Supplemental Material

Aluminum fluoride-18 labeled folate enables *in vivo* detection of atherosclerotic plaque inflammation by positron emission tomography

Johanna M. U. Silvola¹, Xiang-Guo Li^{1,2}, Jenni Virta¹, Päivi Marjamäki¹, Heidi Liljenbäck^{1,3}, Jarkko P. Hytönen⁴, Miikka Tarkia¹, Virva Saunavaara^{5,6}, Saija Hurme⁷, Senthil Palani¹, Harri Hakovirta⁸, Seppo Ylä-Herttuala^{4,9}, Pekka Saukko¹⁰, Qingshou Chen¹¹, Philip S. Low¹¹, Juhani Knuuti^{1,2,5}, Antti Saraste^{1,5,12,13} and Anne Roivainen^{1,3,5}*

¹Turku PET Centre, University of Turku, Turku, Finland; ²Turku PET Centre, Åbo Akademi University, Turku, Finland; ³Turku Center for Disease Modeling, University of Turku, Turku, Finland; ⁴A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; ⁵Turku PET Centre, Turku University Hospital, Turku, Finland; ⁶Department of Medical Physics, Turku University Hospital, Turku, Finland; ⁷Department of Biostatistics, University of Turku, Turku, Finland; ⁸Department of Vascular Surgery, Turku University Hospital, Turku, Finland; ⁹Science Service Center and Gene Therapy Unit, Kuopio University Hospital. Kuopio, Finland; ¹⁰Department of Pathology and Forensic Medicine, University of Turku, Turku, Finland; ¹¹Department of Chemistry, Purdue University, West Lafayette, Indiana, USA; ¹²Heart Center, Turku University Hospital, Turku, Finland; ¹³Institute of Clinical Medicine, University of Turku, Turku, Finland

*Correspondence: <u>anne.roivainen@utu.fi</u>

Figure S1. ¹⁸F-FOL binds to macrophages derived from human blood monocytes. (A) Binding of ¹⁸F-FOL on M1 macrophages (polarized with LPS and IFN- γ) and M2 macrophages (polarized with M-CSF, IL-4 and IL-10). Quantitative data are Becquerel (mean ± standard deviation, *n* = 3 triplicates). (B) Representative flow cytometric analyses of total CD68 (permeabilized cells) and surface CD206 (macrophage mannose receptor-1 [MRC-1]) from M1 and M2 macrophages. Black histograms are isotype controls and red histograms are for CD68 and CD206. MFI = mean fluorescence intensity.

Figure S2. Uptake of ¹⁸F-FOL in mice. Uptake of ¹⁸F-FOL in aortic arches of atherosclerotic LDLR^{-/-} ApoB^{100/100} (n = 9), healthy C57BL/6N controls (n = 6), and atherosclerotic mice with a 100-fold molar excess of folate glucosamine (FG) (n = 3), as assessed by *in vivo* PET/CT imaging. TBR = maximum target-to-background ratio, SUV_{max, aortic arch/SUV_{mean, blood}. SUV_{max} = maximum standardized uptake value determined at 60–90 min post ¹⁸F-FOL injection.}

Figure S3. Mouse aorta ¹⁸**F-FOL PET.** *Ex vivo* obtained examples of ¹⁸F-FOL PET images (top) and photographs of the aortas stained with Oil-Red-O (bottom) from atherosclerotic LDLR^{-/-}ApoB^{100/100} mouse (n = 1), atherosclerotic mouse with a 100-fold excess of folate glucosamine (blocking) (n = 1), and healthy C57BL/6N control mouse (n = 1).

Figure S4. Histology and immunohistochemistry of atherosclerotic lesions in LDLR^{-/-}ApoB^{100/100} mice. (A) Representative aortic root sections were stained with Movat's pentachrome (black = nuclei; yellow = collagen, reticular fibers; blue = ground substance, mucin; bright red = fibrin; red = muscle) or with anti-mouse Mac-3 (macrophages), iNOS (M1 polarized macrophages) and MRC-1 (M2 polarized macrophages) immunohistochemistry. The high-power views are of the area within the black rectangle on the left images. Mac-3, iNOS and MRC-1 positive cells appear brown in color. L = lumen; P = plaque; W = healthy vessel wall. Please note that the Movat and Mac-3 images are the same as in

Figure 3D. (B) Quantitative results of immunohistochemistry for the detection of macrophage markers (mean \pm SD).

Figure S5. Representative HPLC chromatograms of ¹⁸**F-FOL, the reference** ¹⁹**F-FOL, and precursor NOTA-folate.** (A) Radioactivity and (B) UV detection of ¹⁸F-FOL (the UV peak [arrow] was low because of the high specific radioactivity of ¹⁸F-FOL), (C) UV detection of ¹⁹F-FOL, (D) radioactivity and (E) UV detection of ¹⁸F-FOL spiked with ¹⁹F-FOL, and (F) UV detection of NOTA-folate.

Figure S6. High-resolution mass spectrometry analysis of ¹⁹F-FOL. The theoretical monoisotopic mass for ion $[M+H]^+ C_{37}H_{51}AlFN_{12}O_{12}$ was 901.3544 and the observed mass was 901.3547.