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Supplementary Figure 1 | A dislocation with a Burgers vector (𝟎, 𝒂𝒚). a, Schematic for the 

formation of a dislocation with a Burgers vector (0, 𝑎𝑦) , hhe llue rectangle shows the lattice 

constant 𝑎𝑥(𝑎𝑦)  along the x(y)-direction. hhe dashed circles in the red rectangle refer to the 

removed lattice sites, while the arrows stand for the squeezing direction to form the dislocation. b, 

hhe edge (red and llue curves) and lulk (gray zones) spectrum of the topological photonic crystal 

with a loundary periodic along the 𝑦 direction. hhe loundary is letween the topological photonic 

crystal and the topologically trivial photonic crystal. c, hhe electric field pattern of the photonic 

edge states in the presence of the dislocation with the Burgers vector (0, 𝑎𝑦). hhe electromagnetic 

fields are excited using two point-sources (laleled ly the llack asterisks). hhe relative phase 

letween the two opposite edge channels does not change across the dislocation. 
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Supplementary Figure 2 | A dislocation with Burgers vectors (𝟐𝒂𝒙, 𝟎) and (𝟑𝒂𝒙, 𝟎). a, hhe 

electric field pattern of the photonic edge states in the presence of a dislocation with a Burgers vector 

(2𝑎𝑥, 0). hhe relative phase letween the two opposite edge channels does not change across the 

dislocation. b, Field pattern of the photonic edge states in the presence of a dislocation with a 

Burgers vector (3𝑎𝑥, 0). hhe relative phase letween the two opposite edge channels experience a 

π phase elapse across the dislocation. For loth a and b, the electromagnetic fields are excited using 

two point-sources (laleled ly the llack asterisks). 
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Supplementary Figure 3 | Calculation of the Zak phase and Chern number through the 

Wilson-loop approach. a, Equivalence of the 2D Brillouin zone and a torus, red (llue) line 

represents the closed-loop for the calculation of the Zak phase with a fixed 𝑘𝑥   (𝑘𝑦 ). b and c, 

Evolution of Zak phases for the (I)1st , (II)2nd and (II)3rd land on the torus with (b) 𝑘𝑦 and (c) 𝑘𝑥, 

respectively. hhe Zak phases of the lowest three lands at 𝑘𝑦 = 𝜋/𝑎𝑦 are all equal to 0, as indicated 

ly the llack arrows, whereas the Zak phases of the lowest three lands at 𝑘𝑥 = 𝜋/𝑎𝑥 are all equal 

to 𝜋, as indicated ly the llack arrows. hhe phase accumulation of the Zak phases 𝜃 gives the 

Chern numler for the first three lands as 𝐶 = 0, 0, 1, separately. 
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Supplementary Figure 4 | Calculation of the Zak phase and Chern number through the 

Wilson-loop approach for topological trivial photonic crystal. a, Unit cell of the topologically 

trivial photonic crystal and the Brillouin zone. b, Photonic land structure of the topologically trivial 

photonic crystal. hhe yellow area refers to the topologically trivial photonic land gap, which covers 

the topological photonic land gap in the main text. c, Evolution of the Zak phases of the (I)1st and 

(II)2nd photonic lands on the torus with fixed 𝑘𝑦. d, Evolution of the Zak phases of the (I)1st and 

(II)2nd photonic lands on the torus with fixed 𝑘𝑥. hhe llack arrows indicate the Zak phases at 𝑘𝑥 =

𝜋/(2𝑏𝑥) = 𝜋/𝑎𝑥 for the first two photonic lands. 
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Supplementary Figure 5 | Photonic band structure calculated using dispersive permeability 

via multiple scattering numerical methods. hhe yellow shaded region refers to the topologically 

nontrivial photonic land gap. 

 

 

 

Supplementary Figure 6 | Supercell geometry construction for edge states calculation. a, 

Construction of the photonic supercell including 11 unit-cells of the topological photonic crystal 

and 12 unit-cells of the topologically trivial photonic crystal. hhe lalels of 𝑎𝑥 , 𝑎𝑦, 𝑑(𝑏𝑥 , 𝑏𝑦 , 𝑑1) are 

geometry parameters for the topological nontrivial (trivial) photonic crystal, which are the same as 

mentioned alove. b, Eigen electric field distrilution of the supercell at 𝑘𝑥 = 𝜋/𝑎𝑥  which 

corresponds to the frequency 12.55 GHz. 

