The strength of the biodiversity ecosystem function relationship depends on spatial scale

Patrick L Thompson, Forest Isbell, Michel Loreau, Mary O'Connor, Andrew Gonzalez

Proceedings of the Royal Society of London B

Supplementary Figures

Figure S1. The relationship between b_A and spatial scale in cases I – IV. Each row of the figure corresponds to a different mean local slope \overline{b}_i . The solid lines show the median value of b_A and the bands show the interquartile range based on 100 replicate simulations.

Thompson et al. Supplementary materials *Proc. Royal Soc. Lond.*

Figure S2. Change in local ecosystem function with the loss of one species from each patch vs. either (a) initial local species richness or (b) the strength of within-patch local biodiversity effects, *b*. Panels (a) and (b) respectively correspond to cases III and IV. Panel (b) shows the effect of changing local within-patch richness from 15 to 14 species.

Figure S3. The relationship between B_1 and the slope of the species area relationship *z*. This was estimated by simulating regions with different values of B_1 and estimating *z* as the slope of the species accumulation curve in 25 replicate regions.

Figure S4. The strength of biodiversity effects, b_A , at different spatial scales when there is incomplete compositional overlap across local patches. Each panel represents a different mean local slope $\overline{b_i}$, as indicated by the number above the panels. Different degrees of compositional overlap are indicated with the colours (low values of B_I correspond to high overlap, $B_I = 0$ indicates no overlap). The solid line indicates the median across 100 replicate simulations each consisting of 2000 replicate regions at each scale. The bands show the interquartile range.