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Abstract

Error-driven learning rules have received considerable attention because of their close
relationships to both optimal theory and neurobiological mechanisms. However, basic
forms of these rules are effective under only a restricted set of conditions in which the
environment is stable. Recent studies have defined optimal solutions to learning problems
in more general, potentially unstable, environments, but the relevance of these complex
mathematical solutions to how the brain solves these problems remains unclear. Here
we show that one such Bayesian solution can be approximated by a computationally
straightforward mixture of simple error-driven ‘Delta’ rules. This simpler model can
make effective inferences in a dynamic environment and matches human performance on
a predictive-inference task using a mixture of a small number of Delta rules. This model
represents an important conceptual advance in our understanding of how the brain can
use relatively simple computations to make nearly optimal inferences in a dynamic world.

Author Summary

The ability to make accurate predictions is important to thrive in a dynamic world. Many
predictions, like those made by a stock picker, are based, at least in part, on historical data
thought also to reflect future trends. However, when unexpected changes occur, like an
abrupt change in the value of a company that affects its stock price, the past can become
irrelevant and we must rapidly update our beliefs. Previous research has shown that,
under certain conditions, human predictions are similar to those of mathematical, ideal-
observer models that make accurate predictions in the presence of change-points. Despite
this progress, these models require superhuman feats of memory and computation and
thus are unlikely to be implemented directly in the brain. In this work, we address this
conundrum by developing an approximation to the ideal-observer model that drastically
reduces the computational load with only a minimal cost in performance. We show that
this model better explains human behavior than other models, including the optimal
model, and suggest it as a biologically plausible model for learning and prediction.
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Introduction

Decisions are often guided by beliefs about the probability and utility of potential out-
comes. These beliefs are learned through past experiences that, in stable environments,
can be used to generate accurate predictions. However, in dynamic environments, changes
can occur that render past experiences irrelevant for predicting future outcomes. For ex-
ample, after a change in government, historical tax rates may no longer be a reliable
predictor of future tax rates. Thus, an important challenge faced by a decision-maker is
to identify and respond to environmental change-points, corresponding to when previous
beliefs should be abandoned and new beliefs should be formed.

A toy example of such a situation is shown in figure 1A, where we plot the price of
a fictional stock over time. In this example, the stock price on a given day (red dots)
is generated by sampling from a Gaussian distribution with a standard deviation of $2
and a mean (dashed black line) that starts at $10 before changing abruptly to $20 at a
change-point, perhaps caused by the favorable resolution of a court case. A trader only
sees the stock price and not the underlying mean but has to make predictions about the
stock price on the next day.

One common strategy for computing this prediction is based on the Delta rule:

δt = xt − µt

µt+1 = µt + αδt
(1)

According to this rule, an observation, xt, is used to update an existing prediction, µt,
based on the learning rate, α and the prediction error, δt. Despite its simplicity, this
learning rule can provide effective solutions to a wide range of machine-learning prob-
lems [1, 2]. In certain forms, it can also account for numerous behavioral findings that
are thought to depend on prediction-error signals represented in brainstem dopaminergic
neurons, their inputs from the lateral habenula, and their targets in the basal ganglia and
the anterior cingulate cortex [3–15].

Unfortunately, this rule does not perform particularly well in the presence of change-
points. We illustrate this problem with a toy example in figure 1B and C. In panel B,
we plot the predictions of this model for the toy data set when α is set to 0.2. In this
case, the algorithm does an excellent job of computing the mean stock value before the
change-point. However, it takes a long time to adjust its predictions after the change-
point, undervaluing the stock for several days. In figure 1C, we plot the predictions of
the model when α = 0.8. In this case, the model responds rapidly to the change-point
but has larger errors during periods of stability.

One way around this problem is to dynamically update the learning rate on a trial-by-
trial basis between zero, indicating that no weight is given to the last observed outcome,
and one, indicating that the prediction is equal to the last outcome [16, 17]. During
periods of stability, a decreasing learning rate can match the current belief to the average
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Figure 1. An example change-point problem with a single change-point at time 20 (A)
and an illustration of the performance of different algorithms at making predictions
(B-E). (B) The Delta rule model with learning rate parameter α = 0.2 performs well
before the change-point but poorly immediately afterwards. (C) The Delta rule model
with learning rate α = 0.8 responds quickly to the change-point but has noisier
estimates overall. (D) The full Bayesian model dynamically adapts its learning rate to
minimize error overall. (E) Our approximate model shows similar performance to the
Bayesian model but is implemented at a fraction of the computational cost and in a
biologically plausible manner.
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outcome. After change-points, a high learning rate shifts beliefs away from historical data
and towards more recent, and more relevant, outcomes.

These adaptive dynamics are captured by Bayesian ideal-observer models that de-
termine the rate of learning based on the statistics of change-points and the observed
data [18–20]. An example of the behavior of the Bayesian model is shown in figure 1D.
In this case, the model uses a low learning rate in periods of stability to make predictions
that are very close to the mean, then changes to a high learning rate after a change-point
to adapt more quickly to the new circumstances.

Recent experimental work has shown that human subjects adaptively adjust learning
rates in dynamic environments in a manner that is qualitatively consistent with these
algorithms [16,17,21]. However, it is unlikely that subjects are basing these adjustments
on a direct neural implementation of the Bayesian algorithms, which are complex and
computationally demanding. Thus, in this paper we ask two questions: 1) Is there a
simpler, general algorithm capable of adaptively adjusting its learning rate in the presence
of change-points? And 2) Does the new model better explain human behavioral data than
either the full Bayesian model or a simple Delta rule? We address these questions by
developing a simple approximation to the full Bayesian model (figure 1E). In contrast to
earlier work that used a single Delta rule with an adaptive learning rate [17,21], our model
uses a mixture of biologically plausible Delta rules, each with its own, fixed learning rate,
to adapt its behavior in the presence of change-points. We show that the model provides a
better match to human performance than the other models. We conclude with a discussion
of the biological plausibility of our model, which we propose as a general model of human
learning.

Methods

Ethics statement

Human subject protocols were approved by the University of Pennsylvania internal review
board. Informed consent was given by all participants prior to taking part in the study.

Change-point processes

To familiarize readers with change-point processes and the Bayesian model, we first review
these topics in some detail and then turn our attention to the reduced model.

