

Figure S1. *B. thailandensis* **possesses two conserved RsaM-like proteins designated RsaM1 and RsaM2.** (A) Sequence alignment of the RsaM1 and RsaM2 proteins of *B. thailandensis* E264 with the *P. fuscovaginae* UPB0736 RsaM homologue. The alignment was generated using Clustal W. Strictly conserved residues are shown on a dark grey background and moderately conserved ones are shown on a light grey background. (B) Genetic arrangement of the RsaM1and RsaM2-encoding genes with *btal1* and *btal2*, respectively. (C) The *rsaM1* gene that codes for RsaM1 possesses in its promoter region a putative *lux* box sequence, which is homologous to characterized *lux* box sequences in Proteobacteria. The start and stop positions of each sequence are indicated in parentheses relative to the translational start site.

Figure S2. Confirmation of the genetic organization of the rsaM1 and rsaM2 genes. (A) The rsaM1 and rsaM2 genes are directly adjacent to btal1 and btal2 on the genome of B. thailandensis E264, respectively. The SLG RT-PCR rsaM1-btal1 F and SLG RT-PCR rsaM1btal1 R primer pair was used to amplify the intergenic region of the *rsaM1* and *btal1* genes, whereas the SLG RT-PCR rsaM2-btal2 F and SLG RT-PCR rsaM2-btal2 R primer pair was used to amplify the intergenic region of the *rsaM2* and *btal2* genes. These regions each contain a putative lux box sequence as reported previously (1). (B) RT-PCR experiments were performed to examine cotranscription of the *rsaM1* and *rsaM2* genes with *btal1* and *btal2*, respectively, and analyzed by agarose gel electrophoresis. The notation *ndh* indicates that the PCR reactions were conducted using the SLG qRT-PCR ndh F and SLG qRT-PCR ndh R primer pair with H₂O as a negative control, genomic DNA (gDNA) as a positive control, or complementary DNA (cDNA) of *B. thailandensis* E264. These reactions testify to the efficiency of the RT-PCR experiments as revealed by the presence of a PCR amplification product in the cDNA lane. The notation *rsaM1-btal1* indicates that the PCR reactions were carried out with the SLG_RT-PCR_rsaM1-btal1_F and SLG_RT-PCR_rsaM1-btal1_R primer pair, whereas the notation rsaM2-btal2 indicates that the PCR reactions were carried out with the SLG RT-PCR_rsaM2-btal2_F and SLG_RT-PCR_rsaM2-btal2_R primer pair. The absence of PCR amplification products in the cDNA lanes reveals that neither rsaM1 nor rsaM2 are cotranscribed with the *btal1* and *btal2* genes, respectively. The molecular marker is the DNA Ladder 100 bp (New England Biolabs, Inc., Whitby, ON, Canada).

Wild-type

Figure S3. Cell aggregation in the wild-type and the *rsaM1-* and *rsaM2-* mutant strains of *B. thailandensis* **E264.** To assess auto-aggregation of the *B. thailandensis* E264 wild-type strain and *rsaM1-* and *rsaM2-* mutant strains, overnight bacterial cultures were diluted in M9 minimal medium supplemented with 0.4% glucose (wt/vol) and morpholinepropanesulfonic acid (MOPS) buffer (50 mM; pH 7.0) to an initial OD₆₀₀ of 0.01 and grown with shaking for 24 hrs at 37°C as described previously (2).

rsaM1-

rsaM2-

Figure S4. AHL production profiles in the wild-type and the *rsaM1*- and *rsaM2*- mutant strains of *B. thailandensis* **E264**. The biosynthesis of AHLs (bars) was monitored by LC-MS/MS at various times during growth (lines) in cultures of (A) the *B. thailandensis* E264 wild-type strain and (B) *rsaM1*- and (C) *rsaM2*- mutant strains. The values represent the means for three replicates.

Figure S5. The impact of RsaM1 and RsaM2 on *btal1* **transcription.** The relative transcript levels of *btal1* were assessed by qRT-PCR in cultures of the wild-type and the *rsaM1*- and *rsaM2*- mutant strains of *B. thailandensis* E264. The results are presented as relative quantification of transcription of the gene compared to the wild-type strain, which was set at 100%. The values represent the means for three replicates. ***, *P* < 0.001; ns, nonsignificant.

Strains	Description	Reference
E. coli		
χ7213	thr-1, leuB6, fhuA21, lacY1, glnV44, recA1, ΔasdA4, Δ(zhf-2::Tn10), thi-1, RP4- 2-Tc :: Mu [λ pir]	Lab collection
DH5α	F-, φ80dlacZΔM15, Δ(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-, mk+), phoA, supE44, λ-, thi-1, gyrA96, relA1	Lab collection
B. thailandensis	S	
E264	Wild-type	(3)
JBT107	E264 ΔbtaR1	(2)
JBT108	E264 ΔbtaR2	(2)
JBT109	E264 ΔbtaR3	(2)
JBT112	E264 Δbtal1 Δbtal2 Δbtal3	(2)
JBT101	E264 Δ <i>btal1</i>	(2)
JBT102	E264 Δ <i>btal2</i>	(2)
JBT103	E264 Δ <i>btal3</i>	(2)
BT03295	E264 <i>rsaM1</i> ::IS <i>lacZ</i> -PrhaBo-Tp/FRT; Tp ^R	(4)
BT04218	E264 <i>rsaM2</i> ::IS <i>lacZ</i> -PrhaBo-Tp/FRT; Tp ^R	(4)
ED1020	E264 (pME6000)	This study
ED3477	E264 (pME6000- <i>btaR2</i>)	This study
ED3478	E264 Δ <i>btaR2</i> (pME6000)	This study
ED1015	E264 Δ <i>btaR2</i> (pME6000- <i>btaR2</i>) This study	
ED3330	E264::btal1-lux	(1)

Table S1. Bacterial strains used in this study.

