Supplementary tables and figures

2-[2-(4-(trifluoromethyl)phenylamino)thiazol-4-yl]acetic acid (Activator-3) is a potent activator of AMPK

Navneet Bung¹+, Sobhitha Surepalli²+, Sriram Seshadri³, Sweta Patel³, Saranya Peddasomayajula², Lalith Kumar Kummari^{2@#}, Sireesh T Kumar⁴, Phanithi Prakash Babu⁴, Kishore V.L. Parsa², Rajamohan Reddy Poondra², Gopalakrishnan Bulusu^{1,2*} and Parimal Misra^{2*}

+Equal contributors

*Corresponding authors: <u>g.bulusu@tcs.com</u>; <u>parimalm@drils.org</u>

Table S1: Activity change observed in the selected 100 protein kinases tested againstActivator-3 at $10\mu M$ concentration.

No.	Protein Kinase	Control (CPM)	Test (CPM)	Difference Test-Control	% Activity	% Change
1	ABL1	574,777	561,149	13,628	98%	2%
2	AKT1	256,826	231,604	25,222	90%	10%
3	ASK1	63,215	65,142	(1,927)	103%	-3%
4	AURORA A	57,230	51,188	6,042	89%	11%
5	AXL	27,937	27,537	400	99%	1%
6	BMPR2	52,011	49,850	2,161	96%	4%
7	BRK	97,389	105,326	(7,937)	108%	-8%
8	BTK	19,951	19,215	736	96%	4%
9	BUB1B	5,894	5,416	478	92%	8%
10	CAMK1 beta	692,242	723,296	(31,054)	104%	-4%
11	CAMKK2	73,703	46,831	26,872	64%	36%
12	CASK	1,676	1,542	134	92%	8%
13	CDK1/CyclinA1	119,703	109,114	10,589	91%	9%
14	CDK2/CyclinA1	142,944	103,234	39,710	72%	28%
15	CDK4/CyclinD3	82,745	86,478	(3,733)	105%	-5%
16	CHK1	71,583	72,993	(1,410)	102%	-2%
17	CK1 alpha 1	72,832	66,138	6,694	91%	9%
18	c-KIT	35,085	36,179	(1,094)	103%	-3%
19	CLK1	230,212	243,270	(13,058)	106%	-6%
20	CSK	202,650	203,223	(573)	100%	0%
21	DAPK1	123,986	123,065	921	99%	1%
22	DCAMKL1	46,200	39,568	6,632	86%	14%
23	DDR1	14,327	3,006	11,321	21%	79%
24	DMPK	85,414	98,852	(13,438)	116%	-16%
25	DYRK1A	238,298	234,337	3,961	98%	2%
26	EEF2K	150,251	165,305	(15,054)	110%	-10%
27	EIF2AK4(GCN2)	240,212	266,028	(25,816)	111%	-11%
28	ERK1	181,820	202,357	(20,537)	111%	-11%
29	FAK	103,915	122,894	(18,979)	118%	-18%
30	FGFR1 (FLT2)	64,132	76,386	(12,254)	119%	-19%
31	GCK	326,016	315,596	10,420	97%	3%
32	GRK1	4,695	4,425	270	94%	6%
33	GSK3 beta	259,502	237,980	21,522	92%	8%
34	Haspin (GSG2)	649,776	567,600	82,176	87%	13%
35	HER2	17,086	16,024	1,062	94%	6%
36	HIPK1	220,703	225,947	(5,244)	102%	-2%
37	HPK1	505,596	458,118	47,478	91%	9%
38	IGF1R	111,183	130,972	(19,789)	118%	-18%
39	IKK alpha	23,730	23,944	(214)	101%	-1%
40	InsR	127,897	121,884	6,013	95%	5%

