Supplementary Information

Flavoenzyme CrmK-Mediated Substrate Recycling in Caerulomycin Biosynthesis[†]

Yiguang Zhu,‡^a Marie-Ève Picard,‡^b Qingbo Zhang,^a Julie Barma,^b Xavier Murphy Després,^b Xiangui Mei,^c Liping Zhang,^a Jean-Baptiste Duvignaud,^b Manon Couture,^b Weiming Zhu,^c Rong Shi,^{b*} and Changsheng Zhang^{a*}

^aCAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, P.R. China;

^bDépartement de biochimie, de microbiologie et de bio-informatique, PROTEO, and Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada;

^cKey Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

‡These authors contributed equally.

Equal Correspondence to C. Z. (<u>czhang2006@gmail.com</u>) for biochemistry or R. S. (<u>rong.shi@bcm.ulaval.ca</u>) for structure.

Content

Supplementary Materials and Methods	S3
Bacterial strains, plasmids, and reagents	S3
General HPLC Analysis	S3
Cloning, Overexpression and Purification of CrmK	S3
Site-directed Mutagenesis of <i>crmK</i> and Purification of CrmK Mutants	S4
Biochemical assays of CrmK and Mutants	S4
Enzymatic Preparation and Isolation of CRM R 10	S5
Crystallization, Data Collection and Refinement	S5
Table S1 Strains and plasmids used and generated in this study	S7
Table S2 Primers used in this study.	S8
Fig. S1 Alignment of CrmK with bi-covalent flavinproteins from diverse pathways	S9
Fig. S2 SDS-PAGE analysis of the purification of CrmK	S11
Fig. S3 LC-MS characterization of products of CrmK reactions with CRM P 7	S12
Fig. S4 ¹ H and ¹³ C NMR spectroscopic data for CRM R 10	S13
Fig. S5 Conformational change of Tyr449 in CrmK upon substrate binding	S16
Fig. S6 MS data of CRM M 4 dissolved in H ₂ O or H ₂ ¹⁸ O	S17
Fig. S7 Proposed catalytic mechanism with dual active site for AknOx	S19
Fig. S8 Superposition of active site residues in AknOx and CrmK	S20
Fig. S9 HPLC analysis of feeding experiments in the $\Delta crmA$ mutant with 7 and 8	S21
Fig. S10 Active site architecture of CImD2	S22
Supplementary References	S23

Supplemental Materials and Methods

Bacterial strains, plasmids, and reagents. Bacterial strains and plasmids used and constructed in this study are listed in Table S1. Chemicals, enzymes, and other molecular biological reagents were purchased from standard commercial sources and used according to the manufacturers' recommendations.

General HPLC Analysis. HPLC analysis for metabolites and enzyme assays was carried out on a reversed phase column Luna C18 (Phenomenex, 150×4.6 mm, 5 µm) with UV detection at 313 nm under the following program: solvent system (solvent A, 0.15% TFA in water; solvent B, 100% CH₃CN); 5% B to 30% B (0 - 18 min), 30% B to 100% B (18 - 19 min), 100% B (19 - 24 min), 100% B to 5% B (24 - 25 min), 5% B (25 - 30 min); flow rate at 1 mL min⁻¹.

Cloning, Overexpression and Purification of CrmK. The crmK gene was PCR amplified from the genomic DNA of A. cyanogriseus WH1-2216-6 using primers CrmK-EF and CrmK-ER (Table S2). PCR products were digested with EcoRI/Xhol and subsequently inserted into pET28a linearized with EcoRI/Xhol, to yield the plasmid pCSG2218 after sequence confirmation. The plasmid pCSG2218 were introduced to E. coli BL21(DE3) to produce the N-(His)₆-tagged CrmK proteins. An overnight culture of transformed E. coli BL21(DE3)/pCSG2218 was used to inoculate 1 L TB medium and was grown at 37°C until the absorbance at 600 nm reached 0.6. Protein expression was induced with 100 μM isopropyl 1-thio-β-Dgalactopyranoside (IPTG) followed by incubation at 18°C for 20 h. Cells were harvested and resuspended in lysis buffer (50 mM Tris-HCl, 200 mM NaCl, 5% glycerol, and 1 mM DTT, pH 8.0). An additional 5 mM imidazole was added to the lysis buffer and the overexpressed CrmK was purified by standard affinity chromatography using Ni²⁺-NTA affinity resin (Qiagen). The CrmK protein was eluted with buffer containing 50 mM Tris-HCI (pH 8), 200 mM NaCI, 5% glycerol, 250 mM imidazole, and 1 mM DTT. Following the desalting step to remove the imidazole, CrmK was further purified by size-exclusion chromatography (SEC) on a Superdex 200 column (GE Healthcare) equilibrated in a buffer containing 20 mM Tris-HCI pH 8, 150 mM NaCl, 2% (v/v) glycerol, and 5mM DTT. The eluted fractions were pulled, concentrated for enzyme assays and crystallization.