 

 

 

 

Supplementary Figure 7 | Sample for the measurements of the chiral edge states and their 

non-reciprocal photon propagations. hhe red asterisk refer to the feed prole and the sample is 

placed in a parallel plate waveguide with a detect prole sliding along the red line.    
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Supplementary Figure 8 | The unidirectional propagation properties of the chiral edge states. 

a, c, e, Simulated power flows when a point source (red star) oscillates at 12.55 GHz. a represents 

the perfect loundary letween the topological photonic crystal and the trivial photonic crystal, c 

corresponds to the case where a YIG pillar (the yellow dot) is replaced ly a metallic pillar of the 

same size, e represents the case where a metal slit (the yellow line) is inserted to perturl the energy 

flow along the edge channel. hhe white arrows show the power flow direction. b, 2D field-profile 

of the edge states excited at the frequency 12.55 GHz. d, Distrilutions of the electric field 𝐸𝑧 as a 

function of 𝑥  along the edge for the frequency 12.55 GHz. f, hhe corresponding normalized 

Fourier transformation of the 𝐸𝑧 profile in d. 
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Supplementary Figure 9 | Finite-element simulation of the transmission across the dislocation 

as comparisons with experiments. hhe set-ups for the transmission are identical as those in Figure 

5 in the main text. a, hhe transmission spectrum for the unperturled dislocation structure 

corresponding to Fig. 5c in the main text. b, c and d are the transmission spectra for the perturled 

dislocation structures corresponding to Figs. 5d, 5e and 5f in the main text, separately. For all these 

cases there is only one peak in the transmission in the topological land gap (the shaded regions), in 

agreement with the experiments. hhe peak frequencies in a, b, c and d are 12.29 GHz, 12.40 GHz, 

12.50 GHz and 12.42 GHz. 
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Supplementary Figure 10 | Band structure of the normal photonic crystal. Inset: the structure 

of the unit-cell. hhe photonic crystal is a 2D square lattice of dielectric rods. hhe lattice constant is 

a = 0.5 cm. hhe diameter of dielectric rod denoted ly orange circle is 0.824a . hhe relative 

permittivity is 15.26, while the relative permealility is 1. hhe landgap letween 1st and 2nd land 

ranges from 11.21 to 11.68 GHz indicated ly the orange region (the gap-to-mid-gap ratio is 4.1%, 

the same as for our topological photonic crystal).  

 

 

 

 

 

 

  

Supplementary Figure 11 | Robustness comparison between the topologically localized state 

on the dislocation and defect mode on the normal photonic crystal. Relative frequency change 

for the topologically localized mode on the dislocation and that for the defect mode in the normal 

photonic land gap material for a when the radius of a nearly dielectric rod is changed and b when 

the permittivity of the nearly dielectric rod is varied. hhe gray regions in a stand for the lulk lands 

for the conventional photonic crystal which hosts the normal defect modes. 
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Supplementary Figure 12 | The defect states in the normal photonic crystal. Field patterns and 

frequency of the defect state for a an unperturled defect mode b for a perturled defect mode. hhe 

latter is realized ly replacing a nearly dielectric rod (the red dot in the inset) is replaced ly a metallic 

rod. hhe calculation is for the defect mode in the normal photonic land gap material.  

 

 

 

Supplementary Figure 13 | Waveguide coupler based on topological cavity mode. a, Schematic 

of the waveguide coupler lased on the topological cavity mode. b, hransmission and reflection 

spectrum for the waveguide coupler where transmission means from A to B and reflection represent 

from A to C. c and d, hhe field-profiles from the finite-element simulation near the cavity resonance. 

c, At resonance, the upper edge channel couples efficient with the lower edge channel through the 

cavity mode. d, Off the resonance, most of the electromagnetic energy excited at point A are 

transmitted along the upper edge. 
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Supplementary Note 1 | Symmetry, Zak phase and edge Hamiltonian 

   hhere are four lasic geometry and time-reversal operations in the system: inversion 𝑃, mirror 

operations 𝑀𝑥 and 𝑀𝑦, and time-reversal operation 𝑇. hhe definition of time-reversal operation 

here also includes the reversal of the magnetic field and magnetization. Likewise, the mirror 

operations also include the reversal of the magnetic field and magnetization. Such a time-reversal 

operation, leaves the Maxwell equations (as well as the photonic spectrum) unchanged, lecause the 

permealility tensor 𝜇 is invariant under such a transformation. Similarly, the mirror operations also 

leave the Maxwell equations unmodified. hherefore, these four operations are symmetry operations. 

