Broeckhoven et al. Electronic Supplementary Material

On dangerous ground: the evolution of body armour in cordyline lizards

Chris Broeckhoven^{a,b}, Yousri El Adak^c, Cang Hui^{b,d}, Raoul Van Damme^a, Theodore

Stankowich^e

^aDepartment of Biology, Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium

^bDepartment of Mathematical Sciences, Theoretical Ecology Group, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa

^cDepartment of Biology, Free University of Brussels, Pleinlaan 2, 1050 Brussels, Belgium

^dTheoretical and Physical Biosciences, African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg 7945, Cape Town, South Africa

^eDepartment of Biological Sciences, California State University, 1250 Bellflower Blvd., Long Beach, California 90840, USA

Corresponding author: Chris Broeckhoven, Department of Biology, Laboratory of Functional Morphology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Chris.Broeckhoven@uantwerpen.be

The following electronic supplementary material is available for this article

Supplementary Methods 1. Calculation of predation risk.

Table S1. List of predators.

 Table S2. Predator scoring system.

Supplementary Methods 2. Phylogenetic tree.

Table S3. Summary of morphological variables.

Table S4. Results pGLS of body armour and size.

 Table S5. Loading scores osteoderm pPCA.

Table S6. Loading scores spine pPCA.

Table S7. Loading scores climate/environment pPCA.

Table S8. Results pGLS of habitat use / predation indices and osteoderm thickness.

Table S9. Results pGLS of habitat use / predation indices and spinosity.

Figure S1. Graphical representation of morphological characteristics.

Supplementary Methods 1. Calculation of predation risk.

A list was compiled of all South African snake species (with the exception of Typhlopidae, blind snakes), small to medium-sized carnivoran mammals, and actively hunting birds (birds-of-prey including owls, and corvids) (Table S1). Next, an extensive literature study [1-7] was conducted to compile a dataset of information on the four most important ecological traits that pertain to predation risk. These included diet, activity time, hunting method and habitat use of the predator. A score was assigned to each of these traits based on the risk it poses for cordyline lizards (Table S2).

Diet: Predators were scored based on the importance of lizards in their diet and classified in three dietary groups: (1) prey exclusively on lizards, (2) have a generalist diet including lizards and (3) do not prey on lizards. To illustrate, predators that specialise in lizards were assigned a score of 1 (= high risk), whereas those that do not prey on lizards were assigned a score of 0 (= no risk). Generalist species were assigned a score of 0.5 (= intermediate risk) **Activity time:** A score was assigned based on the overlap in activity time between predators and cordyline lizards. Cathemeral species have random intervals of activity, approximately evenly distributed during both day and night, and pose an intermediate risk. Nocturnal and crepuscular species do not strictly adhere to given ecological definitions but are sporadically seen active during daytime and consequently still pose a small risk. Non-diurnal snakes were given a higher score because, unlike mammals and birds-of-prey, they have access to inactive lizards sheltering in their crevices.

Habitat use: A score was calculated based on the overlap in habitat use. Aquatic, fossorial and arboreal predators generally do not encounter cordyline lizards. However, sporadic movements to more terrestrial habitats might occur and therefore they still pose a small risk. Predators that occur across a variety of habitats have a much higher chance of encountering

cordyline lizards. Exclusively terrestrial predators will pose the highest risk and were given the highest score.

Hunting strategy: A score was assigned based on the hunting strategy of the predator. In snakes, active foragers have a higher chance of locating prey compared to sit-and-wait foragers. In mammals, species that forage alone or in pairs will pose a similar predation risk, whereas those that forage in larger groups have an increased probability of finding prey. In predatory birds we discriminated between several hunting strategies. Scavengers feed on dead animals, posing little risk for living cordyline lizards. Birds that capture prey in flight, including swooping down and grabbing terrestrial prey in flight, pose less of a threat than birds that capture their prey solely on the ground. The latter therefore pose the highest risk. Birds that make use of both hunting methods will still pose a high risk, but not as high as birds that exclusively prey on the ground.