In this paper we are concerned with data generated from change-point processes. An
example of such a process generating Gaussian data is given in figure 2. We start by
defining a hazard rate, h, that in the general case can be variable over time but for
our purposes is assumed to be constant. Change-point locations are then generated by
sampling from a Bernoulli distribution with this hazard rate, such that the probability of a
change-point occurring at time t is h (figure 2A). In between change-points, in periods we
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Figure 2. An example of the generative process behind a change-point data set with
Gaussian data. (A) First, the change-point locations (grey lines) are sampled from a
Bernoulli process with known hazard rate h (in this case, h = 0.05). (B) Next, the mean
of the Gaussian distribution, µ, is sampled from the prior distribution defined by
parameters vp and χp, p(µ|vp, χp), (C) for each epoch between change-points (in this
case, vp = 0.16 and χp = 2.4). (D) Finally, the data points at each time step (xt) are
sampled from a Gaussian distribution with the current mean and a variance of 1,
p(xt|µ), shown in (E) for the mean of the last epoch.
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term ‘epochs,’ the generative parameters of the data are constant. Within each epoch, the
values of the generative parameters, η, are sampled from a prior distribution p(η|vp, χp),
for some hyper-parameters vp and χp that will be described in more detail in the following
sections. For the Gaussian example, η is simply the mean of the Gaussian at each time
point, µ. We generate this mean for each epoch (figure 2B) by sampling from the prior
distribution shown in figure 2C. Finally, we sample the data points at each time t, xt from
the generative distribution p(xt|η) (figure 2D and E).

Full Bayesian model

The goal of the full Bayesian model [18,19] is to make accurate predictions in the presence
of change-points. This model infers the predictive distribution, p(xt+1|x1:t), over the next
data point, xt+1, given the data observed up to time t, x1:t = {x1, x2, ..., xt}.

In the case where the change-point locations are known, computing the predictive
distribution is straightforward. In particular, because the parameters of the generative
distribution are resampled independently at a change-point (more technically, the change-
points separate the data into product partitions [22]) only data seen since the last change-
point are relevant for predicting the future. Therefore, if we define the run-length at time
t, rt, as the number of time steps since the last change-point, we can write

p(xt+1|x1:t) = p(xt+1|xt+1−rt+1:t) = p(xt+1|rt+1) (2)

where we have introduced the shorthand p(xt+1|rt+1) to denote the predictive distribution
given the last rt+1 time points. Assuming that our generative distribution is parameterized
by parameters η, then p(xt+1|rt+1) is straightforward to write down (at least formally) as
the marginal over η

p(xt+1|rt+1) =

∫
p(xt+1|η)p(η|rt+1)dη (3)

where p(η|rt) = p(η|xt−rt+1:t) is the inferred distribution over η given the last rt time
points, and p(xt|η) is the likelihood of the data given the generative parameters.

When the change-point locations are unknown the situation is more complex. In this
case we need to compute a probability distribution over all possible values for the run-
length given the observed data. This distribution is called the run-length distribution
p(rt|x1:t). Once we have the run-length distribution, we can compute the predictive dis-
tribution in the following way. First we compute the expected run-length on the next
trial, t+ 1; i.e.,

p(rt+1|x1:t) =
t∑

rt=1

p(rt+1|rt)p(rt|x1:t) (4)

where the sum is over all possible values of the run-length at time t and p(rt+1|rt) is the
change-point prior that describes the dynamics of the run-length over time. In particular,
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because the run-length either increases by one, with probability 1−h in between change-
points, or decreases to zero, with probability h at a change-point, the change-point prior,
p(rt+1|rt), takes the following form

p(rt+1|rt) =


1− h if rt+1 = rt + 1
h if rt+1 = 0
0 otherwise

(5)

Given the distribution p(rt+1|x1:t), we can then compute the predictive distribution of the
data on the next trial, p(xt+1|x1:t) in the following manner,

p(xt+1|x1:t) =
t+1∑

rt+1=0

p(xt+1|rt+1)p(rt+1|x1:t) (6)

where the sum is over all possible values of the run-length at time t+ 1.
All that then remains is to compute the run-length distribution itself, which can be

done recursively using Bayes’ rule

p(rt|x1:t) ∝ p(xt|rt)p(rt|x1:t−1)

= p(xt|rt)
t−1∑

rt−1=0

p(rt|rt−1)p(rt−1|x1:t−1)
(7)

Substituting in the form of the change-point prior for p(rt|rt−1) we get

p(rt|x1:t) ∝
{

(1− h)p(xt|rt)p(rt−1 = rt − 1|x1:t−1) if rt > 0
hp(xt|0) if rt = 0

(8)

Thus for each value of the run-length, all but two of the of the terms in equation 7 vanish
and the algorithm has complexity of O(t) computations per timestep. Unfortunately,
although this is a substantial improvement compared to O(2t) complexity of a more
näıve change-point model, this computation is still quite demanding. In principle, the
total number of run-lengths we must consider is infinite, because we must allow for the
possibility that a change-point occurred at any time in the past. In practice, however, it
is usual to introduce a maximum run-length, rmax, and define the change-point prior here
to be

p(rt+1|rt = rmax) =


1− h if rt+1 = rmax

h if rt+1 = 0
0 otherwise

(9)

With this procedure, the complexity of the computation is bounded but still can remain
dauntingly high.
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Efficient solution for exponential families

The above inference algorithm is particularly well suited to problems that involve expo-
nential family distributions (such as the Gaussian, Bernoulli, or Laplace distributions)
with a conjugate prior [23]. For these cases, the predictive distribution given the run-
length, p(xt|rt), can be represented with a finite number of parameters, called sufficient
statistics, that are easily updated when new data arrive.

Specifically, we assume that xt is sampled from a distribution with parameters η,
p(xt|η), which can be related to p(xt|rt) as

p(xt|rt) =

∫
dηp(xt|η)p(η|rt) (10)

If p(xt|η) is an exponential family distribution and we assume a conjugate prior, then this
equation is relatively straightforward to compute. Specifically we assume that p(xt|η) has
the form

p(x|η) = H(x) exp
(
ηTU(x)− A(η)

)
(11)

where the forms of η, H(x), U(x) and A(η) determine the specific type of exponential
family distribution. For example, for a Gaussian distribution with unknown mean, µ, and
known variance σ, we have

η =
µ

σ2
; H(x) =

1√
2πσ

exp

(
− x2

2σ2

)
; U(x) = x; A(η) =

µ2

2σ2
(12)

We further assume that the generative parameters, η, are resampled at each change-point
from a conjugate prior distribution of the form

p(η|vp, χp) = H̃(η) exp
(
ηTχp − vpA(η)− Ã(vp, χp)

)
(13)

where χp and vp are the prior hyperparameters and the forms of H̃(η) and Ã(vp, χp)
determine the nature of the prior distribution.