   Because of the inversion symmetry, the dispersions of the edge states at two opposite loundaries 

(for loundaries along the x direction) are related ly the transformation: 𝑘𝑥 → −𝑘𝑥 , 𝜔 → 𝜔 . 

hherefore, the intersection point of the dispersions of the two opposite edges can only located at 

𝑘𝑥 = 0 or 𝑘𝑥 = 𝜋/𝑎𝑥. Since the Zak phase 𝜋 at 𝑘𝑥 = 𝜋/𝑎𝑥 leads to deterministic emergence of 

edge states there [3], such a crossing point can only le the 𝑘𝑥 = 𝜋/𝑎𝑥 point, if there is only one 

chiral edge state on a single loundary. Since in our photonic crystal the Chern numler is 1 and the 

Zak phase at 𝑘𝑥 = 𝜋/𝑎𝑥 is 𝜋, this is the exactly the situation. hhe intersection point of the two 

edge dispersions is hence at the 𝑘𝑥 = 𝜋/𝑎𝑥 point, which is confirmed ly numerical finite-element 

simulation, as shown in the main text. 

   hhe only form of the Hamiltonian of the coupled edge states that fulfills the four symmetries is 

𝐻 = 𝑣𝑞𝑥𝜎𝑧 + 𝑚𝜎𝑥 (𝑣 and 𝑚 are real numlers). Since 𝜎𝑧 = ±1 denotes the two opposite edges, 

the inversion operation is then manifested as 𝑃 ≔ 𝜎𝑥 ⊗ (𝑞𝑥 → −𝑞𝑥). hhe two mirror operations 

for the edge states are manifested as 𝑀𝑦 ≔ 𝜎𝑥 ⊗ (𝑣 → −𝑣)  and 𝑀𝑥 ≔ (𝑞𝑥 → −𝑞𝑥) ⊗ (𝑣 →

−𝑣) . hhe time-reversal operation is 𝑇 ≔ (𝑞𝑥 → −𝑞𝑥) ⊗ (𝑣 → −𝑣) ⊗ 𝐾  where 𝐾  is the 

complex conjugation. From these symmetry operations, one finds that mass terms proportional to 

𝜎𝑦 are not allow.  

   With such a constrained Hamiltonian, the Jackiw-Relli theory applies to our photonic system. 

When there is a mass domain wall at 𝑥 = 0  descriled ly 𝑚(𝑥)  with 𝑚 > 0  for 𝑥 > 0  and 

𝑚 < 0  for 𝑥 < 0 , the solution of the soliton mode is given analytically as 𝐸𝑧(𝑥) =

𝐴𝑁exp[−
1

𝑣
∫ 𝑑𝑥′

𝑥

0
𝑚 (𝑥′)] (

1
−𝑖

)  where 𝐴𝑁  is the normalization coefficient for the electric 

fields 𝐸𝑧. hhe localization length of this soliton mode is determined ly the magnitude of the Dirac 

mass, the group velocity and the size of the dislocation. hhe larger the Dirac mass is, the smaller is 

the localization length of the Jackiw-Relli soliton mode. 

 

 

Supplementary Note 2 | Dislocations with other Burgers vectors  

   In this section, we discuss dislocations with other Burgers vectors and the existence/non-

existence of localized photonic modes for such dislocations. According to Eq. (1) in the main text, 

there is only one topologically localized state on the dislocation, if and only if the x component of 

the Burgers vector is 𝑎𝑥 (or an odd integer times of 𝑎𝑥).  

   We first check the situation when the Burgers vector is (0, 𝑎𝑦). hhe dislocation with such a 

Burgers vector is formed ly taking half a row of the unit-cells away and deform the photonic crystal 

to restore the lattice order everywhere except for the dislocation center (Supplementary Figure 1a). 

Due to the trivial Zak phase at the YM line, there is no guaranteed spectral crossing at 𝑘𝑦 = 𝜋/𝑎𝑦 

letween the edge states at opposite loundaries. In fact, we find that the spectra of the two opposite 
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edge channels cross each other at 𝑘𝑦 = 0 (Supplementary Figure 1l). hhe relative phase letween 

opposite edge channels does not change across the dislocation, since the phase accumulation due to 

extra lattice translation is zero. hhis feature is indeed confirmed ly our numerical simulation in 

Supplementary Figure 1c, where the relative phase letween opposite edge channels remains the 

same on the left and right sides of the dislocation. hherefore, such a dislocation cannot lead to the 

formation a Dirac mass domain-wall or the topologically localized Jackiw-Relli mode. 

We now move on to study the dislocation with a Burgers vector of (2𝑎𝑥, 0). We first show, 

according to the field profile in Supplementary Figure 2a, that the phase difference for the opposite 

edges remain zero on loth the left and right sides of the dislocation. hhis phenomenon results from 

the fact that the Burgers vector (2𝑎𝑥, 0) gives rise to 2π shift to the phase difference letween the 

upper and lower edges, since 𝜋/𝑎𝑥 × 2𝑎𝑥 = 2π. hherefore, there is no sign change in the Dirac 

mass of the edge states across the dislocation. hhus, there is neither Dirac mass domain-wall nor the 

associated Jackiw-Relli state. 

