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Supplementary Notes - Theoretical analysis

Dynamic equations for actively contracting elastic gels

In this section, we present the dynamic equations for an active elastic gel that incorporates the

catch bond character of molecular motors, where we will employ the approach developed in

Ref. (1) for active gels. It provides a phenomenological account of the gel dynamics on large

length and time scales and is based on conservation laws and symmetries.

We consider an (isotropic) elastic gel that is permeated by a solvent. We assume that there

are no external forces acting on the system and that the elastic properties of the gel in absence of

active processes are captured by linear elasticity theory with (constant) bulk and shear moduli

κ and µ. In the gel, processes driven by the hydrolysis of Adenosine-Triphosphate generate

mechanical stresses. Gradients in these stresses can lead to deformations of the gel that are

described by the field u, which gives the displacement of a volume element initially placed at

position r. Deformations of the gel will then generate a flow in the permeating solvent, which

is described by the solvent velocity field v. The respective densities ρgel and ρsol of the gel and

the solvent evolve according to the continuity equations

∂tρgel + ∂αρgelu̇α = 0 (1)

∂tρsol + ∂αρsolvα = 0. (2)

Here, u̇ ≡ ∂tu is the gel deformation velocity, α = x, y, and z, and we have used the Einstein

convention, which implies summation over identical indices.

To first order in the displacement field, the density ρgel can be expressed in terms of the

initial gel density ρ0 at t = 0 and the displacement field u through

ρgel = ρ0

(
1

1 + ∂αuα
+O(u2)

)
, (3)

which solves Eq. (1). Furthermore, incompressibility of the solvent yields ∂αvα = 0.
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The displacement and velocity fields are determined by momentum conservation. Since

the dynamics is overdamped, inertial terms can be neglected. We consider force balance sep-

arately for the gel and the solvent and then use constitutive equations for the partial stresses.

The same dynamic equations also follow from considering the multicomponent system close to

thermodynamic equilibrium (2, 3). We write

−∂βσsol
αβ = γ(ρgel) (u̇α − vα) (4)

−∂βσgel
αβ = −γ(ρgel) (u̇α − vα) . (5)

Here, γ describes friction between the gel and the solvent and has units of viscosity divided by

a length squared. In general, it depends on the gel density ρgel. The constitutive equations for

the respective stresses are given by linear stress-strain rate and stress-strain relations:

σsol
αβ = 2ηvαβ + pδαβ (6)

σgel
αβ = σel

αβ + σact
αβ . (7)

In Equation (6), vαβ = (∂αvβ + ∂βvα) /2 is the symmetric part of the strain-rate tensor, η the

solvent’s (shear) viscosity, and p its hydrostatic pressure. The pressure is determined by the

incompressibility condition. The gel’s stress consists of an elastic part and an “active” part

generated by the molecular motors that are driven by the hydrolysis of ATP. We write

σel
αβ = κuγγδαβ + 2µ

(
uαβ −

1

d
δαβuγγ

)
(8)

σact
αβ = −Qζ∆µ δαβ. (9)

The expression for σel is the conventional linear relation between the stress and the strain

uαβ = (∂αuβ + ∂βuα) /2, where κ denotes the bulk and µ the shear modulus. We take the

active stress σact to be linear in the difference ∆µ of the chemical potentials of ATP, Adenosine-

Diphosphate (ADP), and inorganic phosphate Pi, which drives the motor activity, and d is the
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spatial dimension. On a molecular level, the active stress is mostly a consequence of the action

of molecular motors that convert the chemical energy released during ATP hydrolysis into me-

chanical work. To a good approximation the active stress is thus given by the density of force

dipoles generated by the molecular motors (4). Here, we take a phenomenological approach

and expand the active stress up to linear order in ∆µ, where ζ is a phenomenological constant.

To account for the catch bond character of the molecular motors, we have introduced ad hoc

in Eq. (9) the fraction Q of crosslinking motor complexes. It is a dynamic quantity and evolves

according to

∂tQ = kon (1−Q)− koff

(
σel
αα

)
Q (10)

The effective rates kon and koff

(
σel
αα

)
describe changes in crosslinking through motor-binding

and -unbinding, respectively. The catch bond property leads to a reduction of motor unbinding

with increasing stress. We write

koff = k0
off exp

{
−
∣∣σel
αα

∣∣ /σ0

}
, (11)

where σ0 is a characteristic stress of the system. Note, that we neglect any contribution of shear

stress to the catch bond behavior and consider the effects on motor contractility to be isotropic.