For example, for a Gaussian prior distribution over µ with standard deviation σ/
√
vp

and mean χp/vp, we set

H̃(η) =
1√
2π

; Ã(vp, χp) = log

(
σ
√
vp

)
+

χ2
p

2vpσ2
; (14)

With this conjugate prior, the posterior distribution over the parameters given the last
rt data points, p(η|rt), has the same form as the prior, p(η|vp, χp) and we can write

p(η|rt) = p(η|vrtt , χrt
t )

= H̃(η) exp
(
ηTχrt

t − vrtt A(η)− Ã(vrtt , χ
rt
t )
) (15)
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This posterior distribution, p(η|rt) (and thus also the likelihood p(xt|rt) by equation 10),
is parameterized by the sufficient statistics vrtt and χrt

t . Crucially, these statistics are
straightforward to compute, as follows

vrtt = rt + vp (16)

and

χrt
t = χp +

t∑
i=t−rt+1

U(xi) (17)

Thus, vrtt is constant for a given run-length, and χrt
t computes a running sum of the most

recent rt data points (transformed by function U).
It is useful to write the equation for χrt

t as an update rule; that is, in terms of the
sufficient statistics at an earlier time point. In particular, for rt > 1, we can write the
update in terms of the sufficient statistic at the previous time point and run-length; i.e.,

χrt
t = χrt−1

t−1 + U(xt) (18)

Dividing through by vrtt gives a Delta-rule update for the mean, µrt
t = χrt

t /v
rt
t :

µrt
t = µ

rt−1

t−1 +
1

v
rt−1

t−1 + 1
(U(xt)− µrt−1

t−1 ) (19)

Note that in this case the learning rate, 1/(v
rt−1

t−1 + 1), decays as the run-length increases.

Graphical interpretation

The previous sections showed that, for conjugate exponential distributions, the Bayesian
model needs to keep track of only the run-length distribution, p(rt|x1:t), and the sufficient
statistics, vrtt and χrt

t , for each run-length to fully compute the predictive distribution,
p(xt+1|x1:t). This algorithm also has an intuitive interpretation in terms of message passing
on a graph (Figure 3A). Each node in this graph represents a run-length, ri, with two
properties: 1) the sufficient statistics, vrtt and χrt

t , associated with that run-length, and 2) a
‘weight’ representing the probability that the run-length at time t is ri; i.e., p(rt = ri|x1:t).
The weights of the nodes are computed by passing messages along the edges of the graph.
Specifically, each node, ri, sends out two messages: an ‘increasing’ message to node ri + 1
that corresponds to an increase in run-length if no change-point occurred, (1−h)p(rt|x1:t),
and 2) a ‘change-point’ message, to r1, corresponding to a decrease in run-length at a
change-point, hp(rt|x1:t). The weight of node ri is then updated by summing all of the
incoming messages and multiplying it by p(xt+1|ri), which implements equation 8.
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Figure 3. Schematic of the message passing algorithm for the full (A) and approximate
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Reduced model

Despite the elegance of the full Bayesian algorithm, it is complex, requiring a memory of
a large number (rmax) of different run-lengths, which, in the worst case, is equivalent to
keeping track of all the past data. Thus, it seems an unlikely model of human cognition,
and a key question is whether comparable predictive performance can be achieved with
a simpler, more biologically plausible algorithm. Here we introduce an approximation
to the full model that addresses these issues. First we reduce the model’s complexity
by removing nodes from the update graph (Figure 3). Then we transform the update
equation for χrt

t into a Delta-rule update equation in which the sufficient statistic on each
node updates independently of the other nodes. The resulting algorithm is a biologically
plausible mixture of Delta-rules that is able to flexibly adapt its overall learning rate in
the presence of change-points and whose performance is comparable with that of the full
Bayesian model at a fraction of the computational cost. Below we derive new update
equations for the sufficient statistics and the weights of each new node for this reduced
model.

To more easily distinguish the full and reduced models, we use l to denote run-length
in the reduced model and r to denote run-length in the full model. Thus, the reduced
model has N nodes, where node i has run-length li. The set of run-lengths, {li}, are
ordered such that li−1 < li < li+1. Unlike the full model, the run-lengths in the reduced
model can take on non-integer values, which allows greater flexibility.

The first step in our approximation is to remove nodes from the update graph. This
step reduces the memory demands of the algorithm but also requires us to change the
update rule for the sufficient statistic and the form of the change-point prior.

Consider a node with run-length li. In the full Bayesian model, the sufficient statistic
for this node would be

χli
t = χp +

t∑
t′=t−li+1

U(xt′) = χli−1
t−1 + U(xt) (20)

Note that this form of the update relies on having computed χli−1
t−1 , which is the sufficient

statistic at run length li−1. In the full Bayesian model, this procedure is straightforward
because all possible run-lengths are represented. In contrast, the reduced model includes
only a subset of possible run-lengths, and thus a node with run-length li − 1 will not
exist for some values of li. Therefore, the reduced model must include a new method for
updating the sufficient statistic and a new form of the change-point prior.

We first note that another way of writing the update for χli
t is as

χli
t = χli

t−1 + U(xt)− U(xt−li) (21)

This sliding-window update equation depends only on information available at node li
and thus does not rely on knowing the sufficient statistic at node li − 1. However, this
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update also has a high memory demand because, to update the sliding window, we have
to subtract U(xt−li), which we can only do if we keep track of the previous li data points
on each node.

In our model, we remove the dependence on xt−li , and hence the additional memory
demands, by taking the average of equation 21. This procedure leads to a memoryless
(yet approximate) form of the update equation for each node. In particular, if we take
the average of equation 21 with respect to xt−li , we have〈

χli
t

〉
xt−li

=
〈
χli
t−1
〉
xt−li

+ U(xt)− 〈U(xt−li)〉xt−li

≈ χ̂li
t−1 + U(xt)− µli

t−1
(22)

where we have introduced χ̂li
t ≈

〈
χli
t

〉
xt−li

as the Delta-rule’s approximation to the mean

sufficient statistic and

µli
t =

χ̂li
t

li + vp
(23)

as the mean of the node. Dividing equation 21 by li + vp gives us the following form of
the update for the mean

µli
t = µli

t−1 +
1

li + vp

(
U(xt)− µli

t−1
)

(24)

Note that this equation for the update of µli
t is a Delta rule, just like equation 1, with

a fixed learning rate, αi = 1/(li + vp). Thus, the reduced model simply has to keep
track of µli

t for each node and update it using only the most recent data point. This
form of update rule also allows us to interpret non-integer values of the run-length, li, in
terms of changes in the learning rate of the Delta rule on a continuum. In figure 4 we
show the effect of this approximation on the extent to which past data points are used to
compute the mean of each node. The sliding window rule computes the average across
the last li data points, ignoring all previous data. In contrast, the Delta rule computes
a weighted average using an exponential that decays over time, which tends to slightly
under-emphasize the contributions of recent data and over-emphasize the contributions
of distant data relative to the sliding window.

