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Full derivation of approximate error for one-node case

In order to compute the mean squared error we need expressions for three terms in equation 47 of the

main text. These terms are:
〈(
mG
)2〉

,
〈
µ1m

G
〉
, and

〈
µ2
1

〉
. We now derive these terms one at a time.

Term 1:
〈(
mG
)2〉

The simplest of these is just the square mean of the prior distribution over mG the ground truth mean;
i.e., 〈(

mG
)2〉

=

∫ (
mG
)2
p(mG|vp, χp)dmG (1)

This term is defined by our choice of the prior.

Term 2:
〈
µim

G
〉

To compute the second term,
〈
µim

G
〉
, we first express the means, µi, of the individual Delta rules as

weighted sum of all previous data points; i.e.,

µi =

t∑
a=1

αi(1− αi)
t−axa

=

t∑
a=1

κiaxa

(2)

where the kernel κia = αi(1− αi)
t−a. Using this kernel expression for µi, we can write

〈
µim

G
〉

=

t∑
a=1

κia
〈
xam

G
〉

(3)

If there is no change-point between time a and time t + 1, then xa is sampled from a distribution with
mean mG and we have 〈

xam
G
〉
no change-point =

〈(
mG
)2〉

(4)

which is just the square mean of the prior over mG. Conversely, if there is a change-point between a and
t+ 1, then xa comes from a different distribution and we have〈

xam
G
〉
change-point =

〈
mpm

G
〉

= mp

〈
mG
〉

= m2
p (5)

where mp is the mean of the prior distribution over mG.
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Finally, to compute
〈
xam

G
〉

we need to marginalize over the two possibilities that a change-point has
occurred or not. The probability that there is no change-point between times a and t+1 is (1−h)t−a+1 and
a change happens with probability 1− (1− h)t−a+1. These probabilities give us the following expression
for
〈
xam

G
〉
,〈

xam
G
〉

= (1− h)t−a+1
〈
xam

G
〉
no change-point +

(
1− (1− h)t−a+1

) 〈
xam

G
〉
change-point

= (1− h)n+1
(〈(

mG
)2〉−m2

p

)
+m2

p

= (1− h)n+1ξ0 + ξ1

(6)

where we have defined n = t− a, ξ0 =
〈(
mG
)2〉−m2

p and ξ1 = m2
p. Thus we can write

〈
µim

G
〉

=

t−1∑
n=0

αi(1− αi)
n
(
ξ0(1− h)n+1 + ξ1

)
=
ξ0αi(1− h) (1− (1− αi)

t(1− h)t)

1− (1− αi)(1− h)
+ ξ1

(
1− (1− αi)

t
) (7)

Term 3: 〈µiµj〉
For completeness, we consider the general case of average of two means, µi and µj , generated with two
separate learning rates. The specific case,

〈
µ2
1

〉
is easily computed from this by setting i = j = 1.

〈µiµj〉, is calculated in a similar manner to
〈
µim

G
〉
. Using the kernel expression for µi (equation 2),

we can write

〈µiµj〉 =

t∑
a=1

t∑
b=1

κiaκjb 〈xaxb〉

= C(0)

t∑
a=1

κiaκja +

t∑
n=1

C(n)

[
t−n∑
a=1

κiaκja+n +

t∑
a=n+1

κiaκja−n

] (8)

where we have introduced the function C(n) to denote the average correlation between data points that
are n time points apart; i.e.,

C(0) =
〈
x2a
〉

C(n) = 〈xaxa+n〉
(9)

If we assume that the data come from a change-point process with hazard rate h, then we can compute
the form of C(n). If a change-point occurs between time a and time a + n, then both xa and xa+n are
sampled from the same generative distribution. In this case 〈xaxa+n〉 is simply the mean square of the
prior over µ; i.e.,

〈xaxa+n〉no change-point = ζ0

=

∫ ∫ ∫
xaxa+np(xa|µ)p(xa+n|µ)p(µ|vp, χp)dxadxa+ndµ

=

∫
p(µ|vp, χp)µ2dµ

(10)

If there is a change-point between time a and time a + n then the parameters of the generating
distributions are different. In this case we have that 〈xaxa+n〉 is the square mean of the prior; i.e.,

〈xaxa+n〉change-point = ζ1 =

[∫
p(µ|vp, χp)µdµ

]2
(11)
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Thus we can write

C(n) = (1− h)n 〈xaxa+n〉no change-point + (1− (1− h)n) 〈xaxa+n〉change-point
= (ζ0 − ζ1)(1− h)n + ζ1

(12)

Now, since all of the sums in equation 8 are geometric progressions they can be written in closed form,

t−n∑
a=1

κiaκja+n =
αiαj(1− αi)

n(1− (1− αi)
t−n(1− αj)

t−n)

1− (1− αi)(1− αj)

= Θij(n)

(13)

Note that, by symmetry,
t∑

a=n+1

κiaκja−n =

t−n∑
a=1

κjaκia+n = Θji(n) (14)

and we also have
t∑

a=1

κiaκja = Θij(0) (15)

Next the sums over n can be computed as

t∑
n=1

C(n)Θij(n) =
αiαj

1− (1− αi)(1− αj)

[
t∑

n=1

C(n)(1− αi)
n − (1− αi)

t
t∑

n=1

C(n)(1− αj)
t−n

]
=

αiαj

1− (1− αi)(1− αj)
(S1

i − (1− αi)
tS2

j )

(16)

where

S1
i =

(ζ0 − ζ1)(1− h)(1− αi)(1− (1− h)t(1− αi)
t)

1− (1− αi)(1− h)
+
ζ1(1− αi)(1− (1− αi)

t)

αi
(17)

and

S2
j = (ζ0 − ζ1)(1− h)

(1− αj)
t − (1− h)t

h− αj
− ζ1((1− αj)

t − 1)

αj
(18)

Which gives us the following expression for 〈µiµj〉

〈µiµj〉 =
αiαj(1− (1− αi)

t(1− αj)
t)

1− (1− αi)(1− αj)
C(0) +

αiαj

1− (1− αi)(1− αj)
(S1

i − (1− αi)
tS2

j )

+
αiαj

1− (1− αi)(1− αj)
(S1

j − (1− αj)
tS2

i ) (19)