– This completes the dynamic equations for an actively contracting elastic gel permeated by a

viscous solvent.

Constant active stress

We will now consider the contraction dynamics for a slab of an acto-myosin gel for a constant

and homogenous active stress. In that case, the effect of the active stress is equivalent to the

application of forces to the gel surfaces. Intuitively, one can understand this by noting that

the myosin motors generate force dipoles and that these dipoles cancel in a bulk macroscopic
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average. Only at the surfaces this cancellation does not occur and the gel is consequently con-

tracted by a constant surface stress. We also neglect the dependence of the friction coefficient

γ on the gel density ρgel. In this situation, the dynamic equations are linear and can be solved

analytically.

Let the gel have extensions 2Lx × 2Ly × 2h with Lx, Ly � h and let it be oriented with its

long axes along the x- and y-directions such that the origin coincides with the gel’s center of

mass. We first write the dynamic equations for the solvent permeating the gel. From Equations

(4) and (6) we get (5)

η∂2
βvα + ∂αp+ γ (u̇α − vα) = 0. (12)

These equations can be solved for the solvent velocities as functions of the gel displacements.

The gel is much thinner than its extension in the lateral dimensions. We therefore expect that

the velocity and displacement fields vary only slightly as a function of z. To lowest order, we

can obtain a consistent solution by neglecting the dependence of vx, vy, ux, uy, and p on z, and

by assuming uz, vz ∝ z.

We rewrite the dynamic equations by performing a Fourier transform in the lateral direc-
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tions. The Fourier components Vα(q, t), Uα(q, t), and P (q, t) are defined through

vx =
∑
q

Vx sin qxx cos qyy

vy =
∑
q

Vy cos qxx sin qyy

vz = z
∑
q

Vz cos qxx cos qyy

ux = usx +
∑
q

Ux sin qxx cos qyy

uy = usy +
∑
q

Uy cos qxx sin qyy

uz = usz + z
∑
q

Uz cos qxx cos qyy

p =
∑
q

P cos qxx cos qyy

with the wave vector q = (qx, qy) and where usα denote the steady state solutions to the dynamic

equations. The solution to Eq. (12) is then

Vx =
q2
yU̇x − qxqyU̇y − qxU̇z
q2 (1 + q2η/γ)

Vy =
q2
xU̇y − qyqxU̇x − qyU̇z
q2 (1 + q2η/γ)

Vz =
U̇z

1 + q2η/γ

and

P = γ
qxU̇x + qyU̇y + U̇z

q2
, (13)

where we have also used the incompressibility condition ∂αvα = 0.

From Equations (5) and (7)-(9) with d = 3 we find

µ∂2
βuα +

(
κ+

µ

3

)
∂α∂βuβ = γ(u̇α − vα)
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with boundary conditions

σtot
αβ = 0

at x = ±Lx, y = ±Ly, and z = ±h since there is no external force applied to the gel. The

steady state solution is

usα =
1

3κ
Qζ∆µxα,

which can be expressed in terms of the Young’s modulus E and the Poisson ratio ν as

usα = (1− 2ν)
Qζ∆µ

E
xα,

because κ = E/ (3(1− 2ν)). For Qζ∆µ < 0 it describes a contracted state.

The deviations from the steady state as determined by the Fourier components Uα evolve

according to

γ

(
1−

γq2
y

(γ + ηq2) q2

)
U̇x +

γ2qxqy
(γ + ηq2) q2

U̇y +
γ2qx

(γ + ηq2) q2
U̇z =

−
(
µq2 +

(
κ+

µ

3

)
q2
x

)
Ux −

(
κ+

µ

3

)
qxqyUy −

(
κ+

µ

3

)
qxUz (14)

γ2qyqx
(γ + ηq2) q2

U̇x + γ

(
1− γq2

x

(γ + ηq2) q2

)
U̇y +

γ2qy
(γ + ηq2) q2

U̇z =

−
(
κ+

µ

3

)
qyqxUx −

(
µq2 +

(
κ+

µ

3

)
q2
y

)
Uy −

(
κ+

µ

3

)
qyUz (15)

γ

(
1− γ

γ + ηq2

)
U̇z = −µq2Uz. (16)

The boundary conditions impose qx = (2n + 1)π/(2Lx) and qy = (2m + 1)π/(2Ly) with

integers n and m.