Reducing the number of nodes in the model also requires us to change how we update
the weights of each node. In particular the update for the weights, p(li|x1:t), is given as

p(li|x1:t) ∝ p(xt|li)
N∑
j=1

p(li|lj)p(lj|x1:t−1) (25)

This equation is similar to equation 7 but differs in the number of run-lengths available.
Crucially, this difference requires an adjustment to the change-point prior. The adjusted
prior should approximate the full change-point prior (Eq. 5) as closely as possible. Recall
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Figure 4. Comparison of the extent to which the sliding window and Delta rule
updates weigh past information in computing the mean of a node for three different
run-lengths: (A) li = 2, (B) li = 6 and (C) li = 9.

that the full prior captures the fact that the run-length either decreases to zero if there is
a change-point (with prior probability h) or increases by one if there is no change-point
(with prior probability 1− h).

To see how to compute this adjusted prior in the reduced model, we first decompose
the change-point prior into two terms corresponding to the possibility that a change-point
will occur or not; i.e.,

p(li|lj) = hp(li|lj, change) + (1− h)p(li|lj, no change) (26)

where p(li|lj, change) is the probability that the run-length is li given that there was a
change-point and that the previous run-length was lj. Similarly p(li|lj, no change) is the
probability that the run-length is li given that the previous run-length was lj and there
was not a change-point.

The change-point case is straightforward, because a change-point always results in a
transition to the shortest run-length; i.e., p(li|lj, change) is zero, except when i = 1 when
it takes value 1.

The no change-point case, however, is more difficult. In the full model the run-length
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increases by 1 when there is no change-point, thus we would like to have

p(li|lj, no change) =

{
1 if li = lj + 1
0 otherwise

(27)

However, because the nodes have variable spacing in the reduced model, this form is
not possible as there may be no node with a run-length li = lj + 1. We thus seek an
approximation such that the prior defines an average increase in run-length of 1 if there
is not a change-point. That is, we require

E(li|lj, no change) =
N∑
i=1

lip(li|lj, no change) = lj + 1 (28)

For li+1 > li + 1 we can match this expectation exactly by setting

p(li|lj, no change) =


lj+1−lj−1
lj+1−lj if i = j

1
lj+1−lj if i = j + 1

0 otherwise

(29)

For li+1 < li + 1 we approximate p(li|lj, no change) using

p(li|lj, no change) =


0 if i = j
1 if i = j + 1
0 otherwise

(30)

In this case we do not match the expected increase in run-length. For the final node,
j = N , it is impossible to transition to a longer run-length and so we simply have a self
transition with probability 1; i.e.,

p(li|lN , no change) =

{
1 if i = N
0 otherwise

(31)

Taken together with equation 26, equations 29, 30 and 31 define the change-point prior
in the reduced model.

Like the full Bayesian model, our reduced model also has a graphical interpretation.
Again each node, li, keeps track of two quantities: 1) the mean µli

t , computed according
to equation 24, and 2) the weight p(lt = li|x1:t). As in the full model, the weights are
computed by passing messages along the edge of the graph. However, the structure of the
graph is slightly different, with no increasing message being sent by node lN and an extra
‘self’ message from li to itself. The increasing message has weight

1− h
lj+1 − lj

p(lj|x1:t) for lj+1 > lj + 1

(1− h)p(lj|x1:t) otherwise

(32)
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the self message has weight

lj+1 − lj − 1

lj+1 − lj
(1− h)p(lj|x1:t) for lj+1 > lj + 1

0 otherwise

(33)

and the change-point message has weight

hp(lj|x1:t) (34)

Finally the new weight for each node is computed by summing all of the incoming messages
to implement equation 25.

Results

In this section we present the results of simple simulations comparing the reduced and
full models and use our model to fit human behavior on a simple prediction task with
change-points.

Simulations

First we consider the simplest cases of one and two nodes with Gaussian data. These
cases have particularly simple update rules, and their output is easy to understand. We
then consider the more general case of many nodes to show how the reduced model retains
many of the useful properties of the full model, such as keeping track of an approximate
run-length distribution and being able to handle different kinds of data.

One and Two Nodes

To better understand the model it is useful to consider the special cases of one and two
nodes with Gaussian data. When there is only one node, the model has only one run-
length, l1. The update for the mean of this single node is given by

µl1
t = µl1

t−1 +
1

l1 + vp
(U(xt)− µl1

t−1)

= µl1
t−1 +

1

l1 + vp
(xt − µl1

t−1)
(35)

where we have used the fact that, for Gaussian data with a known variance, σ2, we have
U(xt) = xt. This update rule is, of course, equivalent to a simple Delta rule with a fixed
learning rate. Because there is only one node, computing the run-length distribution is
trivial, as p(l1|x1:t) = 1 for all t and thus the predictions of this model are simply the
mean of the single Delta rule.
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In the two-node case the model has two nodes with run-lengths l1 and l2. The means
of these nodes update according to independent Delta rules

µl1
t = µl1

t−1 +
1

l1 + vp
(U(xt)− µl1

t−1)

µl2
t = µl2

t−1 +
1

l2 + vp
(U(xt)− µl2

t−1)
(36)

The prediction of the two-node model is given as the weighted sum of these two nodes

µt = p(l1|x1:t)µl1
t + p(l2|x1:t)µl2

t (37)

where the weights, p(l1|x1:t) and p(l2|x1:t), are the components of the run-length distribu-
tion that update according to equation 25. For node 1, when l2 ≥ l1 +1, p(l1|x1:t) updates
as

p(l1|x1:t) ∝ p(xt|l1) (p(l1|l1)p(l1|x1:t−1) + p(l1|l2)p(l2|x1:t−1))

= p(xt|l1)
((

h+
(1− h)(l2 − l1 − 1)

l2 − l1

)
p(l1|x1:t−1) + hp(l2|x1:t−1)

)
= p(xt|l1)

(
h+

(1− h)(l2 − l1 − 1)

l2 − l1
p(l1|x1:t−1)

) (38)

where we have used the fact that p(l1|x1:t−1) + p(l2|x1:t−1) = 1 because the run-length
distribution is normalized. For node 2, p(l2|x1:t) updates as

p(l2|x1:t) ∝ p(xt|l2) (p(l2|l1)p(l1|x1:t−1) + p(l2|l2)p(l2|x1:t−1))

= p(xt|l2)
(

1− h
l2 − l1

p(l1|x1:t−1) + (1− h)p(l2|x1:t−1)
)

= p(xt|l2)(1− h)

(
1− l2 − l1 − 1

l2 − l1
p(l1|x1:t−1)

) (39)

Thus, for the two-node case, the run-length distribution is closely tied to the likelihood
of the data for each of the nodes, p(xt|l1) and p(xt|l2). These likelihoods are computed
in a straightforward manner given the mean and run-length of each node. For Gaussian
data these likelihoods take the form

p(xt|li) =
1

σ
√

2π

√
li + vp

1 + li + vp
exp

(
− 1

2σ2

(
li + vp

1 + li + vp

)(
xt − µli

t

)2)
(40)

An illustration of the output of the one and two node models is shown in figure 5A.
This figure shows the predictions of one- and two-node models when faced with a relatively
simple change-point task. To generate this figure, the one-node model had a single run-
length, l1 = 5, whereas the two-node model had two run-lengths, l1 = 1.5 and l2 = 5.
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Figure 5. Output of one- and two- node models on a simple change-point task. (A)
Predictions from the one- and two-node models. (B) Evolution of the node weights for
the two-node model.