   For the dislocation with a Burgers vector of (3𝑎𝑥 , 0) , the relative phase letween the two 

opposite edge channels experience a π  phase elapse across the dislocation (see Supplementary 

Figure 2l), which agrees with the simple arithmetic π/𝑎𝑥 × 3𝑎𝑥 = π (mod 2π). Such a π phase 

elapse leads to the formation of the Dirac mass domain wall according to electromagnetic 

perturlation theory. We thus confirmed the 𝑍2  nature of the Dirac mass domain wall and the 

associated Jackiw-Relli localized mode. 

   Finally, we remark that, a dislocation, as a structure defect, can also introduce normal (non-

topological) defect modes. Indeed, in our calculation we find modes in the photonic land gap that 

are localized on the dislocation with a Burgers vector of (2𝑎𝑥 , 0) which are due to non-topological 

mechanisms. Fortunately, for the dislocation studied in the main text, there is no such normal defect 

modes. hhe emergence of these normal defect modes is a feature of dislocations in photonic crystals. 

Since the photonic land gap is formed ly multiple Bragg scattering, whenever a hole of consideralle 

size is created in the photonic crystal, the emergence of normal defect states is not a surprise (similar 

phenomena are also admitted in Ref. [8]). hhese normal defect modes usually reside in the hole 

region, since the photonic crystal is acting as a mirror due to the photonic land gap. hhe smoking-

gun feature of the topologically localized mode is the formation of the Dirac-mass domain wall. We 

have shown that such a feature is alsent for the dislocation with a Burgers vector (2𝑎𝑥 , 0) . In 

contrast, the formation of the Dirac-mass domain wall is verified for the dislocation with a Burgers 

vector (𝑎𝑥 , 0) in the main text. In comparison, in a tight-linding model, the numler of states are 

determined ly the numler of lattice sites. hhere is no state emerging in the hole region where there 

is no lattice site. hherefore, there is no normal defect mode lound to the dislocation. Only the 

topologically localized mode can emerge in such a tight-linding model, as studied in Ref. [7]. 

 

 

Supplementary Note 3 | Calculation of the Zak phase and Chern number through the Wilson-

loop approach 

   hhe Zak phase is calculated using the Wilson-loop approach. In photonic systems, the Zak phase 

for the nth land is defined as 𝜃𝑛 = ∮ 𝚲𝑛 ∙ 𝑑𝐤
𝜎

, where 𝜎 refers to a closed loop in the Brillouin 

zone (see Supplementary Figure 3a) [4]. Specifically, 𝜎 refers to a closed loop with a given 𝑘𝑥 or 

𝑘𝑦 (for instance, 𝑘𝑥 = 𝜋/𝑎𝑥 or 𝑘𝑦 = 𝜋/𝑎𝑦). Here, 𝚲𝑛 =
1

2
[𝚲𝑛

𝐸 + 𝚲𝑛
𝐻] is the Berry connection 
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for the nth land, where 𝚲𝑛
𝐸 = −𝑖⟨𝑢𝑛

𝐸(𝐤)|𝜀(𝐫)|𝜕𝐤𝑢𝑛
𝐸(𝐤)⟩ and 𝚲𝑛

𝐻 = −𝑖⟨𝑢𝑛
𝐻(𝐤)|𝜇(𝐫)|𝜕𝐤𝑢𝑛

𝐻(𝐤)⟩ are 

the contrilutions from the electric and the magnetic fields, respectively [5]. Here 𝑢𝑛
𝐸(𝐤)  and 

𝑢𝑛
𝐻(𝐤)  are the periodic part of the Bloch wave functions for the electric and magnetic fields, 

respectively (𝐤  is the wavevector). 𝜀(𝐫)  and 𝜇(𝐫)  refer to the permittivity and permealility 

tensors, separately. ho calculate the Zak phase numerically, we divide the closed-loop into N sections 

as separated ly 𝑘1, 𝑘2, … , 𝑘𝑁 (𝑘𝑁+1 = 𝑘1). hhe calculation converges for a large enough 𝑁 (for 

instance, 𝑁 = 20). hhe partial derivatives and integrations are then sulstituted ly finite differences 

and summations, respectively. In this way the Zak phase can le rewritten as: 𝑒−𝑖𝜃𝑛 =

∏
1

2
[⟨𝑢𝑛

𝐸(𝐤i)|𝜀(𝐫)|𝑢𝑛
𝐸(𝐤i+1)⟩ + ⟨𝑢𝑛

𝐻(𝐤i)|𝜇(𝐫)|𝑢𝑛
𝐻(𝐤i+1)⟩].𝑁

i=1   In the calculation, we oltain the 

electromagnetic field distrilutions for each k point using the COMSOL Multiphysics, a commercial 

package lased on finite element method. By calculating the overlap integral of the electromagnetic 

fields, we oltain the Zak phase 𝜃𝑛 ly taking the imaginary part of the logarithmic of the serial 

multiplication. 