The solution is of the form Uα =
∑

i Uα,i exp(−ωit), where, in lowest order in q2, two rates

ωi are, respectively, ωf = µ/η and ωs = (4µ/3 + κ)q2/γ. The mode associated with ωf relaxes

fast and governs relaxation in z-direction. The other mode is diffusive in nature as it decays as

q2 for q → 0 and thus relaxes slowly in the (x, y)-direction. The constants Uα,i characterize the
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various modes up to a scaling factor that is determined from the initial conditions. We choose

uα(r, t = 0) = 0.

Contraction in presence of a dynamic active stress for a circular symmetric
sheet

In the main text, we analyse the situation, where the active stress can change with time and space

and where the friction coefficient depends on the gel density. In this case, an analytical solution

is typically not available and we turn to numerical solutions of the dynamic equations. Consider

a disk-shaped network. This situation corresponds to times, when contraction in z-direction is

completed. In this case, we do not need to account for derivatives of the displacement field or of

the solvent velocity in the z-direction. Assuming invariance of the disk with respect to rotations

around the disk center, we solve the dynamic equations in cylindrical coordinates. The relevant

components of the stress in the gel are given by

σgel
rr = κ

(
∂rur +

ur
r

)
+ 2µ∂rur −Qζ∆µ (17)

σgel
θθ = κ

(
∂rur +

ur
r

)
+ 2µ

ur
r
−Qζ∆µ. (18)

The dynamics of the fraction of bound motors Q is again given by Eqs. (10) and (11). As we

will see below, we do not need the expressions for the stress in the solvent, because vr can be

eliminated from the dynamic equations with the help of the continuity equation. The dynamic

equations read

−γ (u̇r − vr) = −
(
∇ · σgel

)
r

(19)

= −
[
∂rσ

gel
rr +

1

r

(
σgel
rr − σ

gel
θθ

)]
(20)

To determine the radial component of the solvent velocity vr, we use the continuity equation for

the total mass density ρtot = ρgel + ρsol:

1

r
∂r (rφu̇r + r (1− φ) vr) = 0, (21)
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where φ = ρgel/ρtot is the gel volume fraction. In terms of the initial gel volume fraction φ0, it

is given by

φ =
φ0

(1 + ∂rur) (1 + ur/r)
. (22)

Since the total material flux at the boundary of the system equals zero, the continuity equation

yields

vr = − φ

1− φ
u̇r. (23)

With this result, we obtain one partial differential equation for the radial component of the

displacement vector field ur:

u̇r =
1− φ
γ

[
∂rσ

gel
rr +

1

r

(
σgel
rr − σ

gel
θθ

)]
(24)

=
1− φ
γ

∂r

[
(κ+ 2µ)

{
∂rur +

ur
r

}
−Qζ∆µ

]
. (25)

This equation is complemented by the boundary conditions. At the center, we have ur (r = 0) =

0. We consider the situation, where there are no forces applied to the border of the gel. Since the

border moves in time the corresponding boundary conditions read σgel
rr (r = R + ur(R)) = 0

and σgel
θθ (r = R + ur(R)) = 0. Here, R is the initial and R + ur(R) the current radius of the

gel.

Dimensionless form of the dynamic equations and parameter values. For the numeric

solution of the partial differential equation (25) we scale all lengths with a tenth of the initial

radius R/10, time with γR2/(100κ), and stresses with κ. The dynamic equation for ur then has

two dimensionless parameters, namely µ/κ and ζ∆µ/κ. In addition, the solution depends on

the initial volume fraction φ of the gel, the rates of motor attachment and detachment kon and

k0
off , respectively, and the characteristic stress σ0, Eq. (11).
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For the calculations presented in the main text, the parameter values with dimensions are

given in Supplementary Table 1. We chose κ = µ, because the Poisson ratio ν ≈ 0, see

Figure 2b, which implies 2µ ≈ 3κ. For these values, the length scale is 150µm and the time

scale is 18.75 s.