The hazard rate in each model was set to 0.1, and the noise standard deviation, σ, was
set at 0.5. The two-node model is much better able to adapt to the change-point than
the one-node model. Figure 5B shows the evolving weights of the two nodes, determined
from the run-length distribution. Before the change-point, the model has a high weight
on the l2 node and a low weight on the l1 node. At the change-point, this trend reverses
abruptly but then returns after the model stabilizes to the mean of the new data.

Many nodes

Here we illustrate the utility of the approximate algorithm to solve simulated change-point
problems using three different types of generative distribution. The first is a Bernoulli
process with a piecewise constant rate, µ, (Figure 6A) in which the generative distribution
takes the following exponential family form

η = log

(
µ

1− µ

)
; H(x) = 1; U(x) = x; A(η) = − log(1−µ) = log(1 + exp η) (41)
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Figure 6. Examples comparing estimates and run-length distributions from the full
Bayesian model and our reduced approximation for the cases of Bernoulli data (A, D,
G), Gaussian data with unknown mean (B, E, H), and Gaussian data with a constant
mean but unknown variance (C, F, I). (A, B, C) input data (grey), model estimates
(blue: full model; red: reduced model), and the ground truth generative parameter
(mean for A and B, standard deviation in C; dashed black line). Run-length
distributions computed for the full model (D, E, F) and reduced model (G, H, I) are
shown for each of the examples.
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and with a uniform prior distribution defined by vp = 2 and χp = 1.
The second is a Gaussian distribution with known standard deviation, σ = 5, but

unknown mean (Figure 6B). In this case, the generative distribution takes on the following
exponential family form

η =
µ

σ2
; H(x) =

1√
2π

exp

(
− x2

2σ2

)
; U(x) = x; A(η) =

µ2

2σ2
(42)

with prior hyperparameters vp = 1 and χp = 0.
The third is a Gaussian distribution with a known mean, µ = 0, and a changing

standard deviation σ (Figure 6C). In this case, the generative distribution takes on the
following exponential family form

η =
1

σ2
; H(x) =

1√
2π

; U(x) = −(x− µ)2

2
; A(σ) = log σ (43)

with prior hyper parameters vp = 1 and χp = −1.
For all three cases, both the full and reduced models used a fixed hazard rate (equal

to 0.05 for the first and third cases, 0.025 for the second case). The reduced models used
as initial sufficient statistics χli = li/2 for case 1 and 2 and χli = −li/2 in case 3, and had
18 nodes spaced logarithmically between 1 and 100.

In figure 6, the top row shows the true value of the parameter of interest for the
generative process (the Bernoulli rate in panel A, the mean in panel B, and the standard
deviation in panel C), the generated data, and the inferred value of the parameter from the
full (blue) and reduced (red) models. For all three cases, there is a close correspondence
between the values inferred by the full and reduced models. For the Bernoulli case, the full
model has an average mean squared error (relative to ground truth) of 0.034 versus 0.036
for the reduced model. For the Gaussian case with known variance the mean squared
errors are 29 for the full model and 32 for the reduced model. For the Gaussian case with
known variance the errors are 7.98 and 8.83 respectively. We also show the run-length
distributions inferred by both models (middle and bottom rows), which are more sparsely
sampled by the reduced models but still pick up the major trends seen in the full model.

Performance of the reduced model relative to ground truth

Here we investigate the performance of the model by considering the average discrepancy
between the predictions made by the reduced model and the ground truth generative
parameters. Using an analytic result for the one-node case and extensive simulations for
two- and three-node cases, we compute approximately optimal node arrangements for
different hazard rates.
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General expression for error

Although there are many measures we could use to quantify the error between the ap-
proximation and the ground truth, for simplicity, we focus here on the squared error.
More specifically, we compute the expected value, over data and time, of the squared
error between the predictive mean of the reduced model, mt, and the ground truth mean
on the next time step, mG

t+1; i.e.,

E2 =
〈
(mt −mG

t+1)
2
〉

(44)

Because our model is a mixture model, the mean mt is given by

mt =
∑
li

µli
t p(li|x1:t−1) (45)

For notational convenience we drop the t subscripts and refer to node li simply by its
subscript i, and we write µli

t = µi and p(li|x1:t−1) = pi. We also refer to the learning rate
of node i, αi = 1/(vp + li). Finally, we refer to the set of nodes in the reduced model as
A, such that the above equation, in our new notation, becomes

m =
∑
i∈A

µipi (46)

Substituting this expression into equation 44 for the error we get

E2 =
∑
i∈A

∑
j∈A
〈pipjµiµj〉 − 2

∑
i∈A

〈
piµim

G
〉

+
〈(
mG
)2〉

(47)

Unfortunately, deriving an analytic expression for the error is not trivial as the terms
〈pipjµiµj〉 and

〈
piµim

G
〉

are difficult to compute. However, these terms are tractable in
the one-node case as we show below. Moreover, the error can be computed numerically
for any number of nodes.

To better interpret the error, we compare the error relative to the variance of the prior
distribution over the mean, mG,

E2
0 =

∫
m2

Gp(mG|vp, χp)dmG −
(∫

mGp(mG|vp, χp)dmG

)2

(48)

where p(mG|vp, χp) is the prior over the mean. E2
0 is the mean squared error if the

algorithm simply predicted the mean of the prior distribution at each time step. This
‘relative error,’ E2/E2

0 , varies between 0 (perfect prediction) and 1, when the algorithm
picks the mean of the prior distribution, and allows us to compare different data types of
prior distributions.
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Figure 7. Error and optimal learning rates from the one-node model for Bernoulli (A,
B) and Gaussian (C, D) data. (A, C) Error (normalized by the variance of the prior,
E2

0) as a function of learning rate for four different hazard rates, as indicated. (B, D)
Optimal learning rate, corresponding to the lowest relative error, as a function of hazard
rate.