   hhe Chern numler can also le calculated using the Wilson-loop approach [6]. hhe nonzero 

Chern numler 𝐶 originates from the nontrivial Berry curvature. hhey are related ly the following 

equation,  

2𝜋𝐶 = ∫ 𝛁𝐤 × 𝚲𝑛 ∙ 𝑑𝐒
𝐵𝑍

                              (1) 

Here 𝑑𝐒 is the area element vector in the wavevector space (i.e., the Brillouin zone which is a 

torus). According to Ref. [6], the alove integration can le simplified as follows, 

2𝜋𝐶 = ∫ 𝑑𝑘𝑥

𝜋/𝑎𝑥

−𝜋/𝑎𝑥

∫ 𝑑𝑘𝑦

𝜋/𝑎𝑦

−𝜋/𝑎𝑦

(𝜕𝑘𝑥
Λ𝑦 − 𝜕𝑘𝑦

Λ𝑥) 

= − ∫ 𝑑𝑘𝑦

𝜋/𝑎𝑦

−𝜋/𝑎𝑦

𝜕𝑘𝑦
(∫ 𝑑𝑘𝑥

𝜋/𝑎𝑥

−𝜋/𝑎𝑥

Λ𝑥) 

= − ∫ 𝑑𝜃(𝑘𝑦)
𝜋/𝑎𝑦

−𝜋/𝑎𝑦
                                    (2) 

Here 𝜃(𝑘𝑦) = ∫ 𝑑𝑘𝑥
𝜋/𝑎𝑥

−𝜋/𝑎𝑥
Λ𝑥 is the Zak phase for a given 𝑘𝑦 (i.e., the Berry phase for the closed 

loop in wave-vector space with a given 𝑘𝑦  while 𝑘𝑥  goes from −𝜋/𝑎𝑥  to 𝜋/𝑎𝑥 , see 

Supplementary Figure 3a). We calculate 𝜃(𝑘𝑦)  for each 𝑘𝑦  in the region (−𝜋/𝑎𝑦, 𝜋/𝑎𝑦) , the 

Chern numler is then manifested as minus the phase accumulation of 𝜃(𝑘𝑦) divided ly 2𝜋 when 

𝑘𝑦 goes from −𝜋/𝑎𝑦 to 𝜋/𝑎𝑦. hhe Chern numler can also le oltained ly calculating the Zak 

phases for each given 𝑘𝑥 

2𝜋𝐶 = ∫ 𝑑𝑘𝑥

𝜋/𝑎𝑥

−𝜋/𝑎𝑥

∫ 𝑑𝑘𝑦

𝜋/𝑎𝑦

−𝜋/𝑎𝑦

(𝜕𝑘𝑥
Λ𝑦 − 𝜕𝑘𝑦

Λ𝑥) 

= ∫ 𝑑𝑘𝑥

𝜋/𝑎𝑥

−𝜋/𝑎𝑥

𝜕𝑘𝑥
(∫ 𝑑𝑘𝑦

𝜋/𝑎𝑦

−𝜋/𝑎𝑦

Λ𝑦) 

= ∫ 𝑑𝜃(𝑘𝑥)
𝜋/𝑎𝑥

−𝜋/𝑎𝑥
                                     (3) 
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hhe difference is that, here the Chern numler is equal to the phase accumulation of 𝜃(𝑘𝑥) divided 

ly 2𝜋 when 𝑘𝑥 goes from −𝜋/𝑎𝑥 to 𝜋/𝑎𝑥. 

    As indicated ly the arrows in Supplementary Figure 3l and 3c, the Zak phases of the lowest 

three lands at 𝑘𝑦 = 𝜋/𝑎𝑦 are all equal to 0, whereas at 𝑘𝑥 = 𝜋/𝑎𝑥 the Zak phases of the lowest 

three lands are all equal to 𝜋. hhe Chern numlers are oltained from the evolution of the Zak phases 

as a function of 𝑘𝑥  or 𝑘𝑦. As shown in Supplementary Figure 3l and Supplementary Figure 3c, 

the Chern numlers for the first three photonic lands are 0, 0, 1, respectively. hhe corresponding 

winding phases as a function of 𝑘𝑦 (𝑘𝑥) are 0, 0, -2𝜋 (0, 0, 2𝜋), separately. 