Site-directed Mutagenesis of *crmK* and Purification of CrmK Mutants. Sitedirected mutagenesis of *crmK* was carried out according to manufacturer's instructions (TransGen). Thirteen single CrmK mutants (H64A, F123A, C124A, Y138F, I328A R340A, E376A, I378A, F403A, F403E, M405A, Y446F, Y449F) and three double mutants (H64A/C124A, Y449F/Y138F, Y449F/F403E) were constructed and were confirmed by sequencing. The plasmids carrying the *crmK* mutated genes were introduced to *E. coli* BL21(DE3) for the purification of CrmK mutants according to the aforementioned methods.

Biochemical assays of CrmK and Mutants. The concentration of purified proteins was determined by the Bradford method.¹ The CrmK assays for CRM P 7 were conducted in 50 µL reaction mixture in 50 mM Tris-HCl buffer (pH 8.0) containing 200 µM CRM P 7, 240 nM CrmK at 28 °C, The CrmK assays for CRM F 8 were conducted in 50 µL reaction mixture in 50 mM Tris-HCI buffer (pH 8.0) containing 200 µM CRM F 8, 2.4 µM CrmK at 28°C. For determining kinetic parameters, CRM P 7 was set as a variable substrate in concentrations of 5, 7.5, 10, 15, 20, 25, 50, 100, and 200 µM. Enzyme assay was performed in Tris-CI buffer (50 mM, pH 8.0) containing 12 nM CrmK at 28°C for 5 min in triplicates. Similarly, CRM M 4 was set as a variable substrate in concentrations of 500, 1000, 1500, 2000, 3000, 4000, 6000, and 8000 µM for the determination of kinetic parameters. K_m and V_{max} were calculated by nonlinear regression analysis using Origin 9.0 software. The relative enzymatic activities of CrmK mutants were obtained by comparison of initial velocities with that of the wild type CrmK. To determine the initial velocity on CRM P 7, the assays were performed in Tris-HCI buffer (pH 8.0) containing 12 nM CrmK (or various mutants), 50 µM CRM P 7 at 28°C for 5 min in triplicates. To determine the initial velocity on CRM M 4, the assays were performed in 50 mM Tris-HCI buffer (pH 8.0) containing 240 nM CrmK (or various mutants), 5 mM CRM M **4** at 28°C for 5 min in triplicates. CrmK and mutants reactions were quenched by the addition of 50 μ L MeOH, and denatured proteins removed by centrifugation. The assays were monitored by HPLC analysis.

Enzymatic Preparation and Isolation of CRM R 10. A CrmK reaction was conducted in 100 mL mixture consisting of 50 mM Tris-HCI (pH 8.0), 8 mg CRM F **8**, and 2.4 μ M CrmK upon incubation at 28 °C for 48 h. MeOH extracts of the reaction mixture were subjected to purification by semi-preparative HPLC on a Varian Star Workstation, using a reversed phase column Luna 5 μ Phenyl-Hexyl column (solvent A, 0.15% TFA in water; solvent B, 100% CH₃CN; eluted with constant 20% solvent B; flow rate at 2.5 mL min⁻¹) to obtain compound **10** (5 mg).

Crystallization, Data Collection and Refinement. Crystals of CrmK were obtained using the Classics II screen (Qiagen) through microbatch crystallization by mixing 0.7 μ L of protein (12 mg mL⁻¹) with 0.5 μ L reservoir solution (0.96 M Sodium citrate pH 7.0). The crystals of CrmK bound with its substrate (CRM P 7) were obtained by soaking the CrmK crystals (~3 min) in the reservoir solution containing 5 mM CRM P 7, which was initially dissolved in DMSO at a stock concentration of 100 mM. For data collection, the crystals were flash cooled in the N2 cold stream (Oxford Cryosystem, Oxford, UK) using 1.4 M Sodium Citrate pH 7.0 as cryoprotectant. Data for both CrmK-FAD and CrmK-FAD-CRM P complexes were collected to 1.84 Å and 2.15 Å, respectively, at a wavelength of 0.9795 Å at the CMCF1 beamline, Canadian Light Source. Both crystals belong to the space group P1 and are isomorphous with unit cell a=63.6, b=95.7, c=98.4 Å, α=95.2°, β =97.0°, y=104.4°. Data processing and scaling were performed with iMosflm.² The structure solution for the CrmK-FAD complex was obtained by molecular replacement through MolRep³ using the structure of TamL⁴ (PDB code 2Y08) as the search model. Several cycles of refinement using REFMAC5⁵ followed by model rebuilding with Coot⁶ were carried out. For the substrate-bound CrmK, guided by the Fourier difference map, the substrate molecule was placed in the model after the rebuilding of the protein part was finished. Except the first 2-3 residues at the N-terminal, all the residues in the sequence are clearly visible in the electron density maps. Both models have good stereochemistry as analyzed with PROCHECK.⁷ Data collection and refinement statistics for both structures were shown in Table 1.