Error for one node

We first consider how the relative error varies as a function of hazard rate and learning
rate for a model with just one node (figure 7). The one-node case is useful because we
can easily visualize the results and, because in this case the run-length distribution has
only one non-zero term, p1 = 1, it is possible to derive an exact expression for the error.
In particular, for the one-node case, the expression for the error (equation 47) simplifies
to

E(1 node)2 =
〈
µ2
1

〉
− 2

〈
µ1m

G
〉

+
〈(
mG
)2〉

(49)

Thus to compute the error we only need to compute three quantities: the averages over

〈µ2
1〉,
〈
µ1m

G
〉
, and

〈(
mG
)2〉

. A full derivation of these terms is presented in the Supple-



22

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

hazard rate, h

le
ar

ni
ng

 r
at

e,
 α

Gaussian, N = 1

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

hazard rate, h
le

ar
ni

ng
 r

at
e,

 α

Gaussian, N = 2

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

hazard rate, h

le
ar

ni
ng

 r
at

e,
 α

Gaussian, N = 3

Figure 8. Optimal learning rates, corresponding to the lowest relative error (see figure
7), as a function of hazard rate and number of nodes. Gaussian case with 1 (left), 2
(center), or 3 (right) nodes.

mentary Material; here we focus on presenting how this error varies with model parameters
in the specific cases of Bernoulli and Gaussian data.

Figures 7A and B consider Bernoulli data with a uniform prior (vp = 2, χp=1). For
different settings of the hazard rate, there is a unique learning rate (which is bounded
between 0 and 1) that minimizes the error. The value of this optimal learning rate tends
to increase as a function of increasing hazard rate, except at high hazard rates when it
decreases to near zero. This decrease at high hazard rates is due to the fact that when a
change happens on nearly every trial, the best guess is the mean of the prior distribution,
p(x|vp, χp), which is better learned with a smaller learning rate that averages over multiple
change-points.

Figure 7C and D consider a Gaussian distribution with unknown mean and known
variance (using parameters that match the experimental setup: standard deviation = 10,
prior parameters vp = 0.01 and χp = 1.5). These plots show the same qualitative pattern
as the Bernoulli case, except that the relative error is smaller and the optimal learning
rate varies over a wider range. This variability results from the fact that the costs involved
in making a wrong prediction can be much higher in the Gaussian case (because of the
larger variance) than the Bernoulli case, in which the maximal error is between -1 and 1.

Error for multiple nodes

Next we consider the case of multiple nodes. Unlike the one-node case, deriving an ana-
lytic form for the error (equation 47) is difficult. Instead we take a numerical approach to
compute approximately optimal learning rates and errors as a function of hazard rate. We
minimize the relative mean squared error, computed over a finite but large enough number
of time steps (much larger than the average interval between change points for each hazard
rate condition). To reduce any bias effect introduced by the limited number of time steps
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Figure 9. Error (normalized by the variance of the prior, E2
0) computed from

simulations as a function of hazard rate for the reduced model at the optimal parameter
settings as shown in figure 8. Gaussian case with 1 (left), 2 (center), or 3 (right) nodes.

defining the error function, we repeat the optimization for several different realizations of
the data (in each hazard rate condition) and we average the result over realizations. To
minimize the relative mean squared error we use the fmincon Interior-Point Algorithm in
the Matlab nonlinear optimization toolbox, with multiple re-initializations to escape local
minima. To test for robustness of results we perform the same optimization with the Co-
variance Matrix Adaptation Evolution Strategy Algorithm, an evolutionary algorithm for
numerical minimization of non-linear, non-convex (continuous domain) functions. Both
algorithms return the same optimal learning rates, shown in Fig. 8, as a function of haz-
ard rate, for the reduced model with 1-3 nodes (Gaussian data). All the learning rates
show the same non-monotonic dependence on hazard rate as with one node. For three
nodes, we see slightly more numerical instability (likely caused by the presence of multiple
local minima) in the mid-range of hazard rates. Going to two and three nodes adds lower
learning rates with a less-pronounced non-monotonic dependence on hazard rate than the
single node.

In figure 9 we show the relative error as a function of hazard rate at the optimal
learning rate settings computed from simulations. As in the one-node case, we see that
the relative error increases with hazard rate and decreases slightly with more nodes. The
biggest improvement in performance comes from increasing from one to two nodes. This
suggests diminishing returns in terms of performance as more nodes are added.

Fits to experimental data

In this section, we ask how well our model describes human behavior by fitting versions
of the model to behavioral data from a predictive-inference task [24]. Briefly, in this task,
30 human subjects (19 female, 11 male) were shown a sequence of numbers between 0
and 300 that were generated by a Gaussian change-point process. This process had a
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mean that was randomly sampled at every change-point and a standard deviation that
was constant (set to either 5 or 10) for blocks of 200 trials. Samples were constrained
to be between 0 and 300 by keeping the generative means away from these bounds (the
generative means were sampled from uniform distribution from 40 to 260) and resampling
the small fraction of samples outside of this range until they lay within the range. The
hazard rate was set at 0.1 except for the first three trials following a change-point, in
which case the hazard rate was zero.

The subjects were required to predict the next number in the sequence and obtained
more reward the closer their predictions were to the actual outcome. In particular, sub-
jects were required to minimize the mean absolute error between prediction and outcome,
which we denote S. Because prediction errors depended substantially on the specific se-
quence of numbers generated for the given session, the exact conversion between error
and monetary reward was computed by comparing performance with two benchmarks:
a lower benchmark (LB) and an higher benchmark (HB). The LB was computed as the
mean absolute difference between sequential generated numbers. The HB was the mean
difference between mean of the generative distribution on the previous trial and the gen-
erated number. Payout was then computed as follows:

S > LB =⇒ $8

LB > S >
2

3
LB +

1

3
HB =⇒ $10

2

3
LB +

1

3
HB > S >

1

2
(LB +HB) =⇒ $12

1

2
(LB +HB) > S =⇒ $15

(50)

A benefit of this task design is that the effective learning rates used by subjects on a
trial-by-trial basis can be computed in terms of their predictions following each observed
outcome, using the relationships in equation 1. Our previous studies indicated that these
learning rates varied systematically as a function of properties of the generative process,
including its standard deviation and the occurrence of change-points [17, 24].

To better understand the computational basis for these behavioral findings, we com-
pared five different inference models: the full Bayesian model (‘full’), the reduced model
with 1 to 3 nodes and the approximately Bayesian model of Nassar et al [17]. The Nassar
et al model instantiates an alternative hypothesis to the mixture of fixed Delta rules by
using a single Delta rule with a single, adaptive learning rate to approximate Bayesian
inference.

