1 <u>Supplemental Material</u>

	² I wo DD-carboxypeptidases from <i>Mycobacterium smegm</i>	iatis affect cell surface
--	--	---------------------------

- 3 properties through regulation of peptidoglycan cross-linking and
- 4 glycopeptidolipids
- Satya Deo Pandey, Shilpa Pal, Ganesh Kumar N, Ankita Bansal, Sathi Mallick and Anindya S
 Ghosh*
- 7 Affiliation: Department of Biotechnology, Indian Institute of Technology Kharagpur, West
- 8 Bengal, India, PIN-721 302
- 9 *Corresponding author: Anindya S Ghosh, Department of Biotechnology, Indian Institute of
- 10 Technology Kharagpur, West Bengal, India, PIN-721302

11	E-mail: anindyain@yahoo.com
12	
13	
14	
15	
16	
17	
18	

20 Figure S1: The structure of the *M. smegmatis* non-serovar specific GPL.

Fig. S1. The structure of the *M. smegmatis* non-serovar specific GPL. Genes involved in the
biosynthesis of respective parts shown in bold italicize letters. Expansion of genes are as follows; *mps* (mycobacterial peptide synthetase), *gplH* (glycopeptidolipid *mbtH*-like gene), *pks*(polyketide synthase), *fad* (fatty acid desaturase), *fmt* (fatty acid O-methyltransferase), *pap*(polyketide associated protein), *gtf* (glycosyltransferase), *rmt* (rhamnosyl methyltransferase), *atf*(acetyltransferase), *tmtpC* (MmpL family transmembrane protein) and *gap* (GPL addressing
protein).

Fig. S2. Deletion of *msmeg_2433* from *M. smegmatis* mc²155 chromosome. (A) Schematic 37 representation of double-crossover event during homologous recombination. The non-replicative 38 plasmid pSD33-2 was constructed from a mycobacterial suicide vector, pSMT100 bearing sacB 39 and hygromycin cassette, by stepwise cloning of left flanking (LF) and right flanking (RF) 40 region of msmeg_2433, on both side of the hygromycin cassette. The pSD33-2 was then 41

42	transformed into electrocompetent <i>M. smegmatis</i> mc ² 155, and knockout mutant $\Delta ms33/32$ was
43	selected on Middlebrook 7H11 plate containing hygromycin and 10% sucrose. The expression of
44	levansuccrase (from SacB) is lethal therefore, single crossed over strain cannot grow on the plate
45	(1). Later, it was found to be a double mutant of <i>msmeg_2433</i> and <i>msmeg_2432</i> due to the polar
46	effect (Fig. 1). (B) Confirmation of the mutant strain by PCR using various set of primers (refer
47	Table S1). The WT (mc ² 155), KO ($\Delta ms33/32$) and VC (vector control; pSMT100 harboring
48	hygromycin, used as positive control) were used as templates for the respective primer pairs
49	(shown in the figure). The expected size of amplicons is shown in 1% agarose gel. 'L' represents
50	DNA ladder.
51	
_	
52	
53	
- 4	
54	
55	
56	
57	
58	
59	
60	

62 Figure S3. Multiple sequence alignment of protein sequence of DacB2 (Rv2911) of M.

tuberculosis, MSMEG_2433 and MSMEG_2432 of mc^2155 using CLUSTALW.