Strains/Plasmids	Characteristic(s)	Sources		
Strains				
Escherichia coli				
DH5a	Host strain for cloning	Invitrogen		
BL21(DE3)	Host strain for protein expression	Novagen		
BW25113	Host strain for PCR targeting	8		
ET12567	Donor strain for conjugation	9		
Actinoalloteichus				
WH1-2216-6	Wild type, caerulomycin A producer	10		
CRM01	The crmG gene disrupted mutant of WH1-2216-6	11		
CRM11	The crmK gene disrupted mutant of WH1-2216-6	12		
	Plasmids			
pET28a	Km ^r , expression vector	Stratagene		
pIJ773	Aprr, source of aac(3)/V	13		
pUZ8002	Kmr, including tra for conjugation	14		
pCSG2016	Strain WH1-2216-6 genomic library cosmid	12		
pCSG2102	pCSG2016 derivative where crmG was disrupted by aac(3)/V	This study		
pCSG2201	1.58kb crmG Ndel/EcoRI PCR fragment from genomic DNA of strain WH1-2216-6 into pET28a	This study		
pCSG2218	1.5kb <i>crmK Eco</i> RI / <i>Xho</i> I PCR fragment from genomic DNA of strain WH1-2216-6 into pET28a	This study		
pCSG2229	pCSG2218 containing site-directed mutagenesis at H64A	This study		
pCSG2230	pCSG2218 containing site-directed mutagenesis at C124A	This study		
pCSG2231	pCSG2218 containing site-directed mutagenesis at F123A	This study		
pCSG2236	pCSG2218 containing site-directed mutagenesis at Y138F	This study		
pCSG2237	pCSG2218 containing site-directed mutagenesis at I328A	This study		
pCSG2238	pCSG2218 containing site-directed mutagenesis at R340A	This study		
pCSG2240	pCSG2218 containing site-directed mutagenesis at E376A	This study		
pCSG2241	pCSG2218 containing site-directed mutagenesis at I378A	This study		
pCSG2243	pCSG2218 containing site-directed mutagenesis at F403A	This study		
pCSG2244	pCSG2218 containing site-directed mutagenesis at F403E	This study		
pCSG2245	pCSG2218 containing site-directed mutagenesis at M405A	This study		
pCSG2246	pCSG2218 containing site-directed mutagenesis at Y446F	This study		
pCSG2247	pCSG2218 containing site-directed mutagenesis at Y449F	This study		
pCSG2248	pCSG2218 containing site-directed mutagenesis at H64A/C124A	This study		
pCSG2250	pCSG2218 containing site-directed mutagenesis at Y449F/Y138F	This study		
pCSG2252	pCSG2218 containing site-directed mutagenesis at Y449F/F403E	This study		

 Table S1 Strains and plasmids used and generated in this study.

Table S2 Primers used in this study.