ED3331	E264::btal2-lux	(1)
ED3332	E264::btal3-lux	(1)
ED3469	E264 rsaM1-::btal1-lux	This study
ED3470	E264 rsaM1-::btal2-lux	This study
ED3471	E264 rsaM1-::btal3-lux	This study
ED3472	E264 rsaM2-::btal1-lux	This study
ED3473	E264 rsaM2-::btal2-lux	This study
ED3474	E264 rsaM2-::btal3-lux	This study

Table S2. Plasmids used in this study.

Plasmids	Description	Source	
рМЕ6000	Broad-host-range cloning vector; Tc ^R	(5)	
pMCG21	<i>btaR2</i> inserted in <i>Bam</i> HI- <i>Hind</i> III restriction sites in pME6000; Tc ^R	This study	
pSLG02	<i>btal1</i> promoter inserted in the restriction sites <i>XhoI-Bam</i> HI in the mini-CTX- <i>lux</i> integration vector with promoterless <i>luxCDABE</i> ; Tc ^R	(1)	
pSLG03	<i>btal2</i> promoter inserted in the restriction sites <i>Xho</i> I- <i>Bam</i> HI in the mini-CTX- <i>lux</i> integration vector with promoterless <i>luxCDABE</i> ; Tc ^R	(1)	
pSLG04	<i>btal3</i> promoter inserted in the restriction sites <i>Xhol-Bam</i> HI in the mini-CTX- <i>lux</i> integration vector with promoterless <i>luxCDABE</i> ; Tc ^R	(1)	

Table S3. Primers used for PCR.

Genes	Oligonucleotides	Sequences (5' to 3')
btaR2	btaR2F	GCGGGATCCATGCGAGGATATGGAGATGC
	btaR2R	CGCAAGCTTTCGAGATATCCCGCCTATTG

Genes	Oligonucleotides	Sequences (5' to 3')
ndh	SLG_qRT-PCR_ndh_F	ACCAGGGCGAATTGATCTC
nun	SLG_qRT-PCR_ndh_R	GATGACGAGCGTGTCGTATT
htaP1	SLG_qRT-PCR_btaR1_F	AGCTCGAACATGATCGTCTG
DIUNI	SLG_qRT-PCR_btaR1_R	TGAAGCGTCAGATGGTTGAT
ht-02	SLG_qRT-PCR_btaR2_F	GAGAAATTCCGCAACGAGAG
DTOR2	SLG_qRT-PCR_btaR2_R	GCCGTCCACTTCAACACAT
htaD2	SLG_qRT-PCR_btaR3_F	CGACTACTTCACCATCGATCC
DIUKS	SLG_qRT-PCR_btaR3_R	GCTGATGCCGTTGTCGAG
ht-11	btal1RTF	CTTCGAACGGGATCAATACG
Dtall	btal1RTR	CATGTCGTGTGCGACCAG
********	SLG_qPCR_BTH_II1511_F	TGAATTCACCACTGCTCCAC
ISUNI	SLG_qPCR_BTH_II1511_R	ATTCCGGACGATACGTGAAC
******	SLG_qPCR_BTH_II1228_F	GGACGGATACGTTCGTCTGT
rsaiviz	SLG_qPCR_BTH_II1228_R	AGGTCCCAGATTTCCGAGAG
real Al beall	SLG_RT-PCR_rsaM1-btal1_F	GTCGCTACCGCGATGCTT
rsaivi1-btai1	SLG_RT-PCR_rsaM1-btal1_R	CCGATAAAGGCCCAGATCA
really beals	SLG_RT-PCR_rsaM2-btal2_F	GGCGATTTCTATTGGATTGG
rsalviz-btaiz	SLG_RT-PCR_rsaM2-btal2_R	CTTGACGGTGGAATCCAGTT

Table S4. Primers used for RT-PCR and qRT-PCR.

References

- 1. Le Guillouzer S, Groleau MC, Déziel E. 2017. The complex quorum sensing circuitry of *Burkholderia thailandensis* is both hierarchically and homeostatically organized. mBio 8:e01861-17.
- Chandler JR, Duerkop BA, Hinz A, West TE, Herman JP, Churchill ME, Skerrett SJ, Greenberg EP.
 2009. Mutational analysis of *Burkholderia thailandensis* quorum sensing and self-aggregation.
 J Bacteriol 191:5901-9.
- 3. Brett PJ, DeShazer D, Woods DE. 1998. *Burkholderia thailandensis* sp. nov., a *Burkholderia pseudomallei*-like species. Int J Syst Bacteriol 48 Pt 1:317-20.
- 4. Gallagher LA, Ramage E, Patrapuvich R, Weiss E, Brittnacher M, Manoil C. 2013. Sequencedefined transposon mutant library of *Burkholderia thailandensis*. MBio 4:e00604-13.
- 5. Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Defago G. 1998. Salicylic Acid Biosynthetic Genes Expressed in *Pseudomonas fluorescens* Strain P3 Improve the Induction of Systemic Resistance in Tobacco Against Tobacco Necrosis Virus. Phytopathology 88:678-84.