Snakes		Mammals		Birds	
Family	Species	Family	Species	Family	Species
Pythonidae	Python natalensis	Felidae	Caracal caracal	Pandioninae	Pandion haliaetus
Viperidae	Bitis albanica		Felis silvestris lybica	Accipitrinae	Aviceda cuculoides
	Bitis arietans		Felis nigripes		Pernis apivorus
	Bitis armata		Leptailurus serval		Macheiramphus alcinus
	Bitis atropos	Viverridae	Civettictis civetta		Elanus caeruleus
	Bitis caudalis		Genetta genetta		Milvus migrans
	Bitis cornuta		Genetta tigrina		Haliaeetus vocifer
	Bitis gabonica		Genetta maculata		Gypohierax angolensis
	Bitis inornata	Herpestidae	Suricata suricatta		Gypaetus barbatus
	Bitis rubida		Paracynictis selousi		Neophron percnopterus
	Bitis schneideri		Cynictis penicillata		Necrosyrtes monachus
	Bitis xeropaga		Herpestes ichneumon		Gyps africanus
	Causus defilippii		Galerella sanguinea		Gyps coprotheres
	Causus rhombeatus		Galerella pulverulenta		Gyps rueppellii
Lamprophiidae	Amblyodipsas concolor		Rhynchogale melleri		Aegypius tracheliotus
	Amblyodipsas microphthalma		Ichneumia albicauda		Aegypius occipitalis
	Amblyodipsas polylepis		Atilax paludinosus		Circaetus pectoralis
	Amplorhinus multimaculatus		Mungos mungo		Circaetus cinereus
	Aparallactus capensis		Helogale parvula		Circaetus fasciolatus
	Aparallactus lunatus lunatus	Canidae	Otocyon megalotis		Terathopius ecaudatus
	Atractaspis bibronii		Vulpes chama		Polyboroides typus
	Atractaspis duerdeni		Canis adustus		Circus maurus
	Boaedon capensis		Canis mesomelas		Circus macrourus
	Dipsina multimaculata	Mustelidae	Mellivora capensis		Circus pygargus
	Duberria lutrix lutrix		Poecilogale albinucha		Circus ranivorus
	Duberria variegata		Ictonyx striatus		Circus aeruginosus
	Gonionotophis capensis capensis	Felidae	Caracal caracal		Micronisus gabar
	Gonionotophis nyassae		Felis silvestris lybica		Melierax metabates
	Hemirhagerrhis nototaenia		Felis nigripes		Melierax canorus

Table S1. List of predator species used to calculate predation risk/pressure

Table S1 continued.

Homoroselaps dorsalis	Leptailurus serval		Accipiter tachiro
Homoroselaps lacteus			Accipiter badius
Inyoka swazicus			Accipiter minullus
Lamprophis aurora			Accipiter ovampensis
Lamprophis fiskii			Accipiter rufiventris
Lamprophis fuscus			Accipiter melanoleucus
Lamprophis guttatus			Kaupifalco monogrammicus
Lycodonomorphus inornatus			Buteo buteo vulpinus
Lycodonomorphus laevissimus			Buteo oreophilus
Lycodonomorphus obscuriventris			Buteo rufinus
Lycodonomorphus rufulus			Buteo rufofuscus
Lycophidion capense capense			Aquila pomarina
Lycophidion pygmaeum			Aquila rapax
Lycophidion variegatum			Aquila nipalensis
Macrelaps microlepidotus			Aquila wahlbergi
Montaspis gilvomaculata			Aquila verreauxii
Prosymna bivittata			Aquila spilogaster
Prosymna frontalis			Hieraaetus pennatus
Prosymna janii			Hieraaetus ayresii
Prosymna lineata			Lophaetus occipitalis
Prosymna stuhlmannii			Stephanoaetus coronatus
Prosymna sundevallii			Polemaetus bellicosus
Psammophis angolensis		Sagittariidae	Sagittarius serpentarius
Psammophis brevirostris		Falconidae	Polihierax semitorquatus
Psammophis crucifer			Falco naumanni
Psammophis jallae			Falco tinnunculus
Psammophis leightoni			Falco rupicoloides
Psammophis mossambicus			Falco dickinsoni
Psammophis notostictus			Falco chicquera
Psammophis subtaeniatus			Falco vespertinus
Psammophis trigrammus			Falco amurensis
Psammophylax rhombeatus			Falco concolor