On each trial, each of these models, M , produces a prediction mM
t about the location

of the next data point. To simulate the effects of decision noise, we assume that the
subjects’ reported predictions, cMt , are subject to noise, such that

cMt = mM
t + ε (51)



25

where ε is sampled from a Gaussian distribution with mean 0 and standard deviation σd
that we fit as a free parameter for all models.

In addition to this noise parameter, we fit the following free parameters for each
model: The full model and the model of Nassar et al. have a hazard rate as their only
other parameter, the one-node model has a single learning rate and the remaining models
with N nodes (N > 1) have a hazard rate as well as the N learning rates.

Our fits identified the model parameters that maximized the log likelihood of the
observed human predictions, cHt , given each of the models, log p(cH1:t|M), which is given
by

log p(cH1:T |M) =
T∑
t=1

(cHt −mM
t )2

2σ2
d

− T log σd −
T

2
log 2π (52)

We used the maximum likelihood value to approximate the log Bayesian evidence, logEM

for each model using the standard Bayesian information criterion (BIC) approximation
[25], which takes into account the different numbers of parameters in the different models;
i.e.,

EM =
1

2
BICM = log(p(cH1:T |M))− kM

2
log T (53)

where kM is the number of free parameters in model M .
Models were then compared at the group level using the Bayesian method of Stephan

et al. [26]. Briefly, this method aggregates the evidence from each of the models for each
of the subjects to estimate two measures of model fit. The first, which we refer to as the
‘model probability’, is an estimate of how likely it is that a given model generated the
data from a randomly chosen subject. The second, termed the ‘exceedance probability’,
is the probability that one model is more likely than any of the others to have generated
the behavior of all of the subjects.

An important question when interpreting the model fits is the extent to which the
different models are identifiable using these analyses. In particular we are interested in
the extent to which different models can be separated on the basis of their behavior and
the accuracy with which the parameters of each model can be fit.

The question of model identifiability is addressed in figure 10, where we plot two
confusion matrices showing the model probability (A) and the exceedance probability
(B) for simulated data. These matrices were generated using simulations that matched
the human-subjects experiments, with the same values of the observed stimuli, the same
number of trials per experiment and the same parameter settings as found by fitting the
human data. Ideally, both confusion matrices should be the identity matrix, indicating
that data fit to model M is always generated by model M and never by any other model
(e.g., [27]). However, because of noise in the data and the limited number of trials in
the experiment, it is often the case that not all of the models are completely separable.
In the present case, there is good separation for the Nassar et al., full, 1-node, and 2-
node models and reasonable separation between the 3-node model and others. When
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Figure 10. Confusion matrices. (A) The confusion matrix of model probability, the
estimated fraction of data simulated according to one model that is fit to each of the
models. (B) The confusion matrix of exceedance probability, the estimated probability
at the group level that a given model has generated all the data.

we extended this analysis to include 4- and 5-node models, we found that they were
indistinguishable from the 3-node model. Thus, these models are not included in our
analyses, and we consider the ‘3-node model’ to represent a model with 3 or more nodes.
Note that the confusion matrix showing the exceedance probability (figure 10B) is closer
to diagonal than the model probability confusion matrix (figure 10A). This result reflects
the fact that exceedance probability is computed at the group level (i.e., that all the
simulated data sets were generated by model M), whereas model probability computes
the chance that any given simulation is best by model M .

To address the question of parameter estimability, we computed correlations between
the simulated parameters and the parameter values recovered by the fitting procedure
for each of the models. There was strong correspondence between the simulated and fit
parameter values for all of the models and all correlations were significant (see supple-
mentary table S1).

The 2-node model most effectively describes the human data (Figure 11), producing
slightly better fits than the model of Nassar et al. at the group level. Figure 11A shows
model probability, the estimated probability that any given subject is best fit by each of
the models. This measure showed a slight preference for the 2-node model over the model
of Nassar et al. Figure 11B shows the exceedance probability for each of the models,
the probability that each of the models best fits the data at the group level. Because
this measure aggregates across the group it magnifies the differences between the models
and showed a clearer preference for the 2-node model. Table 1 reports the means of the
corresponding fit parameters for each of the models (see also supplementary figure S1 for
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Figure 11. Results of the model-fitting procedure using the method of [28]. (A) The
model probability for each of the five models. This measure reports the estimated
probability that a given subject will be best fit by each of the models. (B) The
exceedance probability for each of the five models. This measure reports the probability
that each of the models best explains the data from all subjects.

plots of the full distributions of the fit parameters).

Model hazard rate, h decision noise, σd learning rate(s), α
full 0.50 ± 0.04 13.39 ± 0.52
Nassar et al. 0.45 ± 0.04 8.35 ± 0.87
1 node 8.7 ± 0.72 0.88 ± 0.014
2 nodes 0.36 ± 0.04 7.41 ± 0.67 0.92 ± 0.01

0.43 ± 0.03
3 nodes 0.44 ± 0.04 7.8 ± 0.76 0.91 ± 0.01

0.46 ± 0.02
0.33 ± 0.02

Table 1. Table of mean fit parameter values for all models ± s.e.m.

Discussion

The world is an ever-changing place. Humans and animals must recognize these changes
to make accurate predictions and good decisions. In this paper, we considered dynamic
worlds in which periods of stability are interrupted by abrupt change-points that render
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the past irrelevant for predicting the future. Previous experimental work has shown that
humans modulate their behavior in the presence of such change-points in a way that is
qualitatively consistent with Bayesian models of change-point detection. However, these
models appear to be too computationally demanding to be implemented directly in the
brain. Thus we asked two questions: 1) Is there a simple and general algorithm capable
of making good predictions in the presence of change-points? And 2) Does this algorithm
explain human behavior? In this section we discuss the extent to which we have answered
these questions, followed by a discussion of the question that motivated this work: Is this
algorithm biologically plausible? Throughout we consider the broader implications of our
answers and potential avenues for future research.

Does the reduced model make good predictions?

To address this question, we derived an approximation to the Bayesian model based on a
mixture of Delta rules, each implemented in a separate ‘node’ of a connected graph. In this
reduced model, each Delta rule has its own, fixed learning rate. The overall prediction is
generated by computing a weighted sum of the predictions from each node. Because only
a small number of nodes are required, the model is substantially less complex than the
full Bayesian model. Qualitatively, the outputs of the reduced and full Bayesian models
share many features, including the ability to quickly increase the learning rate following
a change-point and reduce it during periods of stability. These features were apparent for
the reduced model even with a small number of (2 or 3) nodes. Thus, effective solutions
to change-point problems can be achieved with minimal computational cost.

For future work, it would be interesting to consider other generative distributions,
such as a Gaussian with unknown mean and variance or multidimensional data (e.g.,
multidimensional Gaussians) to better assess the generality of this solution. In principle,
these extensions should be straightforward to deal with in the current model, which would
simply require the sufficient statistic χ to be a vector instead of a scalar. Another obvious
extension would be to consider generative parameters that drift over time (perhaps in
addition to abrupt changes at change-points) or a hazard rate that changes as a function
of run-length and/or time.

