## Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice.

Jin Ma, Jun Chen, Min Wang, Yulong Ren, Shuai Wang, Cailin Lei, Zhijun Cheng, and Sodmergn Sodmergn

## SUPPLEMENTARY DATA



**Supplementary Figure S1.** Several exocyst subunits fused with AD displayed no auto-activation in our experiments.



**Supplementary Figure S2.** Alignment of mutations in *OsSEC3A* from chromatograms to the reference genome sequence. (a-b) Insert-cut indels. (c) Overlapping peaks appear after the presumed cleavage site in both directions, indicating sequence heterogeneity at the site.



**Supplementary Figure S3.** qRT-PCR analysis of *OsSEC3A* in WT and *Ossec3a* plants (#5, #7, #11).



**Supplementary Figure S4.** Performance of whole plants (WT and transgenic lines) at different developmental stages.

(a) Analysis of root and root hair length in WT and *Ossec3a* plants grown in liquid medium under greenhouse conditions. For all experiments, the longest main roots were observed. (b) Phenotypes of WT and *Ossec3a* mutant plants at the tillering stage. (c) The WT full-length cDNA of *OsSEC3A* completely rescued plant stature. (d) *OsSEC3A*-RNAi transgenic lines mimicked the phenotype of *Ossec3a* mutant plants. Scale bars = 10 cm in (b, c, d). (e) qRT-PCR of *OsSEC3A* and other exocyst subunit genes in WT and *OsSEC3A*-RNAi plants. Data are presented as mean  $\pm$  standard error (n = 20). Significant differences were identified with Student's *t*-test (\*\*p < 0.01).



**Supplementary Figure S5.** Agronomic traits (plant height, panicle length, tiller number, thousand-grain weight, and spikelet fertility) of wild-type and *Ossec3a* mutant plants. Data are presented as mean  $\pm$  standard error (n = 20). Significance was determined with Student's *t*-test (\*\*p < 0.01).



**Supplementary Figure S6.** qRT-PCR of jasmonic acid (JA) synthesis-related genes (*OsLOX2.2, OsJAR1;2*) and signaling pathway genes (*OsJAZ1, OsJAZ2*) in WT and *Ossec3a* seedling or tillering plants without (a) and with (b) *Magnaporthe oryzae* inoculation. Values are presented as the mean  $\pm$  standard error of three independent experiments. Significant differences were determined with Student's *t*-test (\*0.01 < *p* <0.05; \*\* *p* < 0.01).



Supplementary Figure S7. Evolutionary analysis of OsSEC3A.

Sequence alignment of OsSEC3A with the equivalent regions of its homologs in different species. Conserved arginine/lysine residues predicted to be important for phosphoinositide binding are highlighted in red. Identical and similar amino acids are shaded in black (100%), grey (>75%), green (50%), or yellow (33%). The following abbreviations were used: Zm, *Zea mays*; Si, *Setaria italic*; Sb, *Sorghum bicolor*; Os, *Oryza sativa*; Gm, *Glycine max*; Pt, *Populus trichocarpa*; At, *Arabidopsis thaliana*; Hs, *Homo sapiens*; Sc, *Saccharomyces cerevisiae*.



**Supplementary Figure S8.** Interaction of OsSEC3A with a group of known immunity-and defense-related protein factors. Y2H assay in *S. cerevisiae*. Full-length OsSEC3A was ligated into pGBKT7 to generate the OsSEC3A-BD plasmid. Several exocyst constructs were fused with AD.



Supplementary Figure S9. BFA treatment of leaf epidermal cells coexpressing OsSEC3A-GFP and Man1-mRF. Scale bars =  $10 \mu m$ .