Sequence 1: Dact	B2_Mtb 291	aa Rooted phylogenetic tree
Sequence 3: MSME	EG 2432 Ms 275	22
Start of Pairwis	se alignments	-DacB2 Mtb
Aligning	or or of the second	
		LINGWEC 2422 Ma
Sequences (1:2)	Aligned. Score:	64 - MSMEG 2433 MS
Sequences (1:3)	Aligned. Score:	54
Sequences (2:3)	Aligned. Score:	53 <i>MSMEG 2432 Ms</i>
DacB2_Mtb	MRKLMT	ATAALCACAVTVSAGAAWADADVQPAGSVPIPDGPAQTWIVADLDSGQV
MSMEG_2433_Ms	MWRYAFGLVVL	.VVSGLITGPGSLAVPVARADADIQQVGSVAPPEGPAETWVVADMDTGQI
MSMEG_2432_Ms	MRRLFAAA	AFALSTALAAATFTPVAHAEPAAAPAGAAAVTDGPAKAWLVADMDTGRV
Da a PO Mah		
MSMEG 2433 Mc	LAGREEVVEHA	
MSMEG 2432 Ms	LASKOPYGSYA	PASTIKPI I AMVVI DHI RPDNEARANASHTKVE SCVGI KPGOPYTTRO
	.:. :.	*** ***** ** : *: *: * * * * * * * *
DacB2_Mtb	LLDGLLLVSGN	DAANTLAHMLGGQDVTVAKMNAKAATLGATSTHATTPSGLDGPGGSGAS
MSMEG_2433_Ms	LLEAALLASGN	AANTLARMLGGPEAAVAKMNAKAAQLGARDTNVVTPSGLDAPGMPFWS
MSMEG_2432_Ms	LLDALLMVSGN	DAANMLADMLGGPRVAVAAMNRKAAAVGARNTRAASPSGLDGPGWESLT
	:. *:.	** ** **** .:** ** *** :** .*:*****.**
DacB2_Mtb	TAHDLVVIFRA	AMANPVFAQITAEPSAMFPSDNGEQLIVNQDELLQRYPGAIGGKTGYTN
MSMEG_2433_Ms	TPHDLAVIFRA	AMADPVFAQITAMPSTVFPAKTGDRVLVNQNELLHRYPGTLGGKTGFTD
MSMEG_2432_Ms	TPHDLAVIFRA	ALNYPVIAQILRQTTAQFPGKTLTYQNELLTRYPGDIGGKTGYTN
	*.***.****	··· ···· ··· ··· ··· · · · · · · · · ·
DacB2_Mtb	AARKTEVGAAA	RGGRRLVIAMMYGLVKEGGPTYWDQAATLFDWGFALNPQASVGSL
MSMEG_2433_Ms	IARKTEVAAAQ	RDGRRLVIAMMYGLVKEGGPTYWDQAAGLLDWGFAQDRSASIGAL
MSMEG_2432_Ms	LARKTYVGAAQ	RGNRRLVVVQMYGTGDLYDQAIRLFDYGFSQ
	****;*.**	*****:. *** :*** :*:*:

64

Fig. S3. Multiple sequence alignment of protein sequence of DacB2 (Rv2911) of *M. tuberculosis*, MSMEG_2433 and MSMEG_2432 of *M. smegmatis* using CLUSTALW. The red highlighted rectangles STIK, SGN and KTG shows the signature motifs of low molecular mass penicillin-binding proteins (LMM-PBPs) (2). DacB2 and MSMEG_2433 are characterized as DD-CPases (3, 4) whereas highlighted 'E' in the Ω-like loop of MSMEG_2433 is reported to be responsible for the additional β-lactamase activity (3). Alignment scores are indicated in the figure and the inset represents the rooted phylogenetic relations of the three proteins.

73 Figure S4. Membrane localization of MSMEG_2433 and Rv2911 (DacB2) and β-lactamase

80

81 Fig. S4. Membrane localization of MSMEG 2433 and Rv2911 and β-lactamase assay. Panel (A) Upper panel, the coomassie brilliant blue (CBB) stained 15% SDS PAGE gel showing 82 membrane proteins isolated from the 4-mycobacterial strains, and the panel below indicates the 83 bocillin-FL (fluorescent tagged penicillinV; binds only to the PBPs) labeled proteins scanned 84 using Typhoon (refer Methods for detail). M, represents the protein molecular weight marker. 85 Panel (B) shows the hydrolysis of nitrocefin in presence of MSMEG_2433, MSMEG_2432 and 86 Rv2911to prove the β -lactamase activities of these proteins that we claimed a reason of disparity 87 in the band intensities of panel (A)'s CBB stained and bocillin labeled protein bands. We chose 88 *E. coli* AM1OC-1 strain ($\Delta ampC$) that has no β -lactamase activity as negative control (number 89 1). The strain AM10C-1 was complemented with MSMEG 2433, MSMEG 2432 and Rv2911 90 using arabinose inducible vector, pBAD18-Cam to generate AM10C-1_pD2433 (number 2), 91

