trajectory in-
teractions. a Simulated expression of a gene that exhibits covariate-independent regulation over pseudotime,
as a function of simulated pseudotime. b The same gene’s expression as a function of the Monocle-inferred
pseudotime. c Simulated expression of a gene that exhibits covariate-dependent regulation over pseudotime,
as a function of simulated pseudotime. d The same gene’s expression as a function of the Monocle-inferred
pseudotime.
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Supplementary Figure 10: Analysis of PhenoPath performance using different initialisations. A total of
34 = 81 different initialisations were used for PhenoPath fitted to the mouse dendritic cells dataset [1], across a
range of parameter values for the threshold change in the ELBO to decide convergence (a), the hyperparameter
τα (b), the initialisation of the latent space (c), and the mean of the Gamma prior distribution on the ARD
precisions on β (d). Boxplot lower and upper hinges correspond to the first and third quantile. Upper and
lower whiskers correspond to 1.5 times the inter-quartile range from the hinge. Data outside this range is
considered an outlier.

31



Supplementary Figure 11: Comparison of non-linear pseudotime algorithms with principal compo-
nents analysis. Single-cell pseudotime is approximately linear. a The correlation to the first principal com-
ponent of the data across the algorithms Monocle 2, DPT, and TSCAN for four single-cell datasets. b The
proportion of the transcriptome that exhibits a significant linear trend for each pseudotime algorithm and
dataset (FDR = 5%).
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Supplementary Figure 12: Comparison of pseudotime estimation as a function of varying data input.
Correlation of the inferred latent space (z) for PhenoPath using a given number of highly variable genes across
the three datasets studied to the result using 1000 highly variable genes (blue). In general this is more robust
than the same analysis using Monocle 2 (red).
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Supplementary Figure 13: Simulated data illustration. PCA plot of the simulated toy dataset, coloured by
pseudotime (a) and covariate status (b).

Supplementary Figure 14: PhenoPath analysis of categorical covariate data. a The inferred pseudotime
against the simulated pseudotime. b The inferred β interaction parameters compared to the true values.
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Supplementary Figure 15: Comparison of split-data analysis with PhenoPath integration. A Compari-
son of β̂LPS−β̂PAM values to PhenoPath β interaction coefficients in the intial analysis. BThe same comparison
after “re-orientating” the LPS trajectory.
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Supplementary Figure 16: Effect of zero-inflation (dropout) on PhenoPath. Boxplots showing correlation
to true pseudotime across simulations with different percentage of zero counts. Lower and upper hinges
correspond to the first and third quantile. Upper and lower whiskers correspond to 1.5 times the inter-quartile
range from the hinge. Data outside this range is considered an outlier. Setting non-zero measurements to zero
in simulations does not significantly affect the accuracy of PhenoPath.
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Supplementary Figure 17: TCGA BRCA Survival Analysis. A stratified (by ER status) Cox Proportional
Hazards models was fit using PhenoPath derived pseudotimes as a covariate.
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Supplementary Figure 18: ER status marker expression. FBP1 expression is inversely correlated with
Snail in ER- breast cancers but shows no dependence in ER+ breast cancers.
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Hyperparameter Default value
τα 1
τλ 1
τµ

1 1
a 2
b 2
aβ 10
bβ 1
qn 0 ∀n
τq 1

Supplementary Table 1: PhenoPath hyperparameter specification. Default hyperparameter values in the
PhenoPath model. Note that τµ constrained to 0 by default.
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Parameter (of approx. dist.) Initialisation
mz First principal component of data
sz 0.1

aτ , bτ 1
mα Coef. from regressing y ∼ x
sα 0.1
aχ 0.1
bχ 0.01
mβ 0
sβ 0.1
mλ Coef. from regressing y ∼mz

sλ 0.1

Supplementary Table 2: PhenoPath parameter initialisation. Default parameter initialisation in the
PhenoPath model.
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Simulation / inference step Values
% of genes showing covariate-dependent behaviour 5, 10, 20, 30, 40, 50
Noise regime Low (φ = µng/3 + 1), High (φ = 1)
Number of cells 200, 500
Replicates 40
Pseudotime inference PhenoPath, Monocle 2, TSCAN, DPT
Differential expression PhenoPath, DESeq2, Limma Voom,

MAST, Monocle 2

Supplementary Table 3: Simulation parameters. Values used for simulation and inference.
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