Supplementary Table S1. Sequences of DNA oligonucleotides used in this study.

| Primer Name                         | Sequence                                  |
|-------------------------------------|-------------------------------------------|
| OsSEC3A-Pro-F                       | CCATGATTACGAATTCCAAGTTTTAGGCA             |
|                                     |                                           |
| OsSEC3A-Pro-R<br>OsSEC3A-MBP-F      | CTCAGATCTACCATGGTTGGGGGAAGAGG<br>GATGAGTT |
|                                     |                                           |
|                                     | AGCGCG                                    |
|                                     | TACCTGCAGGGAATTCCTAGAAGTTAGC              |
| OsSEC3A-MBP-R                       | AAGGACATC                                 |
| OsSEC3A <sup>N</sup> (a.a. 1–450)   | CGACGGATCCGAATTCATGGCGAAGTCG              |
| -MBP-F                              | AGCGCG                                    |
| OsSEC3A <sup>N</sup> (a.a. 1–450)   | TACCTGCAGGGAATTCCTAACAGCTCTTG             |
| -MBP-R                              | TCCAGACTC                                 |
| OsSEC3A <sup>C</sup> (a.a. 310–888) | CGACGGATCCGAATTCAAAGGACTCGTT              |
| -MBP-F                              | GAAGAACT                                  |
| OsSEC3A <sup>C</sup> (a.a.310–888)  | TACCTGCAGGGAATTCCTAGAAGTTAGC              |
| -MBP-R                              | AAGGACAT                                  |
| qOsCATA-F                           | CAACCGCAACGTCGACAACTTCTT                  |
| qOsCATA-R                           | TTCACCGGCAGCATCAGGTAGTTT                  |
| qOsGSTF10-F                         | GCTTCTGTGCTCGAAGCCTA                      |
| qOsGSTF10-R                         | AGCAGACGGCATCTTCAGAG                      |
| qOsGSTU6-F                          | TACATCGACGAGGTGTTCCC                      |
| qOsGSTU6-R                          | TGCCTCTGAACACCGGAATC                      |
| qOsAOX1a-F                          | CTTCGCATCGGACATCCATTA                     |
| qOsAOX1a-R                          | TCCTCGGCAGTAGACAAACATC                    |
| qOsAOX1b-F                          | CCTGCTCAGTTCATCACCATCA                    |
| qOsAOX1b-R                          | GCATAAAACGGAGTGACAATAGC                   |
| qPO-C1-F                            | TAGAGGCCGTGTGCAATCAG                      |
| qPO-C1-R                            | GCTTGCACCTGTAGAGTCCC                      |
| qEDS1-F                             | CATTCCAAGAACGAGGACACTG                    |
| qEDS1-r                             | CAAGACTCAAGGCTAGAACCGA                    |
| qPAD4-F                             | AGGGGTTCTTGAGGCTGTGC                      |

| qPAD4-R           | GCTGAGCTTGACGATGATGTG                 |
|-------------------|---------------------------------------|
| qPAL-F            | GCACATCTTGGAGGGAAGCT                  |
| qPAL-R            | GCGCGGATAACCTCAATTTG                  |
| qPR1a-F           | AGGGCGACTGCAAGCTGGTC                  |
| qPR1a-R           | ACCACTGCTTCTCCGACACCC                 |
| qNPR1-F           | GCTGGTGCTCGACTACCTCTACA               |
| qNPR1-R           | CAAGGACATCAAGGAGACGC                  |
| qPBZ1-F           | TGATGGCTCCGGCCTGCGTC                  |
| qPBZ1-R           | GGTCTTGTATGTGCTTCCCAC                 |
| OsLOX2.2-F        | CCATCAGTGGACCGACATCA                  |
| OsLOX2.2-R        | GAGTGGCCGGGTCATTGTCG                  |
| OsJAR1;2-F        | GGATTGTTGATGGCGATACCT                 |
| OsJAR1;2-R        | TGCCACCTTTCGTTATGACTTG                |
| OsJAZ1-F          | CTGGGACGCTGAAAGACACG                  |
| OsJAZ1-R          | AACCTCTGCAGCGACACCTT                  |
| OsJAZ2-F          | CCCCGCTGACCATCTTCTACGA                |
| OsJAZ2-R          | GCCTTCTTGTATGGTTCGCTCGT               |
| qOsSEC3A-F        | TGTCCCAAGCAAAGGATGAA                  |
| qOsSEC3A-R        | AAATGCGTAACCACTCATCC                  |
| qOsSEC3B-F        | TGTGGAGATGGCTATGTGGG                  |
| qOsSEC3B-R        | GTCTTTCTGAATGGCAACTT                  |
| qOsSEC5F-F        | CGTGGGAACATTAGAAAAGG                  |
| qOsSEC5R-R        | CCTCCATTGACTTGTAAAGC                  |
|                   | GCCCAGATCAACTAGTATGGCGAAGTCG          |
| USSECJA-UFF-F     | AGCGC                                 |
| OsSEC3A-GFP-R     | TGCTCACCATGGATCCGAAGTTAGCAAG          |
|                   | GACATC                                |
| 1305OsSEC3A-GFP-F | CGGAGCTAGC <b>TCTAGA</b> ATGGCGAAGTCG |
|                   | AGCGC                                 |