Primers	Sequences	Usage			
For gene expression					
CrmK-EF	5' - GTGC <u>GAATTC</u> ATGCCAACCCGAGCG - 3'	- crmK expression			
CrmK-ER	5' - TCGT <u>CTCGAG</u> TTCACCGAGGACGGAT - 3'				
For crmK n	For crmK mutagenesis				
H64AF	5' - CCGTGCGCTCCGGTGGGGGCCTGCGGGGGGGGGGGCGTT - 3'	- crmK H64A mutagenesis			
H64AR	5' - GCCCCACCGGAGCGCACGGTGAGGCGCTTGCC - 3'				
F123AF	5' - ACGTTCCCCGGCGGTGCCTGCATGGGGGGTCG - 3'	<i>crmK</i> F123A mutagenesis			
F123AR	5' - GCACCGCCGGGGAACGTCACCCCGTAGTT - 3'				
C124AF	5' - CG TTCCCCGGCGGTTTC GCC ATGGGGGTCGGG - 3'	<i>crmK</i> C124A mutagenesis			
C124AR	5' - GCGAAACCGCCGGGGAACGTCACCCCGTAGTT - 3'				
Y138FF	5' - AC ATCTCCGGTGGGGGGC TTC GGGCCGCTCTCG - 3'				
Y138FR	5' - AA GCCCCCACCGGAGAT GTGGCCGCCCGCCCC - 3'	chink i i sor inulagenesis			
1328AF	5' - CGACCAGCCAGCTGTTGGCG GCC CCCGACGTGGGG - 3'	<i>crmK</i> I328A mutagenesis			
1328AR	5' - GCCGCCAACAGCTGGCTGGTCGCCAACCACGGCAAC - 3'				
R340AF	5' - CGGGTGCGATCGGGGTGCGG GCG AAGGTCAAGTCC - 3'	orm// D2404 mutaganagia			
R340AR	5' - GCCCGCACCCCGATCGCACCCGGCCCCACGTCGG - 3'	CHIR R340A mulagenesis			
E376AF	5' - ACTGCCCCAGCGCCGCGATG GCG TACATCGCCTAC - 3'	- crmK E376A mutagenesis			
E376AR	5' - GCCATCGCGGCGCTGGGGCAGTGGTAGTCGGCCC - 3'				
1378AF	5' - GCGCCGCGATGGAGTAC GCC GCCTACGGCGGG - 3'	- crmK I378A mutagenesis			
1378AR	5' - GCGTACTCCATCGCGGCGCTGGGGCAGTGGTA - 3'				
F403AF	5' - GCGGGGCGTCGTTGAAGACC GCC TACATGGTGGC - 3'G	- crmK F403A mutagenesis			
F403AR	5' - GCGGTCTTCAACGACGCCCGC GGGGAACCGCCGT - 3'				
F403EF	5' - GCGGGGCGTCGTTGAAGACC GAG TACATGGTGGCG - 3'	<i>crmK</i> F403E mutagenesis			
F403ER	5' - CTCGGTCTTCAACGACGCCCCGCGGGGAACCGCCGT - 3'				
M405AF	5' - CGTCGTTGAAGACCTTCTAC GCG GTGGCGTGGACC - 3'	<i>crmK</i> M405A mutagenesis			
M405AR	5' - GCGTAGAAGGTCTTCAACGACGCCCCGCGGGGAA - 3'				
Y446FF	5' - AGGTCAACACGGGCGCC TAC ATCAACTACCCC - 3'	<i>crmK</i> Y446F mutagenesis			
Y446FR	5' - AAGGCGCCCGTGTTGACCTCGTCGGGGGTGGG - 3'				
Y449FF	5' - ACGGGCGCCTACATCAAC TTC CCCGACATCGAC - 3'	<i>crmK</i> Y449F mutagenesis			
Y449FR	5' - AAGTTGATGTAGGCGCCCGTGTTGACCTCGTC - 3'				