Initial condition and dynamics of Q in the numerical solutions. We start the numerical

solution in the fully relaxed state, that is ur(r) = 0 for all 0 ≤ r ≤ R and in absence of any

motor activity, that is Q(r) = 0 for all 0 ≤ r ≤ R. To mimic the reorganization phase, we keep

Q spatially homogenous and increase its value linearly with time to the equilibrium value given

by the attachment-detachment dynamics, Eq. (10), in absence of elastic stresses, that is

Q(r, t) =
kon

kon + k0
off

1

Treorg

t (26)

for 0 ≤ t ≤ Treorg, where Treorg is the duration of the reorganization phase. For larger times, Q

follows the dynamics of Eq. (10).

Numerical solution of the dynamic equations. Using dimensionless variables and parame-

ters as introduced above, the dynamic equations read

u̇r = (1− φ) ∂r

[
(1 + 2µ)

{
∂rur +

ur
r

}
−Qζ∆µ

]
(27)

∂tQ = kon (1−Q)− k0
off exp

{
−
∣∣σel
αα

∣∣ /σ0

}
Q (28)

For the numerical solution of the dynamic equations we use an explicit Euler forward scheme.

To discretize the spatial derivatives on the right hand side, we introduce two different lattices.

One lattice is fixed with sites at i∆r, i = 0, . . . , N with N = R/∆r. The discretized velocity

for the solvent vi gives the solvent velocity at i∆r. The second lattice carries the gel and is

dynamic. Its sites are given by i∆r + ui, i = 0, . . . , N , where ui is the radial displacement

vector at i∆r. At t = 0 both lattices coincide. The gel volume fraction and the stresses are
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associated with the lattice bonds between the lattice sites, and will be, respectively, denoted by

φi− 1
2
, σrr,i− 1

2
, and σθθ,i− 1

2
for the bond between sites i and i − 1. From Equation (22) we have

for i = 2, . . . , N

φi− 1
2

= φ0
(2i− 1) ∆r2

[(2i− 1) ∆r + ui + ui−1] [∆r + ui − ui−1]
(29)

and

φ 1
2

= φ0
∆r2

(∆r + u1)2 . (30)

For the stresses we find follwoing Eqs. (17) and (18):

σrr,i− 1
2

= (1 + 2µ)

(
ui − ui−1

∆r

)
+

ui + ui−1

(2i− 1) ∆r
−Qi− 1

2
ζ∆µ (31)

σθθ,i− 1
2

=

(
ui − ui−1

∆r

)
+ (1 + 2µ)

ui + ui−1

(2i− 1) ∆r
−Qi− 1

2
ζ∆µ (32)

for i = 2, . . . , N and

σrr, 1
2

= (1 + 2µ)
u1

∆r
+
u1

∆r
−Q 1

2
ζ∆µ (33)

σθθ, 1
2

=
u1

∆r
+ (1 + 2µ)

u1

∆r
−Q 1

2
ζ∆µ (34)

σrr,N+ 1
2

= σθθ,N+ 1
2

= 0. (35)

Then, the time evolution is given by

u̇i =

(
1−

φi− 1
2

+ φi+ 1
2

2

){
σrr,i+ 1

2
− σrr,i− 1

2

∆r + ui+1+ui−1

2

+
1

2

σrr,i+ 1
2

+ σrr,i− 1
2
− σθθ,i+ 1

2
− σθθ,i− 1

2

i∆r + ui

}
(36)

or i = 1, . . . , N if we set u0 = uN+1 = 0.

Time evolution. In Supplementary Figures 15-18 we present the dynamics of various quan-

tities. During the contraction process, the gel volume fraction φ is clearly maximal at the gel
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boundary. This illustrates that contraction starts from the boundary. Contraction proceeds down

to 10% of the original radius such that the final, homogenous gel density is φ∞ = 100φ0, where

φ0 is the initial gel volume fraction.