| 1305OsSEC3A-GFP-R   | TCGAGACGTC <b>TCTAGA</b> GAAGTTAGCAAG |
|---------------------|---------------------------------------|
|                     | GACATC                                |
| OsSEC3A-Crispr-1F   | AGATGATCCGTGGCATTATTTCGAATGATC        |
|                     | CTAGGTTTTAGAGCTATGC                   |
| OsSEC3A-Crispr-1R   | GCATAGCTCTAAAACCTAGGATCATTCGA         |
|                     | AATATGCCACGGATCATCT                   |
| OsSEC3A-Crispr-2F   | AGATGATCCGTGGCAGTTTGCAGCATCAT         |
|                     | TAACGTTTTAGAGCTATGC                   |
| OsSEC3A-Crispr-2R   | GCATAGCTCTAAAACGTTAATGATGCTGC         |
|                     | AAACTGCCACGGATCATCT                   |
| 1390OsSEC3A-CDS-F   | TCTGCACTAGGTACCTGCAGATGGCGAA          |
|                     |                                       |
| 1390OsSEC3A-CDS-R   |                                       |
|                     |                                       |
| OsSEC3A-RNAi1-F     | GTGAAGCAGAT                           |
|                     | TAGAGCTCAGGCCTGGTACCCGCAAGCG          |
| OsSEC3A-RNA11-R     | ATCAAGCAACTT                          |
| O-SEC2A DNA 2 E     | GAATTCCCGGGGGATCCTGGGCATAGGTG         |
| USSEC5A-KNA12-F     | AAGCAGAT                              |
| OCSEC3A DNA;2 D     | CGTAGTCGACGGATCCCGCAAGCGATCA          |
| USSECJA-KNAIZ-K     | AGCAACTT                              |
| OSEC3A_BD_E         | GAATTCCCGGGGGATCCGTATGGCGAAGT         |
| USSEC5A-DD-1        | CGAGCGC                               |
| OsSEC3A-BD-R        | GCAGGTCGAC <b>GGATCC</b> CTAGAAGTTAGC |
|                     | AAGGACATC                             |
| OsSEC3A             | GAATTCCCGGGGGATCCGTATGGCGAAGT         |
| (a.a. 1–160)-BD-F   | CGAGCGCG                              |
| OsSEC3A             | GCAGGTCGACGGATCCCTACACAAAATC          |
| (a.a. 1–160)-BD-R   | AATTCCAA                              |
| OsSEC3A             | GAATTCCCGGGGGATCCGTCAAACTGAGA         |
| (a.a. 190–510)-BD-F | GGAAAGTAAC                            |
| OsSEC3A             | GCAGGTCGACGGATCCCTAAGATACTGT          |
| (a.a. 190–510)-BD-R | TGAAGTGTCAGC                          |
| OsSEC3A_C           | GAATTCCCGGGGGATCCGTATCCCACTTCT        |
| (a.a. 521–888)-BD-F | TGTGGATGA                             |
| OsSEC3A_C           | GCAGGTCGACGGATCCCTAGAAGTTAGC          |
| (a.a. 521–888)-BD-R | AAGGACATCT                            |
| OsSNAP32-AD-F       | GGAGGCCAGT <b>GAATTC</b> ATGAGCGGGAGG |