Dbv29 C1mD2 CrmK AknOx SpnJ BusJ TamL TrdL Orf22	MTGGTGADAASAGASSTRPELRGERCLPPAGPVKVTPDDPRYLNLKLRGANSRFNGE 	57 45 30 36 59 28 28 28 37
Dbv29 C1mD2 CrmK AknOx SpnJ BusJ TamL TrdL Orf22	H64 PDY IHLVGSTQQVADAVEETVRTGKRVAVRSGGHCFEDFVDNPDVKVI IDMSLLTEI AYD PDYFRLVHSPRQVEEAVREAVTAGKRITVRSRGHCGEDFVAAPDVEVILDLSPMSRVDYD PEYFRLPYSTAQVVEAVSEAVAAGKRLTVRSGGHCGEAFVASPDVDVIVDLSSMSHVGYD PDVVYVVHTADQVVDAVNQAMAAGQRIAVRSGGHCFEGFVDDPAVRAVIDMSQMRQVFYD PERIHIASSAEDVVHAVADAVRTGRRVGVRSGGHCFENLVADPAIRVLVDLSELNRVYPD PERIHIAGSTEDVVHAVAEAVRTGRRVGVRSGGHCFENLVADPAIRVLVDLSELNRVYFD PEEIHLVGSAAEIEQVLSRAVRSGKRVAVRSGGHCYEDFVANSDVRVVMDMSRLSAVGFD PEEIHLVGSAAEIEQVLSRAVRSGKRVAVRSGGHCYEDFVANSDVRVVMDMSRLSAVGFD PGQIRIVGSAEQTVEAVQDAVDAGLRLAVRSGGHCLEDLVDGPDTAFLLDMSEMRQVYYD * .: ::::::::::::::::::::::::::::::::::	117 105 90 96 119 119 88 88 97
Dbv29 C1mD2 CrmK AknOx SpnJ BusJ TamL TrdL Orf22	PSMNAFLIEPGNTLSEVYEKLYLGWNVTIPGGVCGGVGVGGHICGGGYGPLSRQFGSVVD RERNAFVIEAGAPVGKMLHTLFHNWGVTVPAGFCMGVGAGGHISGGGYGPLSRLLGLSVD EERGAFEVEAGATVGQIYRVLYKNYGVTFPGGFCMGVGAGGHISGGGYGPLSRLLGLTVD SGKRAFAVEPGATLGETYRALYLDWGVTIPAGVCPQVGVGGHVLGGGYGPLSRRDGVVAD STRGAFAIEAGAALGQVYRTLFKNWGVTIPTGACPGVGAGGHILGGGYGPLSRRFGSVVD STRGAFAIEAGAALGQVYRTLFKNWGVTIPTGACPGVGAGGHILGGGYGPLSRRFGSVVD EERGAFAVEAGATLGAVYKTLFRVWGVTLPGGACPDVGAGGHILGGGYGPLSRHMGSIVD EERGAFAVEAGATLGAVYKTLFRVWGVTLPGGACPDVGAGGHILGGGYGPLSRHMGSIVD PGMRAFAVEPGAHLGDVYRTLYKGWGVTVPGGSCPTVAAGGHFAGGGYGPLSRHHGSIVD ** :* * :. *. *: :*** * *.****	177 165 150 156 179 179 148 148 157
Dbv29 C1mD2 CrmK AknOx SpnJ BusJ TamL TrdL Orf22	YLYAVEVVVVNKQGKARVIVATRERDDPHHDLWWAHTGGGGGNFGVVTKYWMRVPEDV-G HLYAVEVVVVDQDRNVSTVVATREKTDPNRDLWWAHTGGGGGNFGVITRYWMRSPEAS-G YLHAVEVVVVDAEGVVSTVVATREEDDPNRDLWWAHTGGGGGNFGVITRYWLRSPDAV-G HLYAVEVVVVDASGRARKVVATSAADDPNRELWWAHTGGGGGNFGIVTRYWFRTPGAT-G YLQGVEVVVVDQAGEVHIVEADRNSTGAGHDLWWAHTGGGGGNFGIVTRFWLRTPDVV-S YLQGVEVVVVDRAGEVHIVEVDRNSIGAGHDLWWAHTGGGGGNFGVVTRFWLRAPDVV-S YLHAVEVVVVDASGDARTVIATREPSDPNHDLWWAHTGGGGGNFGVVRYWLRTAEADVP YLHAVEVVVVDASGDARTVIATREPSDPNHDLWWAHTGGGGGNFGVVRYWLRTAEADVP HLYAVEVVVVDASGDARTVIATREPSDPNHDLWWAHTGGGGGNFGVVRYWLRTAEADVP HLYAVEVVVVDAAGRARLVVASRDDEGELGDLWWAHTGGGGGTFGVVTRYWLRTAGAT-G :* .******: : . : : : : : : : : : :	236 224 209 215 238 238 208 208 216
Dbv29 C1mD2 CrmK AknOx SpnJ BusJ TamL TrdL Orf22	RNPERLLPKPPATLLTSTVTFDWAGMTEAAFSRLLRNHGEWYERNSGPDSPYTGLWSQLM AEPAGLLPRPPGALHIAEVSWPWDRLTGADFVRLVGNFMDWQIANSAVDSADADLYALLD DAPEEALPRPPASFHVARVSWSWAELTEADYVRLVSNFLDWQLRNCTVDSPNIGLYALLE TDPSQLLPKAPTSTLRHIVTWDWSALTEEAFTRIIDNHGAWHQSNSAAGTPYASMHSVFY TDAAELLPRPPATVLLRSFHWPWHELTEQSFAVLLQNFGNWYEQHSAPESTQLGLFSTLV TDPSELLPRPPATVLLRSFHWPWEGLDEAAFARLVRNHGRWFEQNSGPDSPWCDLYSVLA PEPGRLLPRPPAEVLLNTTVWPWEGLDEAAFARLVRNHGRWFEQNSGPDSPWCDLYSVLA SDPAGLLPHPPSAVLDSLVTWSWEGMTAERFRRLMRNHAEWHERNGAADSPYASLFSVLG **: *: : : * : : : *: * : : : : *: *	296 284 269 275 298 298 268 268 268 276
Dbv29 C1mD2 CrmK AknOx SpnJ BusJ	IGNEVPGMGESGFMMPIQVDATRPDARRLLDAHIEAVIDGVPPAEVPEPI-EQRWLASTP CPHRSAGDITLHAHLPEEAPRAHARMDAFLAALGAGVGIAPTVRRTS-LPWLAASQ CFHRSAGHLAMHAQIPVDVPDAEERMSWFLAELNEGVAVAPSLTRR-RLPWLATSQ LNSRAAGQILLDIQIDGGLDGAEALLNDFVAAVNEGTGVEPAVQRS-TEPWLRATL CAHRQAGYVTLNVHLDGTDPNAERTLAEHLSAINAQVGVTPAEGLRETLPWLRSTQ CAHRQAGYVTLNIHLDGTDPNAERTLAEHLSAINDQVGVTPAEGLRETLPWLRSTQ	355 339 324 330 354 354

