Supplementary Figure S1. Values for pCO_2 in the mesophyll (C_m , Pa) calculated with the carbonic anhydrase limited calculations across the pCO_2 inside the leaf intercellular spaces (C_i , Pa). Data are for *Setaria viridis* (black circles) at three temperatures ($T_L = 40$ °C, panel A; $T_L = 25$ °C, panel B; $T_L = 10$ °C, panel C) and for *Zea mays* (grey squares) at $T_L = 25$ °C. Values are means $\pm 1SE$, n = 4 in *Setaria* and n = 3 in *Zea*. Arrows indicate values at ambient pCO_2 .

Supplementary Figure S2. Description of the models used to evaluate the effect of mesophyll conductance (g_m) in calculations of leakiness (ϕ). Model 1: uses *in -vitro* V_{pmax} and g_m finite and equal to the values presented in Fig. 3 of the main manuscript; Model 2: uses *in-vivo* V_{pmax} and g_m infinite; Model 3: is the same than Model 1 but the solution was only constrained by A and not Δ^{13} C; Model 4: is the same than Model 1 but with $V_p = \min\left(V_{pr}, \frac{[\text{HCO}_3^-]V_{pmax}}{[\text{HCO}_3^-]+K_p}\right)$, where $V_{pr} = 64$ and 59 µmol m⁻²s⁻¹ in *Setaria* and *Zea*, respectively. Several parameters that describe C₄ photosynthesis are plotted across the $p\text{CO}_2$ inside the leaf intercellular spaces (C_i , Pa), namely: maximal PEP carboxylation rate (V_{pmax} , µmol m⁻²s⁻¹), bundle-sheath conductance (g_{bs} , µmol m⁻²s⁻¹Pa⁻¹), $p\text{CO}_2$ in the bundle-sheath cells (C_{bs} , Pa), PEP carboxylation rate (V_p , µmol m⁻²s⁻¹) and Rubisco carboxylation rate (V_c , µmol m⁻²s⁻¹). All models applied the CA-limited calculations to *Setaria virids* and *Zea mays* data measured at 25 °C.

The models of *A* (photosynthetic rate, μ mol m⁻²s⁻¹) and Δ^{13} C (¹³C discrimination, %₀) include four variables – *C*_m, *V*_{pmax}, *g*_{bs} and *V*_{cmax}– that are grouped in the pairs (*C*_m, *V*_{pmax}) and (*g*_{bs}, *V*_{cmax}), with the exception of the crossed term *g*_{bs}*C*_m that is very small. This explains why one pair can be calculated as a function of the other pair rather than as a function of the individual values for each variable (detailed explanation can be found in Ubierna *et al.*, 2017). To illustrate that individual values chosen for *V*_{cmax} and *g*_{bs} do not affect the calculation of *g*_m or ϕ , the four models were applied in two set of conditions: considering *V*_{cmax} either variable (**A**) or constant (**B**) with *p*CO₂. In **A** we used *in-vivo V*_{cmax}, and in **B** we used *V*_{cmax} = 34 and 31 µmol m⁻²s⁻¹ for *Setaria* and *Zea*, respectively. Therefore, Figure S2 includes the following sub-figures:

Fig. S2.A.1. Models 1 to 4 in *Setaria virids* when V_{cmax} is variable with pCO_2

Fig. S2.A.2. Models 1 to 4 in Zea mays when V_{cmax} is variable with pCO_2

Fig. S2.B.1. Models 1 to 4 in *Setaria virids* when V_{cmax} is constant with pCO_2

Fig. S2.B.2. Models 1 to 4 in Zea mays when V_{cmax} is constant with pCO_2

Ubierna, Gandin and Cousins, Supplementary Figures 1-8

Supplementary Figure S3. Sensitivity of calculations of carbonic anhydrase limited mesophyll conductance (CA-lim g_m) in *Setaria viridis* to uncertainty in values for Michaelis-Menten constant of PEPC (K_P , **A** - **C**), rate constant of CA for CO₂ (K_{CA} , **D** - **F**), Michaelis-Menten constant of Rubisco (K_C , **G**- **I**), and maximal PEP carboxylation rate (V_{pmax} , **J** - **L**). Calculations were performed at three temperatures (10, 25 and 40 °C) and three pCO_2 ($C_a = 93$, 38 and 5-10 Pa for high - solid line -, ambient - dashed line -, and low - dashed and dotted line -, respectively). The numbers on top of each panel represent the actual parameter value at each temperature. Each parameter was varied \pm 20 and \pm 50% of its actual value and the % change in g_m was calculated by comparing CA-lim g_m results calculated with the assumed versus the actual parameter value.

8

Supplementary Figure S4. Impact of R_d (non-photorespiratory CO₂ released in the dark) and b'_3 (Rubisco fractionation) in the calculation of carbonic anhydrase limited mesophyll conductance (CA-lim g_m) in *Setaria viridis* at 25 °C. A) and C) means ± 1 SE, n = 4. B) and D) % change in CA-lim g_m . The reference CA-lim g_m values for calculating the percentages were CA-lim g_m calculated with measured R_d in B and CA-lim g_m calculated with $b'_3 = 30\%$ in D. Arrows indicate values at ambient pCO₂.