Table S1 continued.

	Psammophylax tritaeniatus		Falco eleonorae
	Pseudaspis cana		Falco subbuteo
	Rhamphiophis rostratus		Falco cuvierii
	Xenocalamus bicolor		Falco biarmicus
	Xenocalamus sabiensis		Falco peregrinus
	Xenocalamus transvaalensis		Falco fasciinucha
Elapidae	Aspidelaps lubricus lubricus	Tytonidae	Tyto alba
	Aspidelaps scutatus		Tyto capensis
	Dendroaspis angusticeps	Strigidae	Asio capensis
	Dendroaspis polylepis		Strix woodfordii
	Elapsoidea boulengeri		Glaucidium perlatum
	Elapsoidea sundevallii		Glaucidium capense
	Hemachatus haemachatus		Otus senegalensis
	Hydrophis platurus		Ptilopsis granti
	Naja annulifera		Bubo lacteus
	Naja melanoleuca		Bubo africanus
	Naja mossambica		Bubo capensis
	Naja nigricincta woodi		Scotopelia peli
	Naja nivea	Corvidae	Corvus capensis
Colubridae	Crotaphopeltis hotamboeia		Corvus albus
	Dasypeltis inornata		Corvus albicollis
	Dasypeltis medici		Corvus albicollis
	Dasypeltis scabra		
	Dipsadoboa aulica		
	Dispholidus typus		
	Meizodon semiornatus		
	Philothamnus angolensis		
	Philothamnus hoplogaster		
	Philothamnus natalensis		
	Philothamnus semivariegatus		
	Telescopus beetzii		
	Telescopus semiannulatus		

Table S1 continued.

	Thelotornis capensis capensis	
Natricidae	Natriciteres olivacea	
	Natriciteres sylvatica	

Table S2. Summary of the four ecological traits pertaining to predation risk. Each trait is given a score based on the risk it poses for lizards. The scores were assigned to each of the three predator guilds separately. Shaded boxes indicate that these traits were not scored for the respective predator guild.

Eco	logical trait	Snakes	Birds	Mammals
Diet	No lizards	0	0	0
	Generalist	0.5	0.5	0.5
	Specialist	1	1	1
Activity time	Diurnal	1	1	1
	Nocturnal	0.5	0.25	0.25
	Crepuscular	0.5	0.25	0.25
	Cathemeral	0.75	0.50	0.50
Hunting strategy	Sit-and-wait forager	0.5		
	Active forager	1.0		
	Scavenger		0	
	Captures on ground		1	
	Captures in flight		0.5	
	Mixed		0.9	
	Solitary (pair) hunter			1
	Group hunter			1.5
Habitat use	Aquatic/near water	0.1	0.1	0.1
	Terrestrial	1	1	1
	Fossorial	0.1		
	Arboreal	0.1		
	Mixed	0.9		