TamL	LTRSQSGALAMTTQLDATGPDAEKRLETYLAAVSEGVGVQPHSDTR-RLPWLHSTR	323
TrdL	LTRSQSGALAMTTQLDATGPDAEKRLETYLAAVSEGVGVQPHSDTR-RLPWLHSTR	323
0rf22	VMHPASGVLVMSTQMDATVPDAERLLAGYVDALDEGVGLRPAHTVR-ARPWLESML	331
	* . : :: *. : : : . ** :	
	E376	
Dbv29	GRGGRGPASKTKAGYLRKRLTDRQIQAVYENMTHMDG-IDYGAV <mark>W</mark> LIGYGGKV	407
C1mD2	YLAVPETGPAAIGLRCKVKSADLRAPHRPDQLAALHRHLTRDDYRGTYAAV <mark>E</mark> YIAYGGRV	399
CrmK	LLAIPDVGPGAIGVRRKVKSADLRGPHTREQLAAAYRHLSRADYHCPSAAMEYIAYGGRV	384
Akn0x	ANKFDTGGFDRTKSKGAYLRKPWTAAQAATLYRHLSADSQVWGEV <mark>S</mark> L <mark>Y</mark> SYGGKV	384
SpnJ	VAGAIAEGGEPGMQRTKVKAAYLRTGLSEAQLATVYRRLTVYGYDNPAAALLLGYGGMA	414
BusJ	VSGSLAEGGEPSGQRTKVKAAYLRTGLSEAQLATVYRRLTDSGYDNPAAAL <mark>L</mark> LLGYGGRA	414
TamL	WPGIAGDGD——MTGRAKIKAAYARRSFDDRQIGTLYTRLTSTDYDNPAGVV <mark>A</mark> LIAYGGKV	381
TrdL	WPGIAGDGD——MTGRAKIKAAYARRSFDDRQIGTLYTRLTSTDYDNPAGVV <mark>A</mark> LIAYGGKV	381
0rf22	QPTLPDT-V—TGMRSKGKAAYLRKGYTDGQLDALYRGLTDERYTNPGAGV <mark>L</mark> FMSYGGAV	388
	* * * * : :: . : .*** .	
Dbv29	NTVDPAATALPQRDAILKVNYITGWANPGNEAKHLTWVRKLYADVYAETGGVPVPNDVSD	467
ClmD2	NAVPPEATAIP-RGALLKTFYMVTWKDPAEDDRHLRWIRELYRDMHRATGGVPVPDEVNT	458
CrmK	NTVDPAATAVP-RGASLKTFYMVAWTDPDEDEEHLRWIREIYRDIHSATGGVPTPDEVNT	443
Akn0x	NSVPETATATAQRDSIIKVWMSATWMDPAHDDANLAWIREIYREIFATTGGVPVPDDRTE	444
SpnJ	NAVAPSATALAQRDSVLKALFVTNWSEPAEDERHLTWIRGFYREMYAETGGVPVPGTRVD	474
BusJ	NAVAPSATALAQRDSVLKALFVTNWSEPAEDERHLTWIRGFYREMYAETGGVPVPGTRVD	474
TamL	NAVPADRTAVAQRDSILKIVYVTTWEDPAQDPVHVRWIRELYRDVYADTGGVPVPGGAAD	441
TrdL	NAVPADRTAVAQRDSILKIVYVTTWEDPAQDPVHVRWIRELYRDVYADTGGVPVPGGAAD	441
0rf22	SAVAPDATATAQRDAVLKALYVTLWREPEEDAAHLAWIRGLYREVYAHSGGVPVPDEVSD	448
	.:* ** * ::* . * :* .: .: *:* :* ::.: :****.*	
	Y449	
Dbv29	GAYIN <mark>Y</mark> PDSDLADPGLNTSGVPWHDLYYKGNHPRLRKVKAAYDPRNHFHHALSIRP	523
C1mD2	GAYINYADVDLADPEWNTSGVPWHTLYYGDNYPRLQEVKAEWDPLD1FHHALS1SAPEAGRPI	ESGPRTPAQREW
CrmK	GAYIN <mark>Y</mark> PDIDLADPEWNTSGVPWHTIYYGDNYPRLQEIKSRWDPRNVFRHAFSIRPR	500
Akn0x	GTFIN <mark>Y</mark> PDVDLVDERWNTSGVPWYTLYYKGNYPRLQKVKARWDPRDVFRHALSVRPPG——	502
SpnJ	GSYIN <mark>Y</mark> PDTDLADPLWNTSGVAWHDLYYKDNYPRLQRAKARWDPQNIFQHGLSIKPPARLSP(J QP
BusJ	GSYIN <mark>Y</mark> PDTDLADPLWNTSGVAWHDLYYKDNYPRLQRAKARWDPQNIFQHGLSIKPPERLSP(GQP
TamL	GAYVN <mark>Y</mark> PDVDLADEEWNTSGVPWSELYYKDAYPRLQAVKARWDPRNVFRHALSVRVPPA-	500
TrdL	GAYVN <mark>Y</mark> PDVDLADEEWNTSGVPWSELYYKDAYPRLQAVKARWDPRNVFRHALSVRVPPA-	500
0rf22	GAYVN <mark>Y</mark> PDTDLADPRWNTSGVPWSTLYYKDNYPRLRRVKASWDPKGVFRHALSVEPPASE	508
	*:::** * **.* ***** * :** :***: *: :**: *:*:	