AM1OC-1_pD2432 (number 3) and AM1OC-1 pD2911 (number 4), respectively. The ß-92 lactamase activity of the complemented strains with ectopically expressed proteins were tested 93 and compared against the negative control. The β-lactamase activity of MSMEG 2433 has been 94 reported earlier (3) so that can be considered as positive control. The Whole cell lysates (2 µg) of 95 all the strains were treated with 50 µM of nitrocefin and incubated at RT for 30 min before 96 picture was shot. Panel (C), graph shows the nitrocefin reduction assay of whole cell lysates 97 from panel B treated with 25, 50 and 100 µM of nitrocefin in triplicates incubated at RT for 30 98 min. Absorbance was measured at 482 nm. 99

100

101 Figure S5. Structure of PG muropeptides, monomer and dimers of *Mycobacterium*.

102

Fig. S5. Structure of PG muropeptides, monomer and dimers of *Mycobacterium*. Figure shows the structures and monoisotopic masses (calculated MW) of the tetrapeptide, 4-3 and 3-3 crosslinked dimers, of mycobacterial PG muropeptides. 'RT' indicates, retention time.

106

110 Figure S6. Phenotypic evaluation of single gene deleted knockout mutants of *M. smegmatis*.

Fig. S6. Phenotypic evaluation of single gene deleted knockout mutants, $\Delta ms33$ and $\Delta ms33$ of 112 M. smegmatis. Panel (A) shows the surface glycopeptidolipids (GPLs) isolated from mc²155, 113 $mc^{2}155.\Delta msmeg_{2433}$ ($\Delta ms33$) and $mc^{2}155.\Delta msmeg_{2432}$ ($\Delta ms32$). Panel (B) shows the 114 pellicle formation of the three strains on the liquid-air surface. Panel (C) and (D) represent the 115 116 colony morphology of the three strains on M63 medium in presence of 0.8 % and 0.3% agarose, 117 respectively where panel D represents the motility of the strains. Single knockout mutants show 118 no significant difference in any of these phenotypic properties. Please refer Methodology for the experimental detail. 119

123 Table S1. Synthesized primers used in this study.

Deletion of double (msmeg_2433/32) and single genes, msmeg_2433 or msmeg_2432 from M. smegmat	is chromosome
D.:		PCR product
Primer name	Primer sequence $(5 - 3)$	length (bp)
LFF_BamHI	ATT AG <u>G GAT CC</u> T CCT TCT TCG GCG CCT TC	1000
LFR_SpeI	GGA T <u>AC TAG T</u> GC CTG GAG ATC CAG CAA C	1009
RFF_XbaI	ATG T <u>TC TAG A</u> GC CCT ACC GTC CGT AAC GTC	680
LFR_PstI	ATT AGT <u>CTG CAG</u> TAG CGC GTG AGC AAC TCG	089
Ms33 F	GTAG <u>GGATCC</u> CTCGGCCAGGCTCAACATGTCTCGATTCAACACGACTA	
M355_1	GGCTGGCCGGCCATAGAGGTCCGCTGTGACACAA (BamHI)	1070
Ma22 D	TAGT <u>CTGCAG</u> CAGCGGCACCTCGTCGAGAACCACGAGCGCCAGCAGG	1010
M\$55_K	GTCTTGATGGTGCTCACAGTTCCTCCGGATCGGTGAAG (PstI)	
Ms32_LF_F	ATTAGGGATCCCGACATGGACACCGGCCAGAT	1021
Ms32_LF_R	GGATACTAGTGCAGCGGCTTGATGGTGCTCG	1031
Ms32_RF_F	GGGTTCTAGAGGCAAGACCCTGACCTATCAG	10/1
Ms32_RF_R	ATAGTCTGCAGAGGATCTGCCGCGCATCATCC	1001
Primers for the PCR	- based screening of the <i>msmeg_2433</i> deleted strain; $\Delta ms33/32$	
Ms33 for	CTC TCT GCT AGC AGG AGG CTC TCT CTA TGT GGA GGT ACG CCT	
WIS55_101	TCG GGC TGG T	891
Ms33_rev	CTC TCT AAG CTT TCA GAG CGC CCC CGA TGC TCG CCG AA	
hyg_for	ATA GAG GTC CGC TGT GAC ACA A	
hyg_rev	CAG TTC CTC CGG ATC GGT GAA G	967
LF+hyg_for	ATT AGG GAT CCT CCT TCT TCG GCG CCT TC	
LF+hyg_rev	TTG TGT CAC AGC GGA CCT CTA T	1149