|                                | AGATCGTT                              |
|--------------------------------|---------------------------------------|
| OsSNAP32-AD-R                  | CACCCGGGTGGAATTCTTATTTTCCAAGC         |
|                                | AGACGGCG                              |
| OsPUB51-AD-F                   | GGAGGCCAGT <b>GAATTC</b> ATGGAGATCGAG |
|                                | GAGGCGGG                              |
| OsPUB51-AD-R                   | CACCCGGGTGGAATTCCTAACTCTTTGTT         |
|                                | CTCCAGTC                              |
| OSPPM1_AD_F                    | GGAGGCCAGT <b>GAATTC</b> ATGCATACTGAG |
|                                | GTAGGGATCA                            |
| OsRPM1-AD-R                    | CACCCGGGTGGAATTCTCATATGGCGGC          |
|                                | CGTTCTTT                              |
| SPI 11-AD-F                    | GGAGGCCAGT <b>GAATTC</b> ATGGCCGGCGAC |
| ы L11-АД-Г                     | CGAG                                  |
| SPI 11-AD-R                    | CACCCGGGTGGAATTCTCATACAACCATA         |
| SELII-AD-K                     | GGGTATTGAG                            |
| SPI 28-AD-F                    | GGAGGCCAGT <b>GAATTC</b> ATGGCGGGCG   |
| SI L20-AD-I                    | CGGTGTCGGC GCT                        |
| SDI 28 AD P                    | CACCCGGGTGGAATTCTCATATAAGTCTC         |
| STL20-AD-K                     | AGTTCGTAT                             |
| $O_{\rm e}$ VAMP721 AD E       | CATCGATACGGGATCCATATGGGGCAGC          |
| OSVANIF /21-AD-I               | AGTCGCTGAT                            |
|                                | CGAGCTCGAT <b>GGATCC</b> TCACTTGCACTT |
| OSVANII 721-AD-K               | GAAGCCAT                              |
| $O_{c}E_{x}$ , 70 Å 1 Å D E    | CATCGATACGGGGATCCATATGGAGACCCT        |
| USEX070A1-AD-I                 | TGCGCAGC                              |
| $O_{\rm s}E_{\rm XO}70.1$ AD P | CGAGCTCGAT <b>GGATCC</b> TCAAGTACGCTC |
| USEX070A1-AD-K                 | TTGTTTTC                              |
| $O_{c}E_{x}$ , 70 A 2 AD E     | CATCGATACGGGATCCATATGGTGGTGGC         |
| USEX070AJ-AD-I                 | GGCGGCGGC                             |
|                                | CGAGCTCGAT <b>GGATCC</b> TCAGCGCTTCTG |
| USEXO/UA3-AD-K                 | CTCCCCCAT                             |
| $O_{0}E_{x0}70D1$ AD E         | CATCGATACGGGATCCATATGGCGGAGG          |
| USEXU/UD1-AD-F                 | ACGGCGAGGAGA                          |
|                                | CGAGCTCGAT <b>GGATCC</b> TCACTTGGACAC |
| USEX0/0D1-AD-K                 | TCCTTCAAAC                            |
| $O_{0}E_{x0}70P2$ AD E         | CATCGATACGGGATCCATATGGCTGGCAT         |
| USEX0/0D2-AD-F                 | GGAGGATACT                            |
| OsExo70B2-AD-R                 | CGAGCTCGAT <b>GGATCC</b> TTAGCCTGGGTG |
|                                | GGAGGCAGT                             |
| OsExo70E1-AD-F                 | CATCGATACGGGATCCATATGATGGCTGC         |
|                                | TGAGTTAATT                            |
| OsExo70E1-AD-R                 | CGAGCTCGATGGATCCCTACAATGTTTTT         |
|                                | TGAGCTCCT                             |