References

- 1. Alexander G, Marais J. 2007. *A guide to the reptiles of southern Africa*. Struik Publishers, Cape Town.
- 2. Bates MF, Branch, WR, Bauer AM, Burger M, Marais J, Alexander GJ, De Villiers MS. 2014. *Atlas and red list of the reptiles of South Africa, Lesotho and Swaziland*. South African National Biodiversity Institute, Pretoria.
- 3. Branch WR. 1998. *Field guide to the snakes and other reptiles of southern Africa*. Ralph Curtis Publishing, Cape Town.
- 4. Brown LH, Urban EK, Newman K, Fry CH, Keith S. 1982-1997. *The birds of Africa*, vols. 1-4. Academic Press, New York.
- 5. Ferguson-Lees J, Christie DA. 2006. *Raptors of the world*. Princeton University Press, New Jersey.
- 6. Oberprieler U, Cillié B. 2009. *The raptor guide of southern Africa*. Sunbird Publishers Ltd., Cape Town.
- 7. Skinner JD, Chimimba CT. 2005. *The mammals of the southern African sub-region*. Cambridge University Press, Cambridge.

Supplementary Methods 2. Phylogenetic tree.

Partial gene fragments, representing 27 South African species of cordyline lizards, were obtained from three nuclear (PRLR, MYH2, KIF24) and three mitochondrial (12S, 16S, ND2) DNA gene regions [1]. Two platysaurids (i.e., *Platysaurus capensis* and *P*. intermedius), as well as three gerrhosaurids (i.e., Cordylosaurus subtesselatus, Gerrhosaurus nigrolineatus, and Matobosaurus validus) were included as outgroup taxa. Genbank was used to download all sequences, which were subsequently aligned and edited using MEGA v.6 [2]. A substitution model was calculated for each of the protein-coding gene fragments (ND2, PRLR, MYH2, KIF24) for each codon position, whereas a single substitution model was calculated for the each of the non-protein-coding gene fragments (12S and 16S). The Akaike information criterion with correction for sample size (AICc) was therefore implemented using JModeltest [3]. BEAST v. 2.1.3 [4] was used to attain an ultrametric tree with relative divergence times, and we used the models obtained from JModeltest for all six loci, as well as their parameters, to specify the site models in BEAUti. A relaxed lognormal clock model estimating around the clock rate of 1.0 was selected, because we were interested in relative, rather than absolute node ages. The birth-death model was selected as tree prior. A Markov Chain Monte Carlo (MCMC) was run for 20 million generations and the parameters were sampled every 2000 generations. Chain convergence was assessed using Tracer v. 1.6 [5], prior to discarding the first 10% as burn-in using TreeAnnotator v. 2.1.2 [4]. The remaining 9001 trees were summarized as a maximum clade credibility tree. Lastly, we used FigTree v. 1.4 [6] to visualize the resulting tree.

References

- 1. Stanley EL, Bauer AM, Jackman TG, Branch WR, Mouton PleFN. 2011 Between a rock and a hard polytomy: rapid radiation in the rupicolous girdled lizard (Squamata: Cordylidae). *Mol. Phylogenet. Evol.* **58**, 53–70. (doi:10.1016/j.ympev.2010.08.024)
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. *Mol. Biol. Evol.* 30, 2725–2729. (doi: 10.1093/molbev/mst197)
- 3. Posada D. 2008 jModelTest: phylogenetic model averaging. *Mol. Phylogenet. Evol.* **25**, 1253–1256. (doi: 10.1093/molbev/msn083)
- 4. Bouckaert R. et al. 2014 BEAST 2: a software platform for Bayesian evolutionary analysis. *PLoS Comput. Biol.* **10**, e1003537. (doi:10.1371/journal.pcbi.1003537)
- 5. Rambaut A, Suchard MA, Xie W, Drummond AJ. 2013. Tracer v1.6. Available at: http://tree.bio.ed.ac.uk/software/tracer/.
- 6. Rambaut A. 2012. FigTree v1. 4. Available at: http://tree bio ed ac uk/software/figtree