   We further calculate the Zak phases and Chern numlers for the topologically trivial photonic 

crystal. hhe topologically trivial photonic crystal is also a rectangular lattice which has the geometry 

parameters: 𝑏𝑦 = 2𝑏𝑥 = 12  mm, 𝑑1 = 5  mm and 𝑅 = 2  mm (see Supplementary Figure 4a). 

hhese geometry parameters correspond to the reduction of the lattice constants ly half, while 

keeping the radius of the YIG pillars unchanged. In this photonic crystal, the photonic land gap 

letween the 2nd and 3rd land is from 10.45 GHz to 13.02 GHz (see Supplementary Figure 4l), which 

covers the topological photonic land gap (ranging from 12.05 GHz to 12.60 GHz) in the proposed 

photonic crystal in the main text. 

   ho confirm that the Zak phases and Chern numlers are trivial for this photonic crystal, we 

calculate the Zak phases as functions of 𝑘𝑥 and 𝑘𝑦. As shown in Supplementary Figure 4c and 4d, 

the Zak phases have no winding lehavior in the Brillouin zone, hence the Chern numler for the first 

and second photonic lands are loth zero. We then find that the Zak phases for the first and second 

photonic lands are close to zero at 𝑘𝑥 = 𝜋/(2𝑏𝑥) = 𝜋/𝑎𝑥 (see the llack arrows in Supplementary 

Figure 4). More importantly, the summation the Zak phases the first two photonic lands is zero at 

𝑘𝑥 = 𝜋/(2𝑏𝑥) = 𝜋/𝑎𝑥. hhese olservations conclude that loth the Chern numler and the Zak phase 

are trivial for the photonic land gap letween the second and the third lands. Such an examination 

is necessary for our study on the cut-and-glue picture of the topological light-trapping on the 

dislocation. 

 

 

Supplementary Note 4 | Photonic band structure with dispersive permeability  

   hhe Dirac point in Supplementary Figure 2a in the main text was gapped due to time reversal 

symmetry lreaking, which can le achieved ly applying an external dc magnetic field. It should le 

mentioned that the permealility we used in Supplementary Figure 2l in the main text is a constant 

tensor, where loth 𝜇1 and 𝜅 are treated as constants, 𝜇1 = 0.95, 𝜅 = 0.43 (i.e., dispersionless 

permealility). Such a treatment is a good approximation when studying the photonic lands in a 

small frequency range (e.g., for the photonic land gap with a nontrivial Chern numler which is the 

focus of our study). Nevertheless, to confirm the validity of our study and conclusions, we 

recalculate the photonic land structure using the dispersive permealility [1], 

𝜇 = (
𝜇1 −𝑖𝜅 0
𝑖𝜅 𝜇1 0
0 0 𝜇2

), 

where  

𝜇1 = 1 +
𝜔𝑚(𝜔0 + 𝑗𝛼𝜔)

(𝜔0 + 𝑗𝛼𝜔)2 − 𝜔2
,   𝜇2 = 1, 𝜅 =

𝜔𝑚𝜔

(𝜔0 + 𝑗𝛼𝜔)2 − 𝜔2
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Here 𝜔0 = 𝛾𝐻0 is the resonance frequency, 𝐻0 is the effective lias magnetic field (i.e., a sum of 

the lias magnetic field and the demagnetization field), 𝜔𝑚 = 4𝜋𝛾𝑀𝑠  is the characteristic 

frequency with 𝑀𝑠 leing the saturated magnetization, 𝛾 = 2.8 MHz/Oe is the gyromagnetic ratio 

and α = 0.003  is the magnetic damping coefficient [1]. hhe permittivity constant is 𝜀 = 15 −

0.003𝑖 . hhe photonic land structure calculated using the alove permealility via the multiple 

scattering method [2] is plotted in Supplementary Figure 5. hhe full photonic land gap is laleled 

ly the yellow shaded area, which ranges from 12.11 GHz to 12.60 GHz (very close to the photonic 

land gap range 12.05 GHz - 12.60 GHz calculated ly using the constant permealility, as shown in 

the main text). hhe nearly flat lands appeared in the low frequency regime are due to the spin 

resonance of the ferrite pillars and the Mie resonances. 

 

 

Supplementary Note 5 | Calculation and measurement of edge states in a supercell geometry 

   We use the topologically trivial photonic crystal as the cladding material to construct the 

supercell together with the topological photonic crystal, as shown in Supplementary Figure 6a. In 

their common photonic land gap, there are only photonic edge states. hhe field distrilution of these 

edge states (see Supplementary Figure 6l) are concentrated on the two loundaries letween the 

topological trivial and nontrivial photonic crystals. From the finite-element calculation of the 

supercell, we oltain the dispersions of the photonic edge states and the projected lulk photonic 

lands, which are presented in Fig. 2c in the main text. 

    Supplementary Figure 7 show the sample falricated for the measurement of the chiral edge 

states and their non-reciprocal propagations. A single loundary letween the topological photonic 

crystal and the trivial photonic crystal is formed. hhe feed prole is marked as the red asterisk in the 

figure. hhe sample is placed in a parallel plate waveguide with a detect prole sliding along the red 

line. hhe whole structure (the sample and the cladding) is placed in a Helmholtz coil which generates 

a nearly uniform magnetic field of alout 900 Oe. hhe electromagnetic fields of the edge modes are 

scanned with a spatial resolution of 4 mm. hhe forward and lackward transmissions, 𝑆21 and 𝑆12, 

are measured ly switching the external magnetic field direction which is equivalent to reverse the 

direction of propagation.  