The letters in yellow background show the location of conserved FAD binding residues, involving a histidine and a cysteine. The letter in blue ground shows the position of a putative second catalytic residue (E376) in CrmK. The letters in cyan background shows CrmK E376 equivalents in other proteins. The letter Y in red ground shows the second catalytic residue in AknOx (Y378). TamL⁴ (accession number ADC79636), TrdL¹⁵ (accession number ADY38530), Dbv29¹⁶ (accession number CAD91224), Orf22¹⁷ (accession number ABL09969), AknOx¹⁸ (accession number ABI15166), SpnJ¹⁹ (accession number AAG23271), BusJ²⁰ (accession number AAY88927), CrmK¹² (accession number AFD30946), ClmD2 (accession number CCC55910).²¹

Fig. S2 SDS-PAGE analysis of the purification of CrmK.

The expression and purification of N-His₆-tagged CrmK in *E. coli* BL21(DE3)/pCSG2218. Lane 1, purified CrmK protein; Lane M, protein molecular weight marker. The acrylamide percentage of SDS-PAGE gels is 10 %.

Fig. S3 LC-MS characterization of products of CrmK reactions with CRM P **7**. (A) LC-MS spectra of the product CRM O **3**

(B) LC-MS spectra of the product CRM M 4

Fig. S4 ¹H and ¹³C NMR spectroscopic data for CRM R 10.

(A) The HRESIMS spectrum of CRM R 10.

(C) The ¹³C NMR spectrum of CRM R **10** in DMSO-*d*6

Fig. S5 Conformational change of Tyr449 in CrmK upon substrate binding.

The carbon atoms of the residues lining the active site are colored in green and yellow, respectively, in the apo and substrate-bound form. The only major conformational change in CrmK upon the substrate binding is the swing of ~16° of the Y449 side chain to accommodate the substrate molecule, leading to a ~1.5 Å displacement of the Y449 hydroxyl group to enable an H-bond (2.6-3.0 Å) formation with the Y138 hydroxyl group, which is not found in the *apo* CrmK (~4 Å).

Fig. S6 MS data of CRM M 4 dissolved in H_2O or $H_2^{18}O$.

(C) LC-MS spectra of CrmK enzymatic activity of compound CRM P 7 in H_2O solution

Fig. S7 Proposed catalytic mechanism with dual active site for AknOx.

The dual active site (Tyr450/Tyr144, Tyr378/Ser376) was proposed to be responsible to catalyze two different dehydrogenation reactions in AknOx catalysis.¹⁸

The carbon atoms of catalytic residues in AknOx (Y450/Y144 and Y378)¹⁸ and CrmK (Y449/Y138 and E376) are colored in green and yellow, respectively. The carbon atoms of ligands are shown in cyan and green, respectively. Notably, upon superposition, the carboxylate group of E376 of CrmK is very close (~1.3 Å) to the hydroxyl group of Y378 in AknOx.

Fig. S9 HPLC analysis of feeding experiments in the $\Delta crmA$ mutant with 7 and 8.

(i) the $\Delta crmA$ mutant (the CRMs-nonproducing mutant, in which the PKS/NRPS gene *crmA* was disrupted;¹² (ii) the $\Delta crmA$ mutant was fed with CRM P **7** (30 µM); (iii) the $\Delta crmA$ mutant was fed with CRM F **8** (30 µM); (iv) standard **1**.

Fig. S10 Active site architecture of ClmD2.