Species	BS	Oste	oderm expre	ssion			Spin	osity		
		Ovol	OSURF	OTHICK	Sear	S NECK	STRUNK	SFLEG	SHLEG	STAIL
Cordylus aridus	47.32	12.07	117.18	0.11	1.14	2.12	2.00	1.88	1.98	3.78
Cordylus minor	50.26	15.90	136.15	0.15	1.22	2.37	2.28	2.05	2.32	3.89
Cordylus imkeae	43.89	10.79	112.07	0.10	1.09	1.71	2.19	1.70	1.81	3.38
Cordylus mclachlani	50.68	13.79	125.72	0.13	1.28	2.22	2.52	2.42	2.40	4.23
Cordylus macropholis	53.67	22.07	148.20	0.25	1.49	2.19	3.47	1.89	2.05	3.82
Cordylus cordylus	55.13	14.97	110.84	0.16	1.18	2.49	2.88	2.30	2.47	4.90
Cordylus oelofseni	45.68	9.69	102.40	0.11	0.91	1.76	2.07	1.88	2.24	4.04
Cordylus niger	58.26	13.45	102.43	0.13	1.34	2.14	2.90	2.28	2.58	4.52
Cordylus jonesii	57.78	20.54	130.74	0.24	1.32	1.50	2.54	1.58	1.82	4.64
Cordylus vittifer	57.84	20.79	125.09	0.21	1.84	2.96	3.44	2.52	2.79	5.49
Namazonurus lawrenci	47.40	18.43	143.92	0.17	1.40	2.22	2.56	2.30	2.41	4.22
Namazonurus peersi	57.27	17.01	129.38	0.17	2.37	3.17	3.55	3.42	3.43	5.08
Hemicordylus capensis	68.85	3.15	37.19	0.10	1.45	0.00	0.23	1.96	2.20	3.76
Hemicordylus nebulosus	45.63	0.12	2.52	0.11	0.70	1.48	1.34	1.41	1.75	3.09
Ninurta coeruleopunctatus	52.35	1.41	20.56	0.10	1.02	1.50	1.67	1.30	1.81	2.77
Pseudocordylus langi	65.68	0.00	0.00	0.00	0.88	0.09	0.00	1.15	1.13	2.27
Pseudocordylus melanotus	87.07	0.00	0.00	0.00	1.77	0.00	0.00	1.79	2.17	4.32
Pseudocordylus transvaalensis	103.97	0.00	0.00	0.00	2.03	0.00	0.00	2.10	2.42	5.21
Pseudocordylus spinosus	57.24	0.50	7.44	0.11	1.38	0.00	1.08	1.37	1.63	3.53
Pseudocordylus subviridis	80.73	0.00	0.00	0.00	1.36	0.00	0.00	1.66	2.32	4.40
Pseudocordylus microlepidotus	97.08	0.00	0.00	0.00	2.59	0.00	0.00	2.28	2.31	5.47
Smaug breyeri	83.26	17.45	86.89	0.25	3.72	3.62	3.95	3.85	4.81	6.10
Smaug vandami	92.03	15.49	70.53	0.32	2.30	3.56	3.32	3.22	3.94	5.19
Smaug depressus	84.20	14.77	83.88	0.21	3.87	4.58	4.16	4.05	4.68	6.30
Smaug giganteus	129.40	52.91	120.92	0.63	5.10	7.86	5.94	6.47	6.54	11.81
Karusasaurus polyzonus	84.73	17.78	114.93	0.17	2.81	2.90	1.93	2.98	2.97	5.12
Ouroborus cataphractus	75.20	31.69	144.47	0.41	4.33	6.15	7.76	6.08	5.76	8.88

Table S3. Summary of morphological variables of cordyline lizards used in the study.