RF+hyg_for	CTT CAC CGA TCC GGA GGA ACT G		
RF+ <i>hyg</i> _rev	<i>h+hyg_</i> rev ATT AGT <i>CTG CAG</i> TAG CGC GTG AGC AAC TCG		
Primers for comple	menting $\Delta ms33/32$ with <i>msmeg_2433</i> and <i>rv2911</i> to generate $\Delta ms33/32$::pM33 and <i>rv2911</i> to generate $\Delta ms33/32$ to generate $\Delta ms33/32$::pM33 and <i>rv2911</i> to generate $\Delta ms33/32$ to generate $\Delta ms33/32$ to generate $\Delta ms33/32$ to generate $\Delta ms33/32$::pM33 and <i>rv2911</i> to generate $\Delta ms33/32$ to generate	\22.2222222222222222222222222222222222	
mM22 for	CTC TCT CAT ATG_AGG AGG CTC TCT ATG TGG AGG TAC GCC TTC		
plv133_10r	GGG CTG G	891	
pM33_rev	CTC TCT AAG CTT TCA GAG CGC CCC CGA TGC TCG CCG AA		
pM32_for	CAATATCATATGAGGAGGCTCTCTGTGCGAAGACTGTTCGCG	0.00	
pM32_rev	CTCTCTAAGCTTCTACTGGCTGAAGCCGTAGTCGAA	828	
pM11_for	CTC TCT CAT ATG AGG AGG CTC TCT CTA TGC GAA AGC TCA TGA		
pivit i_toi	CCG CGA CCG	876	
pM11_rev	CTC TCT AAG CTT TCA GAG CGA GCC GAC GCT GGC CT		
Primers for RT-PC	R (semi quantitative) to confirm polar effect of deletion on <i>msmeg_2432</i>	1	
X_for	CAC CGA CAT CGC GCG CAA GA	402	
Y_rev	ATG TCG GCG ACC AGC CAC GCC TT		
X1_for (with Y)	CTT CAC CGA TCC GGA GGA ACT G	316	
X2_for (with Y)	CAA TAT CAT ATG AGG AGG CTC TCT GTG CGA AGA CTG TTC GCG	155	
16SrRNA_F	GTG GAC TAC CAG GGT ATC TAA TCC T	76	
16SrRNA_R	GGG TCT CTG GGC AGT AAC TG	/0	

131 Table S2. Muropeptide peaks, their retention time and relative abundance (peak area)

132 obtained through RP-HPLC analysis

Relative abundance (%) 5.7 6.2 2.8
abundance (%) 5.7 6.2 2.8
5.7 6.2 2.8
6.2 2.8
2.8
0.4
27.3
9.7
1.5
5.8
21.1
12.2
0.4
0.8
2.6
2.5
1.1

133 Numerals in 'bold' shows the similar retention time from both the strain with >2.5-fold

difference in the relative abundance, were selected for the MALDI-ToF analysis. Values of the

retention time and peak area percent are shown as per the instrument, RP-HPLC display androunded off to the nearest total.

137 **References:**

Pelicic V, Reyrat JM, Gicquel B. 1996. Expression of the *Bacillus subtilis* sacB gene
 confers sucrose sensitivity on mycobacteria. J Bacteriol 178:1197-9.

- Ghosh AS, Chowdhury C, Nelson DE. 2008. Physiological functions of D-alanine
 carboxypeptidases in *Escherichia coli*. Trends Microbiol 16:309-317.
- 142 3. Bansal A, Kar D, Murugan RA, Mallick S, Dutta M, Pandey SD, Chowdhury C, Ghosh
- AS. 2015. A putative low-molecular-mass penicillin-binding protein (PBP) of
 Mycobacterium smegmatis exhibits prominent physiological characteristics of DD carboxypeptidase and beta-lactamase. *Microbiology* 161:1081-1091.
- 146 4. Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HI, Barry CE, 3rd.

147 2012. Meropenem inhibits D,D-carboxypeptidase activity in *Mycobacterium* 148 *tuberculosis. Mol Microbiol* 86:367-81.

149