Similarly to the gel volume fraction, the elastic stress first increases at the gel boundary

and then propagates towards the center of the circular gel sheet, Supplementary Figure 16.

In the steady state, both, the radial elastic stress σel
rr and the tangential elastic stress σel

θθ are

homogenous.

The profile of the fraction of bound motors Q is essentially homogenous throughout the

contraction process, Supplementary Figure 17. It increases with time and eventually reaches 1.

For the chosen parameters, even a comparatively small elastic stress will essentially suppress

all motor unbinding.

Finally, the velocity profiles for the gel contraction velocity as well as for the fluid velocity

resemble nicely the experimental data, Supplementary Figure 18. Notably, towards the end of

the contraction process, the solvent flow speed exceeds the gel’s contraction speed as found

experimentally.

The wavelength at the onset of buckling

For a thin elastic sheet of thickness b compressed from the side, the relation between the critical

buckling stress σc and the buckling wavelength λc is given by σc = κ(2πb)2/λ2
c , which follows

from equating the compression and bending energy terms (6). For the critical buckling stress,

we take the estimate of the active stress.
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Supplementary Table

parameter value
κ 0.05 Pa
µ 0.05 Pa

ζ∆µ -0.18 Pa
η 0.05 Pa s
ξ2

gel 1200 µm2

γ = ηξ−2 1.5 · 10−4 Pa sµm−2

kon 0.27 s−1

k0
off 5.1 s−1

σ0 10−4 Pa
Treorg 23.4 s

Supplementary Table 1: Values of the parameters used in the numerical calculations.
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Supplementary Figures

Supplementary Figure 1: The gel is homogenous in phase (i). a) Fluorescence image of actin
labeled with Alexa-Fluor 488 and b) corresponding density correlation function G(r) for the
gel shown in Figure 1b at t = 200 s. c) Fluorescence images of actin labeled with Alexa-Fluor
488 and myosin labeled with Alexa-Fluor 568 at time t = 151 s and d) corresponding density
correlation functions for actin (black) and myosin (blue) for the gel shown in Figure 1a. e,f) As
in (c,d) but for t = 195 s. Scale bars: 100 µm.
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Supplementary Figure 2: The gel is homogenous on scales larger than the mesh size in phase
(ii). a) Fluorescence image of actin labeled with Alexa-Fluor 488 and b) corresponding density
correlation function G(r) for the gel shown in Figure 1b at t = 308 s, which is the time just
before macroscopic contraction of the gel was detectable. c) Fluorescence images of actin
labeled with Alexa-Fluor 488 and myosin labeled with Alexa-Fluor 568 and d) corresponding
density correlation functions for actin (black) and myosin (blue) for the gel shown in Figure 1a
at t = 285 s, that is, at contraction onset. Scale bars: 100 µm.
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Supplementary Figure 3: Myosin clusters move with the gel during the contraction phase. a)
Velocity field (green arrows) of the myosin (left) and the actin (right) obtained from particle
image velocimetry. Scale bars: 100 µm. b) Distribution of cosines of the angle between the
actin and myosin velocities at the same locations. c) Distribution of the normalized differences
between actin and myosin speeds at the same positions, |vactin − vmyosin| / |vactin|. The gel is
the same as in Figure 1a.
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Supplementary Figure 4: Filament bundles remain straight during the contraction process. a)
Fluorescent micrographs of the gel in Figure 1a. Actin is labeled with Alexa-Fluor 488 (green)
and myosin with Alexa-Fluor 568 (red). Contraction starts from the periphery P towards the
center C. Consequently, the gel density, which is inversely proportional to the network mesh
size cube, displays a gradient during the contraction process at times t = 316 s, 327 s, 333 s,
and 370 s. Initially (t = 285 s, see Supplementary Figure 2c,d) and in steady state (t ≥ 462 s),
the density is homogenous. Scale bars: 100 µm. b) Contour length lcont (circles) and end-to-
end distance lend−to−end (triangles) of bundles as well as the ratio of the two lengths (blue) of a
filament bundle as a function of time. c) Distribution of the ratio between the contour length and
end-to-end distance for Nbundles = 15 bundles at t = 316 s (solid red) and t = 327 s (striped
gray). Inset: contour (blue) and straight line connecting the ends (white) of a typical bundle
(t = 316 s). Scale bar: 50 µm.
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Supplementary Figure 5: Density fields of a contracting sheet that does not buckle. a-d) Subse-
quent fluorescence micrographs of a contracting circular acto-myosin sheet. Actin was labeled
with Alexa-Fluor 488. Scale bar: 500 µm. e) Kymograph of the density along the line indicated
in (a). Scale bar: 500 µm and time scale bar: 1 min. f-i) Density profiles along the line indi-
cated in (a) and corresponding to (a-d). j) Density as a function of time for the three points –
gel periphery, center, and bulk (at half-length from sheet edge) – indicated in (g). Starting from
the same value, the densities at these points differ during the contraction process. Eventually,
they saturate at the same value, indicating that the gel has become homogenous again. This is
the same gel shown in Figure 1e-h.

