

Figure S1 Schematic of the development of the near isogeneic lines (NILs) used in SNP genotyping and mapping-by-sequencing. (A) The BC₁F₁ was selfed and fuzzless BC₁F₂ was used in further backcrosses, which were repeated three more times. After several generations of selfing, BC₄F₄ and BC₄F₅ NILs showing normal and reduced fuzz (including fuzzless and intermediate) were genotyped using the Cotton SNP63K array. BC₄F₅ progeny derived from BC₄F₄ NILs homozygous for normal fuzz (NFN4) or fuzzless (FLN1) phenotype were used for the collection of outer integuments for gene expression analysis. BC₄F₆ progeny derived from fuzzless and fuzzy seeded NILs were used in mapping-by-sequencing. (B) Fuzz phenotype of BC₄F₄ NILs with fuzzless (FLN1), intermediate (IFN3) and normal fuzz (NFN4) seeds, and their representative BC₄F₅ progeny.

Figure S5 Representative fuzz phenotype of the FLNS F_2 : F_3 families with a genotype of homozygous Pima S-7 (A) or Sicala 40 (B) for Locus V. F_2 : F_3 family homozygous for Pima S-7 had less fuzz than F_2 : F_3 family homozygous for Sicala 40. The genotypes of loci I/II/III/IV are also shown for each F_2 : F_3 family. S: homozygous Sicala 40; P: homozygous Pima S-7; H: heterozygous.

Figure S6 Seed fuzz phenotype of representative *G. barbadense* accessions.

Xu142 <i>fl</i> _At	MQQSPCSDKVGLK <mark>KGPWTPEEDQKLLSYIQEHGGGSWRGLPAKAGLQRCGKSCRLRWINY</mark> 60
Xu142 At	MQQSPCSDKVGLK <mark>KGPWTPEEDQKLLSYIQEHGGGSWRGLPAKAGLQRCGKSCRLRWINY</mark> 60
TM-1 At	MQQSPCSDKVGLK <mark>KGPWTPEEDQKLLSYIQEHGGGSWRGLPAKAGLQRCGKSCRLRWINY</mark> 60
Pima S-7 At	MQQSPCSDKVGLK <mark>KGPWTPEEDQKLSSYIQEHGGGSWRGLPAKAGLQRCGKSCRLRWINY</mark> 60
Xu142 <i>fl</i> Dt	MOOSPCSDKVGLKKGPWTPEEDOKLLSYIOEHGGGSWRGLPAKAGLORCGKSCRLRWINY 60
X11142 Dt	MOSPCSDKVGLKKGPWTPEEDOKLLSYTOEHGGGSWRGLPAKAGLORCGKSCRLRWINY 60
TM = 1 D +	MOOSPCSDKV//LKKGPWTPFFDOKLISYTOFHCGGSWRGLPAKAGLORCGKSCRLRWINY 60
Pima S=7 D+	
	********* ****************************
Xu142 <i>fl</i> _At	LRPDIKRGKFSSQEERTIIQLHALLGNRWSAIAAHLPKRTDNEIMNYWNTQLKKRLTTIG120
Xu142 At	LRPDIK <mark>RGKFSSQEERTIIQLHALLGNRWSAIAAHLPKRTDNEIKNYWNTQLKK</mark> RLTTIG120
TM-1 At	LRPDIKRGKFSSQEERTIIQLHALLGNRWSAIAAHLPKRTDNEIKNYWNTQLKKRLTTIG 120
Pima S-7 At	LRPDIKRGKFSSOEERTIIOLHALLGNRWSAIAAHLPKRTDNEIKNYWNTOLKKRLTTIG 120
Xu142 <i>f1</i> Dt.	LRPDIKRGKESSOEERTITOLHALLGNRWSATAAHLPKRTDNEIKNYWNTOLKKRLTKIG 120
X11142 Dt	IRPDIK RGKESSOFERTI TOLHALIGNEWSATAAHLPKETDNETKNYWNTOLKKELTKIG 120
TM = 1 D ⁺	IRPOT KROKESSOFERTI TOLHALLONRWSATAAHLPKRTDNETKNYWNTOLKKRITKIG 120
$P_{im} = S_{-7} D_{+}$	
Filla S-/_DC	TURNUNGUE 2000000000000000000000000000000000000
Xu142 <i>fl</i> _At	IDPATHRPKTDTLGSTPKDAANLSHMAQWESARLEAEARLVRESKRVSNPSQNQFRFTSS 180
Xu142 At	IDPATHRPKTDTLGSTPKDAANLSHMAQWESARLEAEARLVRESKRVSNPSQNQFRFTSS 180
TM-1 At	IDPATHRPKTDTLGSTPKDAANLSHMAOWESARLEAEARLVRESKRVSNPPONOFRFTSS 180
Pima S-7 At	IDPATHRPKTDTLGSTPKDAANLSHMAOWESARLEAEARLVRESKRVSNPPONOFRFTSS 180
$X_{11}142f1$ Dt	TDPATHRPKTDTLGSTPKDVANFSHMAOWESARLEAEARLVRESKRVSNPPONOFRFTSS 180
Xu142 Dt	IDPATHRPKTDTLCSTPKDVANFSHMAOWESARLEAEARLVRESKRVSNPPONOFRFTSS 180
TM = 1 D +	IDDATHR DKTDTI (STDKD ANI SHMAOWE SARI FAFARI VESKDVSNDDONOFRFTSS 180
Dima S-7 D+	