Supplementary Figure S5. Measured (symbols) versus modeled (black lines) response of photosynthetic rate (A) to variation in the leaf intercellular CO₂ partial pressure (C_i) at 25 °C in Setaria viridis (A, C) and Zea mays (B, D). In Zea, the data are for a different set of 4 plants than the set used in the main document which includes more data points at low pCO_2 . In all panels modeled A was calculated with Eqn 1, assuming CA-limiting and $V_{\rm cmax} \approx A_{\rm max} + R_{\rm d}$. In panels A and B modeled A was calculated assuming $V_{\rm pmax} = 450$ (Setaria) or 184 μ mol m⁻² s⁻¹ (Zea) and C_m equal to C_i (solid line), 0.5C_i (dashed-dotted), $0.25C_i$ (dashed) or $0.15C_i$ (dotted). In panels C and D modeled A was calculated assuming $C_{\rm m} = C_{\rm i}$ and $V_{\rm pmax}$ equal to 450 µmol m⁻² s⁻¹ (solid line), 225 µmol m⁻² s⁻¹ (dashed-dotted), 184 μ mol m⁻² s⁻¹ (dashed) or 92 μ mol m⁻² s⁻¹ (dotted). Values are means ± 1 SE, n = 4. The arrows indicate the values at ambient pCO₂. The grey lines in panels A and **B** are the function fitted to the means $A = a(1 - e^{-bC_i}) + c$. Function fitting was done with SigmaPlot 11.0 (Systat Software Inc., San Jose, California, USA). Setaria: a = 35.64 ± 1.18 , $b = 0.19 \pm 0.01$, $c = -3.72 \pm 1.26$, $r^2 = 1.00$, F(2,7) = 1059, P < 0.0001. Zea: $a = 30.59 \pm 0.52$, $b = 0.26 \pm 0.01$, $c = 1.22 \pm 0.51$, $r^2 = 1.00$, F(2.9) = 2280, P < 0.510.0001.

Supplementary Figure S6. Variation in maximum PEP carboxylation rate (V_{pmax} , µmol m⁻²s⁻¹) across *p*CO₂ that is required to match observations of *A* and Δ^{13} C in *Setaria viridis* with their theoretical predictions assuming that mesophyll conductance (CA-lim g_m) is constant with *p*CO₂ and equal to 2.7 ± 0.3, 6.3 ± 0.3 and 9.5 ± 1.4 µmol m⁻² s⁻¹ Pa⁻¹ at 10, 25, and 40 °C, respectively. These values correspond to the maximum CA-lim g_m values at each temperature derived for *Setaria viridis* with the *in-vitro* V_{pmax} method. Values are means ± 1SE, *n* = 4.

Supplementary Figure S7. Hydration rate ($V_h = C_m * K_{CA}$) in function of pCO_2 inside the leaf intercellular spaces (C_i) in *Setaria viridis* (**A**) and *Zea mays* (**B**). Values for three leaf temperatures (T_L) are presented in *Setaria*: 10 °C (grey circles), 25 °C (black circles) and 40 °C (white circles), and for $T_L = 25$ °C in *Zea*. Values are means ± 1 SE, n = 4 (*Setaria*) or 3 (*Zea*). The values for the rate constant of carbonic anhydrase (CA) for CO₂ at 25°C are: $K_{CA} = 65.5 \mu mol m^{-2} s^{-1} Pa^{-1}$ (*Zea*) and $K_{CA} = 124 \mu mol m^{-2} s^{-1} Pa^{-1}$ (*Setaria*) (R.A. Boyd unpublished, Boyd *et al.*, 2015) and varying with temperature as described in Boyd *et al.* (2015).

Supplementary Figure S8. PEP regeneration rate (V_{pr}) as a function of pCO_2 inside the leaf intercellular spaces (C_i) needed to match observations of A and $\Delta^{13}C$ in *Setaria viridis* with their theoretical predictions assuming that mesophyll conductance (CA-lim g_m) is constant with pCO_2 and equal to 2.7 ± 0.3 , 6.3 ± 0.3 and $9.5 \pm 1.4 \mu mol m^{-2} s^{-1} Pa^{-1}$ at 10, 25, and 40 °C, respectively. These values correspond to the maximum CA-lim g_m values derived in *Setaria viridis* at each temperature with the *in-vitro* V_{pmax} method. Values are means $\pm 1SE$, n = 4.

References

- von Caemmerer S. 2000. *Biochemical models of leaf photosynthesis*. Collingwood, Australia: CSIRO publishing.
- Boyd RA, Gandin A, Cousins AB. 2015. Temperature responses of C₄ photosynthesis: biochemical analysis of Rubisco, Phospho*enol*pyruvate carboxylase, and Carbonic anhydrase in *Setaria viridis*. *Plant Physiology* 169, 1850–1861.
- **Ubierna N, Gandin A, Boyd RA, Cousins AB**. 2017. Temperature response of mesophyll conductance in three C₄ species calculated with two methods: ¹⁸O discrimination and *in-vitro V*_{pmax}. *New Phytologist* **214**, 66-80.