Supplementary Figure 6: Contraction velocity of the gel presented in Figure 2a-c. Black: lateral
contraction velocity obtained by tracking a bright fluorescent spot close to the gel boundary,
which is close to the velocity at which the sheet radius changes; red: half gel-thickness velocity
obtained from confocal fluorescence microscopy. Inset: zoom in for vz. The initial linear
increase in vz was not accessible with our setup. The lines represent linear and exponential fits
to the data with slope a = 0.16 ± 0.006 µm/s2 and characteristic times τ = 105 ± 4 s and
τz = 32 ± 2 s. Buckling occurs at advanced stages of contraction (t = 580 s corresponding to
1.5 τ after tmax, where tmax is reached at 430 s).
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Supplementary Figure 7: Subsequent snapshots of the contracting and buckling gel shown in
Figure 2a-c. Confocal micrographs obtained with a spinning disk microscope for a fixed z-
position of a region close to the boundary of a contracting sheet with actin labeled by Alexa-
Fluor 488. Contraction in the z-direction occurs prior to lateral contraction, which starts at
t = 280 s (blue frame). At t = 582 s the gel starts to buckle at the boundary (grey frame) as is
evident from the developing bright and dark stripes that emerge perpendicular to the boundary.
White arrows indicate the direction of contraction, red frames indicate time points at which the
region was shifted to follow the contracting boundary. Scale bars: 160 µm.
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Supplementary Figure 8: Distribution of buckling wavelengths for the gel shown in Figure 2d,e.
a) Confocal section obtained with a laser scanning microscope at a specific height z. White
lines connect maxima in the fluorescence intensity shown below corresponding to extrema of
the buckles that are indicated by arrows. The violet arrow marks the beginning of the line.
Scale bar: 200 µm. b) Distribution of the distances between adjacent intensity maxima and
between adjacent intensity minima (Nwavelengths = 24, Ngels = 1) corresponding to the buckling
wavelength λ.
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Supplementary Figure 9: Buckles appear as bright stripes at low magnification. a, b) Epifluo-
rescence micrographs of the gel shown in Figure 2d,e. Scale bars: 150 µm (a) and 100 µm (b).
c) Fluorescence intensity profile along the lines indicated in (a). The arrows point to intensity
maxima that are due to gel buckling.
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Supplementary Figure 10: Analysis of the trajectories of fluorescent beads, which are immersed
in the solvent as the gel contracts, from the gel in Figure 3, see Supplementary Movie 7. Part
of the data are presented in Figure 3. a) Radial velocity vr of 9 beads as a function of time
(open circles). The filled circles indicate the time points, when the beads left the gel. The blue
dots indicate the radial velocity of the gel boundary. b) Distance from the gel center of the
same beads as a function of time (open circles). The blue dots indicate the gel radius. The bead
diameter was 2.3 µm.
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Supplementary Figure 11: Trajectory of the bead shown in Figure 4a, which is immersed in the
solvent as the gel contracts. In the field shown, the gel contracts on average towards to bottom.
The coordinates are with respect to the origin of the camera. The bead diameter was 200 nm.