41	IRAK2	11,167	12,213	(1,046)	109%	-9%
42	JAK3	251,132	247,535	3,597	99%	1%
43	JNK1	260,451	281,079	(20,628)	108%	-8%
44	KDR	143,399	123,268	20,131	86%	14%
45	LCK	169,610	183,106	(13,496)	108%	-8%
46	LIMK1	9,169	9,837	(668)	107%	-7%
47	LRRK2	13.019	8,637	4,382	66%	34%
48	MAPKAPK2	684,637	663,505	21,132	97%	3%
49	MEK1	11.065	9,870	1,195	89%	11%
50	MEKK2	57,505	60,944	(3,439)	106%	-6%
51	MELK	196 694	190,938	5 756	97%	3%
52	MET	22 779	18,378	4 401	81%	19%
53	MLCK	77 724	81,195	(3 471)	104%	-4%
54	MNK1	145.676	124 582	21 094	86%	14%
55	MST1	129,380	139 489	(10,109)	108%	-8%
56	NDB	60,405	64 785	(4.380)	107%	-7%
57	NEK1	15 127	18 387	(3,260)	122%	-22%
58	NIK	20.768	18,639	2 129	90%	10%
50	n29 alpha	20,700	21 540	2,123	73%	27%
60	p30 alpha	29,013	21,040	12 114	07%	120/
61		12,614	7 950	5 760	500/	13%
60		13,014	7,852	5,762	38%	42%
62		11,569	9,520	2,049	82%	18%
63		38,399	32,272	6,127	84%	16%
64	PEAKI	48,788	47,952	836	98%	2%
65	PHKG1	34,809	27,513	7,296	79%	21%
66	PIM1	109,257	108,664	593	99%	1%
67	PKAc alpha	663,764	705,431	(41,667)	106%	-6%
68	PKC alpha	608,812	598,938	9,874	98%	2%
69	PKC beta I	233,612	228,387	5,225	98%	2%
70	PKC delta	103,168	122,939	(19,771)	119%	-19%
71	PKC mu	395,655	372,284	23,371	94%	6%
72	PKD2	239,936	191,560	48,376	80%	20%
73	PKN1/PRK1	2,048	1,319	729	64%	36%
74	PLK1	18,240	17,587	653	96%	4%
75	PRKG1	72,543	75,907	(3,364)	105%	-5%
76	RAF1(EE)	36,437	38,043	(1,606)	104%	-4%
77	RET	104,158	112,951	(8,793)	108%	-8%
78	RIPK1	83,489	65,885	17,604	79%	21%
79	ROR2	6,517	4,254	2,263	65%	35%
80	ROS1	224,185	241,677	(17,492)	108%	-8%
81	SBK1	80,555	73,208	7,347	91%	9%
82	SGK1	44,450	40,622	3,828	91%	9%
83	SIK	71,648	77,581	(5,933)	108%	-8%
84	SRC	80,755	23,783	56,972	29%	71%
85	STK19	14,557	12,624	1,933	87%	13%
86	STK3	47,152	54,332	(7,180)	115%	-15%
87	SYK	82,315	89,196	(6,881)	108%	-8%
88	TAK1-TAB1	45,160	48,799	(3,639)	108%	-8%
89	TBK1	222.624	201.825	20.799	91%	9%
90	TGFBR1 (ALK5)	24.198	9.472	14.726	39%	61%
91	TIE2	47.076	38,640	8 436	82%	18%
92	TLK1	509 942	447 043	62 899	88%	12%
93	ТОРК	87 715	67 645	20.070	77%	23%
94	ТВКА	124 500	125 192	(692)	101%	-1%
05	TSSK1B	166 103	155 2/2	10.950	02%	7%
90	TTK	25.004	25.940	(836)	103%	_20/_
07		1/5 621	159.040	(10.415)	100%	0/
3/	VRK1	0 160	0 100	(12,413)	000/	-9%
00	WNK1	21 100	19,109	2 1 2 0	99% 85%	1.70
100		155 100	152,000	0,100	00%	10%
100	2AN	155,102	103,022	2,080	99%	1%

Table S2: Activity change observed in the LKB1 Kinase tested against Activator-3 at 200µM concentration

Protein Kinase	Control (CPM)	Test (CPM)	% Change
LKB1	10984	11638	5%

Table S3: Evaluating the goodness of the representative structure obtained from MD simulations using PROCHECK server.