| OsSEC5-AD-F      | CATCGATACG <b>GGATCC</b> ATATGGCGAGCG<br>ACAGCGACGT    |
|------------------|--------------------------------------------------------|
| OsSEC5-AD-R      | CGAGCTCGAT <b>GGATCC</b> TCATCGACGCCG<br>CCTCGAG       |
| OsSEC6-AD-F      | CATCGATACG <b>GGATCC</b> ATATGGAGGATCT<br>GGGCATCGA    |
| OsSEC6-AD-R      | CGAGCTCGAT <b>GGATCC</b> TTACTGTCCAAG<br>CTTGCTCCAT    |
| OsSEC8-AD-F      | GGAGGCCAGT <b>GAATTC</b> ATGAGCCGCACC<br>GGCGGCCG      |
| OsSEC8-AD-R      | CACCCGGGTG <b>GAATTC</b> TTAATGGCCCAA<br>AATCTGAGAG    |
| OsSEC10-AD-F     | CATCGATACG <b>GGATCC</b> ATATGGAGTTCAA<br>CAGCACACCA   |
| OsSEC10-AD-R     | CGAGCTCGAT <b>GGATCC</b> CTATTCAGCCATG<br>ATACTGTTT    |
| OsSEC15bN-AD-F   | CATCGATACG <b>GGATCC</b> ATATGACTGCTCA<br>GACCAAGAAGA  |
| OsSEC15bN-AD-R   | CGAGCTCGAT <b>GGATCC</b> TCACTTTTTAGA<br>AGCTTTAGAG    |
| OsSNAP32-GST-F   | TGGATCCCCG <b>GAATTC</b> ATGAGCGGGAGG<br>AGATCGTT      |
| OsSNAP32-GST-R   | GTCGACCCGGGAATTCTTATTTTCCAAGC<br>AGACGGCG              |
| OsExo70A1-GST-F  | TGGATCCCCG <b>GAATTC</b> ATGGAGACCCTT<br>GCGCAGC       |
| OsExo70A1-GST-R  | GTCGACCCGG <b>GAATTC</b> TCAAGTACGCTC<br>TTGTTTTC      |
| OsExo70B1-GST-F  | TGGATCCCCG <b>GAATTC</b> ATGGCGGAGGAC<br>GGCGAGGAGA    |
| OsExo70B1-GST-R  | GTCGACCCGG <b>GAATTC</b> TCACTTGGCACT<br>CCTTCAAAC     |
| NLuc-OsSEC3A_c-F | CGGGGGAC <b>GAGCTC</b> GGTACCATCCCACT<br>TCTTGTGGATGA  |
| NLuc-OsSEC3A_C-R | ACGAGATCTG <b>GTCGAC</b> GAAGTTAGCAAG<br>GACATCT       |
| CLuc-OsSNAP32-F  | ACGCGTCCCGGGGGC <b>GGTACC</b> ATGAGCGG<br>GAGGAGATCGTT |
| CLuc-OsSNAP32-R  | AGCTCTGCAG <b>GTCGAC</b> TTATTTTCCAAGC<br>AGACGGCG     |
| CLuc-OsSEC5-F    | ACGCGTCCCGGGGGC <b>GGTACC</b> ATGGCGAG<br>CGACAGCGACGT |
| CLuc-OsSEC5-R    | AGCTCTGCAG <b>GTCGAC</b> TCATCGACGCCG<br>CCTCGAG       |

| CLuc-OsSEC6-F    | ACGCGTCCCGGGGCGGTACCATGGAGGA |
|------------------|------------------------------|
|                  | TCTGGGCATCGA                 |
| CLuc-OsSEC6-R    | AGCTCTGCAGGTCGACTTACTGTCCAAG |
|                  | CTTGCTCCAT                   |
| CLuc-OsSEC15bN-F | ACGCGTCCCGGGGCGGTACCATGACTGC |
|                  | TCAGACCAAGAAGA               |
| CLuc-OsSEC15bN-R | AGCTCTGCAGGTCGACTCACTTTTTAG  |
|                  | AAGCTTTAGAG                  |