Does the reduced model explain human behavior?

To address this question, we used a model-based analysis of human behavior on a pre-
diction task with change-points. The reduced model fit the behavioral data better than
either the full Bayesian model or a single learning-rate Delta rule. Our fits also suggest
that a two-node model can, in many cases, be sufficient to explain human performance on
the task. However, our experiment had limited power to distinguish between the 2- and
3-node models. Thus, although the results imply that the two-node model is better than
the other models we tested, we cannot rule out the possibility that humans use more that
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two learning rates.
Despite this qualification, it is an intriguing idea that the brain might use just a

handful of learning rates. If true, such a result would complement recent work showing
that in many probabilistic-inference problems faced by humans [29] and pigeons [30], as
few as just one sample from the posterior can be enough to generate good solutions.

It is also interesting to note that, for models with more than one node, the fastest
learning rate was always close to one. Such a high learning rate corresponds to a Delta
rule that does not integrate any information over time and simply uses the last outcome
to form a prediction. This qualitative difference in the behavior of the fastest node could
indicate a very different underlying process such as working memory for the last trial as
is proposed in [31,32].

One situation in which many nodes would be advantageous is the case in which the
hazard rate changes as a function of run-length. In this case, only having a few run-lengths
available would be problematic, because the changing hazard rate would be difficult to
represent. Experiments designed to measure the effects of variable hazard rates on the
ability to make predictions might therefore be able to distinguish whether multiple Delta
rules are indeed present.

Is the reduced model biologically plausible?

The question of biological plausibility is always difficult to answer in computational neuro-
science. This difficulty is especially true when the focus of the model is at the algorithmic
level and is not directly tied to a specific neural architecture, like in this study. Never-
theless, one useful approach to help guide an answer to this question is to associate key
components of the algorithm to known neurobiological mechanisms. Here we support the
biological plausibility of our reduced model by showing that signatures of all the elements
necessary to implement it have been observed in neural data.

In the reduced model, the update of each node uses a simple Delta rule with a fixed
learning rate. The ‘Delta’ of such an update rule corresponds to a prediction error,
correlates of which have been found throughout the brain, including notably brainstem
dopaminergic neurons and their targets, and have been used extensively to model behav-
ioral data [3–15].

More recently, several studies have also shown evidence for representations of different
learning rates, as required by the model. Human subjects performing a statistical-learning
task used a pair of learning rates, one fast and one slow, that were associated with
BOLD activity in two different brain areas, with the hippocampus responsible for slow
learning and the striatum for fast learning [33]. A related fMRI study showed different
temporal integration in one network of brain areas including the amygdala versus another,
more sensory network [34]. Complementary work at the neural level found a reservoir of
many different learning rates in three brain regions (anterior cingulate cortex, dorsolateral
prefrontal cortex, and the lateral intraparietal area) of monkeys performing a competitive
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game [35]. Likewise, neural correlates of different learning rates have been identified in
each of the ventral tegmental area and habenula [36]. Finally, outside of the reward
system, other fMRI studies using scrambled movies have found evidence for temporal
receptive fields of increasingly long time scales (equivalent to decreasingly small learning
rates) up the sensory processing hierarchy [37].

Applied to our model, these results suggest that each node is implemented in a distinct,
although not necessarily anatomically separated, population of neurons. For our task and
the above-referenced studies, in which trials last on the order of seconds, we speculate
that the mean of a node is encoded in persistent firing of neurons. Alternatively, for tasks
requiring learning over longer timescales, other mechanisms such as changes in synaptic
weights might play key roles in these computations.

Our model also depends on the run-length distribution, p(li|x1:t). Functionally, this
distribution serves as a weighting function, determining how each of the different nodes
(corresponding to different run lengths) contributes to the final prediction. In this re-
gard, the run-length distribution can be thought of as an attentional filter, similar to
mechanisms of spatial or feature-based attention, evident in multiple brain regions that
enhance the output of certain signals and suppress others. For longer timescales, this kind
of weighting process might have analogies to certain mechanisms of perceptual decision-
making that involve the readout of appropriate sensory neurons [38]. Intriguingly, these
readout mechanisms are thought to be shaped by experience – governed by a Delta-rule
learning process – to ultimately enhance the most reliable sensory outputs and suppress
the others [39,40]. We speculate that a similar process might help select, from a reservoir
of nodes with different learning rates, those that can most effectively solve a particular
task.

The brain must also solve another challenge to directly implement the run-length
distribution in our model. In particular, the update equation for the weights (Eq. 25)
includes a constant of proportionality that serves to normalize the probability distribu-
tion. On a computer, ensuring that the run-length distribution is normalized is relatively
straightforward: after the update we just divide by the sum of the node weights. In
the brain, this procedure requires some kind of global divisive normalization among all
areas coding different nodes. While such divisive normalization is thought to occur in the
brain [41], it may be more difficult to implement over different brain regions that are far
apart.

Mixture of Delta rules versus direct modulation of learning rate

An alternative account of variability in learning rates is that the brain uses a single
Delta rule whose learning rate is modulated directly. This kind of model has been used
previously to explain certain behavioral and imaging results in the context of change-
point tasks [17,21]. A leading candidate for this role is the neuromodulator norepinephrine
(NE), which is released from the locus coeruleus (LC) and has been proposed to encode the
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unexpected uncertainty associated with change-points [42]. The wide-ranging projections
of LC, which include most cortical and subcortical structures, and the neuromodulatory
properties of NE, which adapts the gain of neural response functions [43], make this
system ideally suited to deliver a global signal such as the learning rate. Control of LC
could come from top-down projections from anterior cingulate cortex [16], amygdala [44],
and posterior cingulate cortex [45], all of which have been proposed to encode learning
rate.

Indirect evidence for this account comes from putative correlates of LC activity such
as pupil dilation [24] and skin conductance response [44] that have been found to correlate
with observed learning rate. However, such results are also consistent with our model if
we assume that LC signals shifts in attentional focus to Delta rules with shorter learning
rates, or a modified version of our model in which the learning rates of the different nodes
adapt.

Our model-based analysis of behavioral data provides some evidence in favor of the
present model over the fixed learning rate model of Nassar et al. However, because the
experiment was not specifically designed to tease apart these two alternatives, and we
did not consider every possible implementation of a variable learning rate model, the
result should be treated with caution. To fully distinguish between these two accounts
will require careful experimentation to determine whether the learning rate of individual
neurons (using recordings from animals) or whole brain areas (using fMRI in humans) are
variable or are fixed.
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