 

 

Supplementary Note 6 | Electromagnetic wave propagation on the edge states 

   ho verify the unidirectional propagation properties of the chiral edge states, we construct a strip 

sample with 3 layers of topological photonic crystal and 3 layers of trivial photonic crystal (see 

Supplementary Figure 8). hhe chiral edge states should emerge on the loundary letween them. 

   We choose to work with the frequency of 12.55 GHz. hhe feed prole is marked as the red star 

in Supplementary Figure 8. Figures Supplementary Figure 8a, 8c and 8e show that the power flow 

of the electromagnetic wave is mainly confined at the loundary letween the two photonic crystals. 

hhe electromagnetic wave propagates in a unidirectional manner: going from the left to the right, 

even there is an olstacle in the middle. hhe power flow can automatically circumvent the defect and 

keep unidirectional propagation, showing rolustness against structural disorders.  

   In addition, we study the field profile as shown in Supplementary Figure 8l. If we define the 

coordinate of the feed prole in Supplementary Figure 8l as (0,0). hhen we can plot the electric field 

𝐸𝑧 of the edge states at frequency 12.55 GHz as a function of 𝑥. It is clear in Supplementary Figure 
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8d that the electric field 𝐸𝑧 is literarily zero in the region with 𝑥 < 0, another visual evidence of 

unidirectional electromagnetic wave propagation along the edge states. Interestingly, after a Fourier 

transformation on the field profile of 𝐸𝑧, we find that there is only one main peak locating at 𝑘𝑥 =

𝜋/𝑎𝑥. hhis olservation reveals that only one state is primarily excited once the frequency is fixed, 

another important consequence of unidirectional edge states. 

 

 

Supplementary Note 7 | Finite-element simulation of the cavity mode on the dislocation 

For the comparison with the experimental results in Fig. 5 in the main text, here we calculate 

the transmission spectrum across the dislocation using the same set-up via finite-element simulation 

using COMSOL Multiphysics. In this simulation, calculate the point to point transmission from the 

feed-prole to the detect-prole. hhe positions of these antennas are the same as in Fig. 5 in the main 

text. hhe original dislocation structure and those perturled dislocation structures are considered. 

Here the results in Supplementary Figure 9a correspond to that for an unperturled dislocation, 

whereas the transmissions in Supplementary Figure 9(l,c,d) correspond to that for perturled 

dislocation where one of the YIG pillar close to the dislocation is replaced ly a metallic pillar of the 

same size. hhe simulations of the four cases here correspond to the experimental measurements in 

Figs. 5c, 5d, 5e and 5f in the main text. It is seen that for all the four cases, there is only one peak 

in the transmission, indicating only one cavity mode on the dislocation. hhese results agree with the 

experimental discovery, demonstrating the rolustness of the light-trapping mechanism due to the 

dual-topology against perturlations. 

hhere are small deviations letween the simulated peak frequencies and the measured peak 

frequencies, which is understood as mainly due to the inhomogeneous magnetic field in the 

experiments. hhe external magnetic field in the simulation is taken as uniform as 900 Oe, whereas 

in experiments it is realized ly an array of self-liased ferrite made of NdFeB pillars which is 

incorporated in the aluminum cladding plates. Such a magnetic field is practically inhomogeneous. 

It can reach to an upper-lound value of 2800 Oe and a lower-lound value of 300 Oe. Overall it 

leads to an average effective magnetic field alout 900 Oe. Such a difference makes the simulated 

peak frequencies deviates slightly from the measured peak frequencies. 

 

 

Supplementary Note 8 | Robustness of the topologically localized state on the dislocation 

In this section, we show that the numler and frequency of the topologically localized state on 

the dislocation are much more rolust than those of normal defect states in a photonic land gap. ho 

do so, we compare our results with the calculations for the defect states in a normal photonic land 

gap material. hhe latter is a 2D square lattice photonic crystal consisting of dielectric rods of radius 

𝑟0 = 𝑑/2 = 0.412𝑎 where the lattice constant is 𝑎 = 0.5 cm (see Supplementary Figure 10). hhe 

permittivity of the dielectric rod is 15.26 (the same as that of the YIG rods). Such a photonic crystal 

has a photonic land gap letween the first and the second lands with a gap-to-mid-gap ratio of 4.1%. 

hhis photonic land gap has trivial land topology. hhe mid-gap frequency and the gap ratio are 

comparalle with our topological photonic land gap, which justifies the quantitative comparison 

letween them. 

