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Full derivation of approximate error for one-node case

In order to compute the mean squared error we need expressions for three terms in equation 47 of the

main text. These terms are: <(mG)2>, <u1mG>, and <u%> We now derive these terms one at a time.

Term 1: < (mG) 2>

The simplest of these is just the square mean of the prior distribution over m® the ground truth mean;
ie.,

<(mc)2> - / (mG)QP(mGvaXp)de (1)
This term is defined by our choice of the prior.
Term 2: <,uimG>

To compute the second term, <,uimG>, we first express the means, p;, of the individual Delta rules as
weighted sum of all previous data points; i.e.,
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where the kernel k;, = a;(1 — ai)t_“. Using this kernel expression for u;, we can write
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If there is no change-point between time a and time ¢ 4 1, then z, is sampled from a distribution with
mean m® and we have
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(zam®)pq change-point — <(m ) > (4)
which is just the square mean of the prior over m@. Conversely, if there is a change-point between a and
t+ 1, then x, comes from a different distribution and we have

<zamG>change—point = (mym®) = my, (m®) = my (5)

where m,, is the mean of the prior distribution over me.



Finally, to compute (z,m®) we need to marginalize over the two possibilities that a change-point has
occurred or not. The probability that there is no change-point between times a and t+1is (1—h)!~%*! and
a change happens with probability 1 — (1 — h)!~%+1. These probabilities give us the following expression
for <xamG>,
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where we have defined n =t — a, § = <(mG)2> — mi and & = mf,. Thus we can write
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Term 3: (p;p;)

For completeness, we consider the general case of average of two means, i; and p;, generated with two

separate learning rates. The specific case, <;z§> is easily computed from this by setting i = j = 1.
(wipsj), is calculated in a similar manner to <,uimG>. Using the kernel expression for y; (equation 2),

we can write
t
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where we have introduced the function C(n) to denote the average correlation between data points that
are n time points apart; i.e.,

0) = ()
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If we assume that the data come from a change-point process with hazard rate h, then we can compute
the form of C'(n). If a change-point occurs between time a and time a 4+ n, then both z, and z,, are
sampled from the same generative distribution. In this case (x4Zq1r) is simply the mean square of the
prior over u; i.e.,
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If there is a change-point between time a and time a 4+ n then the parameters of the generating
distributions are different. In this case we have that (2,%.1,) is the square mean of the prior; i.e.,

2
<$axa+n>change-poin‘5 = Cl = l:/p(ﬂvp7Xp)MdM:| (11)



Thus we can write
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Now, since all of the sums in equation 8 are geometric progressions they can be written in closed form,
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Note that, by symmetry,
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and we also have
Zmaﬁja = 0,;(0) (15)

Next the sums over n can be computed as
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Which gives us the following expression for (g, /i;)
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