Supplementary Figure 12: Movement of the bead (diameter 200 nm) shown in Figure 4a. a)
Local bead speed (open circles), local gel speed (grey circles), and edge speed of the gel (blue
circles) as a function of time. b-d) Snapshots indicate the position of the bead with respect to
the enveloping pore for selected times. The bead is marked by a red circle. Scale bar: 50 µm.
Local bead and gel speeds: same data as in Figure 4b. Speeds were recorded towards the end of
the contraction process.
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Supplementary Figure 13: Speed of two beads (diameter: 200 nm) immersed in the fluid pen-
etrating the gel shown in Figure 4a obtained by tracking the beads. The bead position is deter-
mined as the vertical distance from a reference point that moves with the contracting gel. The
bead speeds were determined only at time points when both beads were located well away from
actin bundles in the middle of a pore. Data were obtained towards the end of the contraction
process. Left: speeds of the two beads as a function of the vertical distance to the reference
point for different time points. The speed of the bead closer to the boundary is always higher
than that of the other bead. The difference in the speeds decreases with time. Right: snapshot
of the beads. Beads fluoresce at the same wavelength of actin labelled by Alexa-Fluor 488.
Many beads have accumulated in actin bundles. The circles indicate the tracked beads and the
reference point, the arrow points into the direction of gel contraction. Scale bar: 100 µm.
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Supplementary Figure 14: Gel contraction velocity as a function of time for different solvent
viscosities. The viscosity was changed by adding glycerol to the solvent. The viscosities were
η = 2.09ηw (25% Glycerol) and 2.76ηw (34%), where ηw is the viscosity of water at 25◦C (7).
The lines indicate linear and exponential fits to the data with slopes a and characteristic times
τ of a = 0.27 ± 0.03 µm/s2 and τ = 51.2 ± 1.5 s (0% Glycerol), a = 0.26 ± 0.03 µm/s2

and τ = 70.2 ± 3.5 s (25% Glycerol), and a = 0.21 ± 0.02 µm/s2 and τ = 120 ± 7.6 s (34%
Glycerol).
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Supplementary Figure 15: a) Gel volume fraction as a function of r for time points ti = i∗4.7 s,
with i = 1, . . . , 20. Density increases with increasing time. b) Gel volume fraction as a function
of r and t.

Supplementary Figure 16: Elastic stress in the gel as a function of r and t. a) σgel
rr , b) σgel

θθ .
Although the tangential stress lags somewhat behind the radial stress, they eventually have the
same value.

Supplementary Figure 17: a) Fraction of bound motors Q as a function of r for time points
ti = i ∗ 4.7 s, with i = 1, . . . , 20. The value of Q increases with increasing time. b) Fraction of
bound motors Q as a function of r and t.
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Supplementary Figure 18: Profiles of the gel contraction velocity u̇r and of the solvent velocity
vr for various time points. a) Gel contraction velocity for times t =0, 4.7, 9.4, 14.1 s. b) Gel
contraction velocity for times t =18.8, 23.4, . . . , 46.8 s. c) Solvent velocity for times t =0, 4.7,
. . . , 32.8 s. d) t =37.5, 42.2, . . . , 70.3 s. e) Ratio of the solvent velocity and the gel contraction
velocity for times t =46.8 s, 51.5 s, . . . , 70.3 s. In the late stages of contraction, the solvent
moves thus faster than the gel. For all panels later times are indicated by darker shades of grey.
The time of the maximal velocity is tmax = 7 s.
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Supplementary Figure 19: Density fields of a contracting sheet that does not buckle. a-d)
Subsequent fluorescence micrographs of a contracting circular acto-myosin sheet. Actin was
labeled with Alexa-Fluor 488. e) Kymograph of the density along the line indicated in (a).
f-i) Density profiles along the line indicated in (a) and corresponding to (a-d). j) Density as a
function of time for the three points – gel periphery, center, and bulk (at half-length from sheet
edge) – indicated in (g). Starting from the same value, the densities at these points differ during
the contraction process and in the steady state. k,l) Snapshots of velocity fields (green arrows)
obtained from particle image velocimetry. Contraction clearly starts at the gel boundary. m)
Velocity profiles along the line indicated in (a). n) Velocity as a function of time for the three
points indicated in (g). Actin is labeled with Alexa-Fluor 488. Scale bars: 500 µm. Scale bar
time: 5min (e).
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