Abbreviations: BS = body size, $O_{VOL} = osteoderm volume$, $O_{SURF} = osteoderm surface$, $O_{THICK} = osteoderm thickness$, $S_{EAR} = ear spine length$, $S_{NECK} = neck spine length$, $S_{TRUNK} = trunk spine length$, $S_{FLEG} = front leg spine length$, $S_{HLEG} = hind leg spine length$, $S_{TAIL} = tail spine length$. All length and thickness measurements are given in mm, surface in mm² and volume in mm³.

osteoderm morphometrics and spine lengths with body size in cordyline lizards.									
Variable	Estimate	StdErr	<i>t</i> -value	<i>P</i> -value					
O _{VOL}	-1.98	0.81	-2.43	0.02					
O _{SURF}	-0.03	0.06	-0.53	0.6					
O _{THICK}	-0.11	0.34	-0.32	0.75					
\mathbf{S}_{EAR}	1.22	0.26	4.75	< 0.001					
S _{NECK}	0.1	0.19	0.53	0.6					
S _{TRUNK}	-0.7	0.3	-2.32	0.03					
S _{FLEG}	0.59	0.12	4.74	< 0.001					
S _{HLEG}	0.83	0.17	4.82	< 0.001					
S _{TAIL}	0.78	0.13	5.9	< 0.001					

Table S4. Results of phylogenetic linear regression analyses showing the relationships of osteoderm morphometrics and spine lengths with body size in cordyline lizards.

Table S5. Loading scores of a phylogenetic principal component analysis conducted on three osteoderm measurements. Values in bold represent loading scores greater than 0.70.

Variable	Loading score
O _{VOL}	0.96
O _{SURF} (residual)	0.94
O _{THICK}	0.88
Standard deviation	1.61
Proportion of variance	0.86

Table S6. Loading scores of a phylogenetic principal component analysis conducted on six spine measurements. Values in bold represent loading scores greater than 0.70.

Variable	Loading score
S _{EAR} (residual)	0.82
S _{NECK}	0.84
S _{TRUNK} (residual)	0.89
S _{FLEG} (residual)	0.96
S _{HLEG} (residual)	0.92
S _{TAIL} (residual)	0.90
Standard deviation	2.18
Proportion of variance	0.79

Variable	pPC1	pPC2	pPC3	pPC4
1. Temperature				
1.1 Annual mean temperature	-0.47	0.84	-0.20	0.17
1.2 Temperature seasonality	-0.44	-0.59	-0.16	0.61
1.3 Max. temperature of warmest month	-0.71	0.44	-0.07	0.51
1.4 Min. temperature of the coldest month	-0.08	0.92	0.11	-0.24
1.5 Mean temperature of warmest quarter	-0.60	0.70	-0.18	0.34
1.6 Mean temperature of coldest quarter	-0.30	0.94	-0.09	-0.03
2. Precipitation				
2.1 Annual precipitation	0.89	0.08	-0.39	0.06
2.2 Precipitation of wettest month	0.67	0.15	-0.70	0.04
2.3 Precipitation of driest month	0.64	0.24	0.67	0.13
2.4 Precipitation seasonality	-0.15	0.11	-0.94	-0.10
2.5 Precipitation of wettest quarter	0.69	0.14	-0.68	0.02
2.6 Precipitation of driest quarter	0.67	0.19	0.67	0.16
3. Global surface vegetation cover	0.61	0.52	0.41	0.13
4. Cloud cover	0.90	0.00	-0.13	0.22
5. Global aridity index	0.94	-0.15	-0.27	-0.03
6. Solar radiation				
6.1 Direct normal irradiance	-0.79	-0.51	0.11	-0.13
6.2 Global horizontal irradiance	-0.88	-0.26	-0.17	-0.17
7. Elevation	0.21	-0.62	-0.05	0.40
Eigenvalue	2.73	2.15	1.82	1.08
Proportion of Variance	0.42	0.26	0.18	0.06
Cumulative Proportion	0.42	0.67	0.86	0.92

Table S7. Loading scores of a phylogenetic principal component analysis conducted on the climate/environmental variables. Values in bold represent loading scores with absolute values greater than 0.70.

Table S8. Results of univariate phylogenetic linear regression analyses examining the effect of habitat use and all indices of predation risk/pressure on osteoderm thickness. Statistically significant results are indicated in bold.