The homology model of CImD2 was constructed based on the crystal structure of CrmK (68% sequence identity) and the substrate collismycin DH was docked in the active site of CImD2 using the software MOE.²² The orientation of active site shown in this figure is similar to that of CrmK presented in the main text. The carbon atoms of active site residues and the substrate are shown in salmon and pale green, respectively. The H-bonds are shown in black dash lines. Among all the residues lining the substrate binding pocket, three residues D23, R340, and I328 in CrmK have been replaced by Y38, C355, and V343, respectively in ClmD2. Notably, the replacement of I328 in CrmK by Val343 in ClmD2 would better accommodate the extra –SCH3 group on the collismycin DH substrate.²³

Supplementary References.

- 1. M. M. Bradford, Anal. Biochem., 1976, 72, 248-254.
- A. G. W. Leslie and H. R. Powell, *Evolving Methods for Macromolecular Crystallography*, 2007, 245, 41-51.
- 3. A. Vagin and A. Teplyakov, J. Appl. Crystallogr., 1997, 30, 1022-1025.
- 4. J. C. Carlson, S. Y. Li, S. S. Gunatilleke, Y. Anzai, D. A. Burr, L. M. Podust and D. H. Sherman, *Nat. Chem.*, 2011, **3**, 628-633.
- 5. G. N. Murshudov, A. A. Vagin and E. J. Dodson, Acta Cryst. D, 1997, 53, 240-255.
- 6. P. Emsley and K. Cowtan, Acta Cryst. D, 2004, 60, 2126-2132.
- R. A. Laskowski, M. W. Macarthur, D. S. Moss and J. M. Thornton, *J. Appl. Crystallogr.*, 1993, 26, 283-291.
- 8. K. A. Datsenko and B. L. Wanner, Proc. Natl. Acad. Sc.i U. S. A., 2000, 97, 6640-6645.
- 9. D. J. MacNeil, K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons and T. MacNeil, *Gene*, 1992, **111**, 61-68.
- 10. P. Fu, S. Wang, K. Hong, X. Li, P. Liu, Y. Wang and W. Zhu, J. Nat. Prod., 2011, 74, 1751-1756.
- 11. Y. Zhu, J. Xu, X. Mei, Z. Feng, L. Zhang, Q. Zhang, G. Zhang, W. Zhu, J. Liu and C. Zhang, ACS Chem. Biol., 2016, DOI: 10.1021/acschembio.1025b00984.
- 12. Y. Zhu, P. Fu, Q. Lin, G. Zhang, H. Zhang, S. Li, J. Ju, W. Zhu and C. Zhang, *Org. Lett.*, 2012, **14**, 2666-2669.
- 13. B. Gust, G. L. Challis, K. Fowler, T. Kieser and K. F. Chater, *Proc. Natl. Acad. Sc.i U. S. A.*, 2003, **100**, 1541-1546.
- 14. M. S. B. Paget, L. Chamberlin, A. Atrih, S. J. Foster and M. J. Buttner, *J. Bacteriol.*, 1999, **181**, 204-211.
- 15. X. Mo, H. Huang, J. Ma, Z. Wang, B. Wang, S. Zhang, C. Zhang and J. Ju, *Org. Lett.*, 2011, **13**, 2212-2215.
- Y. C. Liu, Y. S. Li, S. Y. Lyu, L. J. Hsu, Y. H. Chen, Y. T. Huang, H. C. Chan, C. J. Huang, G. H. Chen, C. C. Chou, M. D. Tsai and T. L. Li, *Nat. Chem. Biol.*, 2011, **7**, 304-309.
- 17. A. Luzhetskyy, A. Mayer, J. Hoffmann, S. Pelzer, M. Holzenkamper, B. Schmitt, S. E. Wohlert, A. Vente and A. Bechthold, *ChemBioChem*, 2007, **8**, 599-602.
- 18. I. Alexeev, A. Sultana, P. Mantsala, J. Niemi and G. Schneider, *Proc. Natl. Acad. Sc.i U. S. A.*, 2007, **104**, 6170-6175.
- H. J. Kim, R. Pongdee, Q. Wu, L. Hong and H. W. Liu, *J. Am. Chem. Soc.*, 2007, **129**, 14582-14584.

- 20. D. R. Hahn, G. Gustafson, C. Waldron, B. Bullard, J. D. Jackson and J. Mitchell, *J. Ind. Microbiol. Biotechnol.*, 2006, **33**, 94-104.
- 21. I. Garcia, N. M. Vior, A. F. Brana, J. Gonzalez-Sabin, J. Rohr, F. Moris, C. Mendez and J. A. Salas, *Chem. Biol.*, 2012, **19**, 399-413.
- 22. *Molecular Operating Environment (MOE)*, 2013.08, Chemical Computing Group Inc., Montreal, Canada.
- 23. I. Garcia, N. M. Vior, J. Gonzalez-Sabin, A. F. Brana, J. Rohr, F. Moris, C. Mendez and J. A. Salas, *Chem. Biol.*, 2013, **20**, 1022-1032.