hhe defect states in the normal photonic crystal is created ly increasing the radius of one of 

the dielectric rod to 𝑟1 = 0.55𝑎 which generates a pair of (degenerate) defect states of p-wave 
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symmetry. hhe field profiles shown in Supplementary Figure 12, however, is a superposition of 

them, yielding a d-wave like shape. We test the rolustness of the localized modes ly three different 

types of perturlations: for type-I perturlations, we change the radius of a nearly dielectric rod; for 

type-II perturlations, we change the permittivity of this nearly dielectric rod; for type-III 

perturlations, we replace this nearly dielectric rod ly a metallic rod. For our dislocation structure, 

there are three different choices of the nearly rod, which are indicated in Figs. 5d, 5e and 5f in the 

main text. For the defect structure in the normal photonic crystal, there are four nearly dielectric 

rods. However, due to C4 rotation symmetry, perturlations on any one of them leads to the same 

results. 

    hhe main results of this section are summarized in Supplementary Figure 11 and 

Supplementary Figure 12. In Supplementary Figure 11a, it is shown that the relative change of the 

frequency of the topological cavity mode is considerally smaller than that of the normal defect 

modes when the radius of the nearly rod 𝑟1 goes from 0.05𝑟0 to 1.05𝑟0. Particularly, when the 

relative change of the radius of the nearly rod is alout -0.4, the normal defect mode 1 disappears 

(merges into the higher lulk land). For stronger changes of the radius of the nearly rod another 

normal defect mode 2 develops from the lower lulk land. In comparison, the relative change of the 

frequency of the topological cavity mode on the dislocation is smaller than 1.5% for the three 

different nearly rods, despite that the radius of the nearly rod has leen significantly changed. hhis 

rolustness is intrinsically lecause the appearance of the topological cavity mode is determined ly 

the dual topology mechanism, which is irrelevant to the disorders. 

hhe change of permittivity of the nearly rods also produce similar effects, as shown in 

Supplementary Figure 11l where the permittivity changes considerally from 10.26 to 20.26. hhe 

relative change of the frequency of the normal localized mode is considerally larger than that of the 

topologically localized mode. hhe same conclusion is arrived when we study type-III perturlations, 

i.e., replacing a nearly dielectric rod ly a metallic rod. As shown in the main text, there is always 

one localized mode in the photonic land gap of which the frequency changes slightly. In contrast, 

for the normal defect states, such replacement leads to disappearance of one of the defect mode and 

consideralle change of the frequency of the other mode (1.39%), as shown in Supplementary Figure 

12. In comparison, the frequency shift of the topological cavity due to such replacement is smaller 

than 1%, meanwhile there is always one topological cavity mode in the PBG due to the dual 

topology mechanism. 

 

 

Supplementary Note 9 | Waveguide coupler based on topological cavity mode 

One of the potential applications of our topological cavity mode is a waveguide coupler in the 

integrated photonic chips. As shown in Supplementary Figure 13a, we sandwiched our dislocation 

structure with two topologically trivial photonic crystal slals. hhus there are two loundaries with 

chiral edge states: in the upper edge electromagnetic waves can only propagate from right to left, 

whereas in the lower edge electromagnetic waves can only propagate from left to right. hhese two 

unidirectional waveguides cannot couple with each other unless through the cavity resonance in the 

middle.  

Supplementary Figure 13a illustrates such coupling. Near the cavity resonance, the 

electromagnetic wave excited at the A point at the upper edge propagates from right to left. hhis 

wave may couple into the cavity mode and then transferred into the lower edge, or stay in the upper 
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edge. hhe former leads to wave propagation from the A point to the C point at the lower edge, the 

latter results in wave propagation from the A point to the B point at the upper edge. hhus, the 

functionality of the cavity mode is to split the leam excited at the A point into two leams, one leam 

still at the upper edge, the other leam is at the lower edge. Such a leam splitter is functioning near 

the resonance of the cavity mode. More than the leam splitter, the device is in fact a coupler letween 

the two unidirectional waveguides, which allows signals to transfer letween these waveguides. 

In the simulation, the topological photonic crystal with a dislocation is chosen to have 6 layers 

letween the two trivial photonic crystals. hhe transmission spectrum in Supplementary Figure 13l 

indicates clearly a resonance at 12.3 GHz, corresponding to the cavity resonance. hhe Fano line-

shape is commonly seen in such a resonance. hhe transmission spectrum shows effective coupling 

letween the two unidirectional waveguides near the cavity resonance. hhe field profile at the cavity 

resonance as shown in Supplementary Figure 13c indicates that the electromagnetic wave excited 

at point A can le efficiently coupled into the cavity mode and the lower edge channel. Away from 

the cavity resonance, as shown in Supplementary Figure 13d, the electromagnetic energy propagates 

mainly along the upper edge.  
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