Xu142 <i>fl</i> _At	SAPPLVSKIDVGLAHATKPQCLDVLKAWQRVVTGLFTFNTDNLQSPTSTSSFTENTLPIS 240
Xu142_At	SAPPLVSKIDVGLAHATKPQCLDVLKAWQRVVTGLFTFNTDNLQSPTSTSSFTENTLPIS 240
TM-1 At	SAPPLVNKIDVGLAHATKPQCLDVLKAWQRVVTGLFTFNTDNLQSPTSTSSFTENTLPIS 240
Pima S-7 At	SAPPLVSKIDVGLAHATKPQCLDVLKAWQRVVTGLFTFNTDNLQSPTSTSSFTENTLPIS 240
Xu142 <i>fl</i> Dt	SAPPLVNKIDVGLAHATKPQCLDVLKAWQRVVTGLFTFNTDNLQSPTSTSSFTENRLPIS 240
Xu142 Dt	SAPPLVNKIDVGLAHATKPQCLDVLKAWQRVVTGLFTFNTDNLQSPTSTSSFTENRLPIS 240
TM-1 Dt	SAPPLVNKIDVGLAHATKPOCLDVLKAWORVVTGLFTFNTDNLOSPTSTSSFTENRLPIS 240
Pima S-7 Dt	SAPPLVNKIDVGLAHATKPOCLDVLKAWORVVTGLETENTDNLOSPTSTSSETENRLPIS240

Xu142 <i>fl</i> _At	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDLSSEDVWFQGSY 300
Xu142_At	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDLSSEDVWFQGSY 300
TM-1_At	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQEILDNSMGLHDILDLSSEDVWFQGSY 300
Pima S-7_At	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDLSSEDVWFQGSY 300
Xu142 <i>fl</i> _Dt	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDFSSEDVWFQGSY 300
Xu142_Dt	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDFSSEDVWFQGSY 300
TM-1 Dt	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDFSSEDVWFQGSY 300
Pima S-7 Dt	SVGFIDSFVGNSNNSCCGNNWECVEKSSQVAELQERLDNSMGLHDILDFSSEDVWFQGSY 300
_	***************************************
V1110F1 N+	
AUI4ZII_At	RAENTITEGISUTLTVUUSGUHPRSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
XUI42_At	KAENMMEGYSDTLMVCDSGDHPKSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
TM-1_At	RAENMMEGYSDTLMVCDSGDHPKSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
Pima S-/_At	RAENMMEGYSDTLMVCDSGDHPKSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
Xu142 <i>fl</i> _Dt	RAENMMEGYSDTLMVCDSGDHQKSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
Xu142_Dt	RAENMMEGYSDTLMVCDSGDHQKSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
TM-1_Dt	RAENMMEGYSDTLMVCDSGDH <mark>E</mark> KSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
Pima S-7_Dt	RAENMMEGYSDTLMVCDSGDH <mark>U</mark> KSLSMEPRQNFNVGTSNASSFEENKNYWNNILNFANAS 360
	~~~~~~*********************************
Xu142 <i>fl</i> At	PSGSSVF 367
Xu142 At	PSGSSVF 367
TM-1 At	PSGSSVF 367
Pima S-7 At	PSGSSVF 367
Xu142 <i>fl</i> Dt	PSGSSVF 367
Xu142 Dt	PSGSSVF 367
TM-1 Dt.	PSGSSVF 367
Pima S-7 D+	PSGSSVF 367
	*****

**Figure S7** Alignment of the amino acid sequences of *MYB25-like* from Xu142, Xu142*fl*, TM-1 and Pima S-7. The conserved MYB-binding and SANT domains are highlighted in yellow and green, respectively. The amino acid that is different between Xu142_At and Xu142*fl*_At in the SANT domain is shown in red. The two amino acids that are different between TM-1_Dt and Pima S-7_Dt are highlighted in red.

Α

PX-51 PX-98 PX-25 FLNX-6 FLNX-19 FLNX-79 X/P X/X X/H X/P X/X X/H FLNX-91 FLNX-97 **PX-38** PX-82 PX-37 FLNX-11 H/H H/X H/P H/X H/H H/P PX-34 PX-27 PX-66 FLNX-10 FLNX-28 FLNX-14 P/X P/P S/X S/P P/H S/H

В

**Figure S9** Distribution of fuzz phenotypes ( $F_3$  seeds) in the  $F_2$  populations PX and FLNX by *MYB25-like* homoeoalleles. (A) Representative fuzz phenotypes of the PX  $F_2$  population derived from Pima S-7 x Xu142*fl*. (B) Representative fuzz phenotypes of the FLNX  $F_2$  population derived from FLN1-10 x Xu142*fl*. The genotype of *MYB25-like_Dt* of each  $F_2$  plant are shown blow the plant ID. X: homozygous Xu142*fl*; P: homozygous Pima S-7; S: homozygous Sicala 40; H: heterozygous.



**Figure S10** Effects of fuzz associated loci on lint percentage of the FLNS  $F_2$ : $F_3$  families.  $F_2$  plants were genotyped using the markers shown in Fig. 3A. For each locus,  $F_2$  plants were grouped based on their genotypes, *i.e.* homozygous Pima S-7 (Pima S-7/Pima S-7) or Sicala 40 (Sicala 40/Sicala 40), or heterozygous (Pima S-7/Sicala 40) individuals. Error bars represent standard errors. * and ** denote a significant difference at *p*<0.05 and *p*<0.01, respectively, determined by a Student's *t*-test.