Ramchandran Map	No. of resides	Percentage
Most favored regions	889	85.8%
Additional allowed regions	128	12.4%
Generously allowed regions	13	1.3%
Disallowed regions	6	0.6%
Non-glycine and non-proline residues	1036	100.0%

Table S4: Heterotrimeric human AMPK crystal structures available in PDB.

PDBID	lsoform	Organism	Inhibitor and/or activator	Modifications	References
5ISO	α2β1γ1	Homo sapiens	AMP, Staurosporine, 992	108-SEP	NA
4ZHX	α2β1γ1	Homo sapiens	AMP, C2Z, C1V, Staurosporine,	172-TPO 108-SEP	Lagendorf et al. 2016 ¹
5EZV	α2β1γ1	Homo sapiens	C2Z, C1V, Staurosporine	172-TPO 108-SEP	Lagendorf et al. 2016 ¹
4RER	α1β2γ1	Homo sapiens	AMP, HEPES, B-	172-TPO	Li et al. 2015 ²

			cyclodextrin, Staurosporine	108-SEP	
4REW	α1β2γ1	Homo sapiens	AMP, Staurosporine	-	Li et al. 2015 ²
4CFE	α2β1γ1	Homo sapiens	AMP, Staurosporine, 991	172-TPO 108-SEP	Xiao et al. 2013 ³
4CFF	α2β1γ1	Homo sapiens	AMP, Staurosporine, A769662	172-TPO 108-SEP	Xiao et al. 2013 ³
4CFH (2Y94)	α1β2γ1	α1, γ1 -Rattus norvegicus β2- Homo sapiens	AMP, Staurosporine	172-TPO	Xiao et al. 2011 ⁴

FigureS1

Figure S3

Figure S6

Figure S7

	Pharmaco Activat	kinetic profile in rat tor-3 (30mg/kg)	-
	AUC (0-t) μg*h/ml	C _{max} (µg/ml)	t _{1/2} (h)
Activator-3	978	109	4.11

Good PK profile
Bioavailability 100%
No significant BBB penetration
Molecular weight of Activator-3 = 302
AUC (978 μg*h/ml) = 3.3mM
C max (109μg/ml) = 360μM

Figure S8

Figure S9:

ALPHA Subunit

AAPK1_HUMAN	1	MRRLSSWRKMATAEKOKHDGRVKIGHYILGDTLGVGTFGKVKVGKHELTG	50
4cfh_a.pdb	1	RVKIGHYILGDTLGVGTFGKVKVGKHELTG	30
AAPK1_HUMAN	51	HKVAVKILNRQKIRSLDVVGKIRREIQNLKLFRHPHIIKLYQVISTPSDI	100
4cfh_a.pdb	31	HKVAVKILNRQKIRSLDVVGKIRREIQNLKLFRHPHIIKLYQVISTPSDI	80
AAPK1_HUMAN	101	FMVMEYVSGGELFDYICKNGRLDEKESRRLFQQILSGVDYCHRHMVVHRD	150
4cfh_a.pdb	81	FMVMEYVSGGELFDYICKNGRLDEKESRRLFQQILSGVDYCHRHMVVHRD	130
AAPK1_HUMAN	151	LKPENVLLDAHMNAKIADFGLSNMMSDGEFLRTSCGSPNYAAPEVISGRL	200
4cfh_a.pdb	131	LKPENVLLDAHMNAKIADFGLSNMMSDGEFLRXSCGSPNYAAPEVISGRL	180
AAPK1_HUMAN	201	YAGPEVDIWSSGVILYALLCGTLPFDDDHVPTLFKKICDGIFYTPQYLNP	250
4cfh_a.pdb	181	YAGPEVDIWSSGVILYALLCGTLPFDDDHVPTLFKKICDGIFYTPQYLNP	230
AAPK1_HUMAN	251	SVISLLKHMLQVDPMKRATIKDIREHEWFKQDLPKYLFPEDPSYSSTMID	300
4cfh_a.pdb	231	SVISLLKHMLQVDPMKRATIKDIREHEWFKQDLPKYLFPED	271
AAPK1_HUMAN	301	DEALKEVCEKFECSEEEVLSCLYNRNHQDPLAVAYHLIIDNRRIMNEAKD	350
4cfh_a.pdb	272		290
AAPK1_HUMAN	351	FYLATSPPDSFLDDHHLTRPHPERVPFLVAETPRARHTLDELNPQKSKHQ	400
4cfh_a.pdb	291	FYLATSPPDSFLDDHHLTRPHPERVPFLVAETPRA	325
AAPK1_HUMAN	401	GVRKAKWHLGIRSQSRPNDIMAEVCRAIKQLDYEWKVVNPYYLRVRRKNP	450
4cfh_a.pdb	326	AKWHLGIRSQSRPNDIMAEVCRAIKQLDYEWKVVNPYYLRVRRKNP	371
AAPK1_HUMAN	451	VTSTYSKMSLQLYQVDSRTYLLDFRSIDDEITEAKSGTATPQRSGSVSNY	500
4cfh_a.pdb	372	VTSTFSKMSLQLYQVDSRTYLLDFRSIDDEI	402
AAPK1_HUMAN	501	RSCQRSDSDAEAQGKSSEVSLTSSVTSLDSSPVDLTPRPGSHTIEFFEMC	550
4cfh_a.pdb	403		402
AAPK1_HUMAN	551	ANLIKILAQ 559	
4cfh_a.pdb	403	402	

Beta Subunit

AAKB1_HUMAN 4cff_b.pdb	MGNTSSERAALERHGGHKTPRRDSSGGTKDGDRPKILMDSPEDADLFHSE	50 0
AAKB1_HUMAN 5 4cff_b.pdb	L EIKAPEKEEFLAWQHDLEVNDKAPAQARPTVFRWTGGGKEVYLSGSFNNW	100 23
AAKB1_HUMAN 10	L SKLPLTRSHNNFVAILDLPEGEHQYKFFVDGQWTHDPSEPIVTSQLGTVN	150
4cff_b.pdb 2	A SKLPLTRXHNNFVAILDLPEGEHQYKFFVDGQWTHDPSEPIVTSQLGTVN	73
AAKB1_HUMAN 15	NIIQVKKTDFEVFDALMVDSQKCSDVSELSSSPPGPYHQEPYVCKPEERF	200
4cff_b.pdb 7	NIIQVKKTDFEVFDALMVDSQKCYHQEPYV	103
AAKB1_HUMAN 20	RAPPILPPHLLQVILNKDTGISCDPALLPEPNHVMLNHLYALSIKDGVMV	250
4cff_b.pdb 10	PPILPPHLLQVILNKDTGISCDPALLPEPNHVMLNHLYALSIKDGVMV	151
AAKB1_HUMAN 25 4cff_b.pdb 15	L LSATHRYKKKYVTTLLYKPI 270 2 LSATHRYKKKYVTTLLYKPI 171	