Statisticary significant results are indicated in oora.								
Variable	Estimate	StdErr	t-value	P -	а	σ^2		
				value				
pPCarid	-0.21	0.10	-2.15	0.04	-24.83	8.36		
pPC _{TEMP}	0.05	0.12	0.45	0.65	-31.46	14.60		
Rel. terrestrial predation pressure (RTP _{PRES})	0.08	0.71	0.11	0.91	-31.71	14.94		
Rel. terrestrial predation risk (RTP _{RISK})	0.26	0.53	0.49	0.63	-31.47	14.59		
Rel. snake predation pressure	0.18	0.80	0.22	0.82	-31.45	14.68		
Rel. snake predation risk	0.19	0.54	0.36	0.71	-31.98	15.10		
Rel. mammal predation pressure	-0.12	0.81	-0.14	0.89	-31.69	14.92		
Rel. mammal predation risk	0.18	0.62	0.30	0.77	-31.05	14.30		
Rel. bird predation pressure	-0.08	0.71	-0.11	0.91	-31.71	14.94		
Relative bird predation risk	-0.26	0.53	-0.49	0.63	-31.47	14.59		
Total predation pressure	-0.12	0.52	-0.23	0.82	-32.46	15.62		
Total predation risk	0.10	0.62	0.16	0.88	-31.57	14.80		
Legend: a, model parameters of EB evolutiona	ary model; σ ²	², maximur	n likelihoo	d estimate	of the vari	ance		
rate.	-							

effect of hubitut use and an indices of predation fisk pressure on spinosity.									
Variable	Estimate	StdErr	<i>t</i> -value	<i>P</i> -	а	σ^2			
				value					
pPC _{ARID}	-0.13	0.14	-0.88	0.39	-27.35	21.26			
pPC _{TEMP}	0.05	0.16	0.32	0.76	-30.61	26.62			
Rel. terrestrial predation pressure (RTP _{PRES})	0.18	0.98	0.18	0.86	-31.22	27.70			
Rel. terrestrial predation risk (RTP _{RISK})	0.38	0.74	0.51	0.61	-30.99	27.07			
Rel. snake predation pressure	0.03	1.10	0.03	0.98	-31.29	27.85			
Rel. snake predation risk	0.26	0.75	0.34	0.74	-31.45	28.01			
Rel. mammal predation pressure	0.36	1.12	0.32	0.75	-31.38	27.90			
Rel. mammal predation risk	0.52	0.86	0.61	0.55	-29.94	25.28			
Rel. bird predation pressure	-0.18	0.99	-0.18	0.86	-31.22	27.70			
Relative bird predation risk	-0.38	0.74	-0.51	0.62	-30.99	27.07			
Total predation pressure	-0.69	0.71	-0.98	0.34	-33.69	31.15			
Total predation risk	0.32	0.86	0.37	0.71	-30.46	26.34			
Legend: a, model parameters of EB evolution	ary model; σ	², maximur	n likelihoo	d estimate	of the vari	ance			
rate.									

Table S9. Results of univariate phylogenetic linear regression analyses examining the effect of habitat use and all indices of predation risk/pressure on spinosity.

Electronic supplementary material for Broeckhoven C, El Adak Y, Hui C, Van Damme R, Stankowich T. 2018. On dangerous ground: the evolution of body armour in cordyline lizards. Proc. R. Soc. B. 20180513. http://dx.doi.org/10.1098/rspb.2018.0513.

Figure S1. Graphical representation of the morphological characteristics used to describe body armour in cordyline lizards. Three-dimensional (3D) rendered micro-CT images of the full body (a) were used to calculate spine length. The region where the spine measurements were taken is indicated: (1) ear, (2) neck, (3) front leg, (4) trunk, (5) hind leg and (6) tail. 3D-rendered micro-CT images of the trunk region (b) were used to calculate osteoderm expression. The black square represents one of the region-of-interests (ROIs) used to calculate directly from the extracted ROIs (c), whereas osteoderm thickness was measured using transversal sections (d).