Gamma Subunit

AAKG1_HUMAN	1	METVISSDSSPAVENEHPQETPESNNSVYTSFMKSHRCYDLIPTSSKLVV	50
4cff_e.pdb	1	SVYTSFMKSHRCYDLIPTSSKLVV	24
AAKG1_HUMAN	51	FDTSLQVKKAFFALVTNGVRAAPLWDSKKQSFVGMLTITDFINILHRYYK	100
4cff_e.pdb	25	FDTSLQVKKAFFALVTNGVRAAPLWDSKKQSFVGMLTITDFINILHRYYK	74
AAKG1_HUMAN	101	SALVQIYELEEHKIETWREVYLQDSFKPLVCISPNASLFDAVSSLIRNKI	150
4cff_e.pdb	75	SALVQIYELEEHKIETWREVYLQDSFKPLVCISPNASLFDAVSSLIRNKI	124
AAKG1_HUMAN	151	HRLPVIDPESGNTLYILTHKRILKFLKLFITEFPKPEFMSKSLEELQIGT	200
4cff_e.pdb	125	HRLPVIDPESGNTLYILTHKRILKFLKLFITEFPKPEFMSKSLEELQIGT	174
AAKG1_HUMAN	201	YANIAMVRTTTPVYVALGIFVQHRVSALPVVDEKGRVVDIYSKFDVINLA	250
4cff_e.pdb	175	YANIAMVRTTTPVYVALGIFVQHRVSALPVVDEKGRVVDIYSKFDVINLA	224
AAKG1_HUMAN	251	AEKTYNNLDVSVTKALQHRSHYFEGVLKCYLHETLETIINRLVEAEVHRL	300
4cff_e.pdb	225	AEKTYNNLDVSVTKALQHRSHYFEGVLKCYLHETLETIINRLVEAEVHRL	274
AAKG1_HUMAN	301	VVVDENDVVKGIVSLSDILQALVLTGGEKKP 331	
4cff_e.pdb	275	VVVDENDVVKGIVSLSDILQALVLT 299	

Legends of the Supplementary figures

Figure S1: Activator-3 activates AMPK and ACC in *in vitro* cell based assays. pAMPK (**A**) and pACC (**B**, **C** and **D**) based dose response curve of Activator-3 in HepG2 cells (**A**,**B**) primary Hepatocytes and L6 muscle cells (**C**,**D**).

Figure S2: Root mean square deviation (RMSD) of the protein backbone with respect to the energy minimized modeled structure for **A.** complete protein, **B.** α subunit, **C.** β subunit, **D.** γ subunit. **E.** DSSP plot showing secondary structure of the protein during the simulation. The color code for each of the secondary structure is given below the plot. α , β and γ subunits on the y-axis are demarcated using green, blue and magenta colors respectively.

Figure S3: Residues interacting with AMP molecule in the **A.** crystal structure (PDB: 4CFF) and **B.** Homology modeled structure. AMP and interacting residues are shown in green and magenta sticks respectively.

Figure S4: AMPK-activator-3 docked complexes for **A.** Site 3; **B**. Site 4. Activator-3 and interacting residues are shown in green and magenta sticks respectively.

Figure S5: Position of the Activator-3 before (green) and after 10ns MD simulation (magenta) in **A.** Wild-type; **B.** R70G mutant; **C.** R152G mutant; **D.** R70G&R152G (double) mutant

Figure S6: A. Schematic diagram of the constructs of human $\alpha 1\beta 1\gamma 1$ AMPK isoform and its mutants. **B.** Method of overexpression and purification of recombinant and its mutants human AMPK $\alpha 1\beta 1\gamma 1$ in HEK-293T cells used for enzyme assay.

Figure S7: Pharmacokinetics profile of Activator-3 in rats: HSD rats were treated with Activator-3 at 30mg/kg dose and different pharmacokinetics parameters were measured.

Figure S8: western blot raw data for pACC, total ACC, β -Actin, pAMPK and total AMPK for rat muscle tissue, LKB1 mediated phosphorylation of AMPK stimulated by Activator-3 and protection Assay using $\alpha 2\beta 1\gamma 1$.

Figure S9: Sequence alignment of α , β and γ subunits with the template structure that was used for modeling. The missing residues (pink) were modeled using either template based or ab initio modeling.

Supplementary references

- 1. Langendorf, C. G. *et al.* Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. *Nat. Commun.* **7**, 10912 (2016).
- 2. Li, X. *et al.* Structural basis of AMPK regulation by adenine nucleotides and glycogen. *Cell Res.* **25**, 50–66 (2015).
- 3. Xiao, B. *et al.* Structural basis of AMPK regulation by small molecule activators. *Nat. Commun.* **4**, 3017 (2013).
- 4. Xiao, B. *et al.* Structure of mammalian AMPK and its regulation by ADP. *Nature* **472**, 230–233 (2011).