Robustness check S3 Appendix for "Optimal dynamic regimens with artificial intelligence"

Nicolas HOUY François LE GRAND^{*}

Two other calibrations

We present here the detailed results of two other algorithm calibrations, which respectively correspond to a 0% and a 7% target population share. We will refer to these two protocols as the 0% and 7% protocols.

We represent scatter plots in S3 Fig 1 –similar to Fig 2 in the main text. Without surprise, toxicity is more concentrated around the toxicity limit for the 7% protocol, and its efficacy is slightly better than the one of the 0% protocol. Conversely, a much smaller number of patients experience a below threshold toxicity with the 0% protocol.

Finally, we plot in S3 Fig 2 the evolution over time of the efficacy and toxicity for both the MTD and H protocols. This figure is similar to Fig 3 in the main text.

Conclusions we can draw from S3 Fig 2 are consistent with what we could have expected. Overall, the better efficacy of the 7% protocol –especially in terms of dispersion– comes from an overall more severe toxicity. Furthermore, if both protocols exhibit a pseudo-cycle as the H protocol, the main difference between both protocols lie in the interim treatments occurring between major treatment blocks. They are more frequent with the 7% protocol than with the 0% one. These results confirm our findings of the main paper and illustrate that the sensitivity of our algorithm to a key parameter is consistent with intuition.

^{*}houy@gate.cnrs.fr and legrand@em-lyon.com.

S3 Figure 1: Scatter plot of protocol efficacy and toxicity for 3,200 patients. Left-hand side and bottom graphs: cdf of toxicity and efficacy respectively. Light grey horizontal line in the central plot: 2.7% toxicity limit.

S3 Figure 2: Tumor size (top) and normalized ANC (bottom) as a function of time.

Grey areas: treatment periods; solid line: median; dashed lines: 5th and 95th percentiles.

Complete results for the protocols $\{P(x, 28 - x) : x = 1, \dots, 27\}$

We provide here the complete results for $\{P(x, 28 - x) : x = 1, \dots, 27\}$.

Protocol	Tumor mass (g)	Norm. ANC nadir $(\%)$
H protocol	$\underset{\left[0.60,33.55\right]}{1.80}$	$\underset{[2.74,6.22]}{4.17}$
P(1, 27)	301.83 $[207.83.395.09]$	42.33 $[33.06.51.56]$
P(2, 26)	180.65 [97.21,281.78]	$\begin{array}{c} 22.68\\ [17.03,30.60]\end{array}$
P(3, 25)	$\frac{113.104}{_{[37.22,206.25]}}$	$\frac{14.17}{_{[10.34,20.24]}}$
P(4, 24)	$67.7481 \\ {\scriptstyle [1.44,153.14]}$	$\underset{[6.69,14.43]}{9.61}$
P(5, 23) (MTD)	32.99 [0.72,111.40]	6.74 [2.67,10.76]
P(6, 22)	2.76 [0.52,80.83]	3.54 [0.97,8.23]
P(7, 21)	1.56 $[0.41,54.70]$	1.27 $[0.54, 6.36]$
P(8, 20)	1.26 $[0.34,32.97]$	$\begin{array}{c} 0.71 \\ \left[0.34, 3.97 ight] \end{array}$
P(9, 19)	1.11 [0.29,5.03]	0.46 [0.24,1.71]
P(10, 18)	1.02 [0.24,2.76]	0.32 [0.12,0.97]
P(11, 17)	0.96 [0.21,2.22]	0.24 [0.07.0.64]
P(12, 16)	0.91 [0.18,1.95]	0.14 [0.05.0.46]
P(13, 15)	0.88	0.08
P(14, 14)	0.85 [0.14.1.68]	0.06 [0.02,0.26]
P(15, 13)	0.83 [0.12.1.59]	0.04 [0.01.0.20]
P(16, 12)	0.81	0.03 [1.53 10 ⁻³ .0.16]
P(17, 11)	0.80	0.02
P(18, 10)	0.78	0.01 [4.31e-08.0.08]
P(19, 9)	0.77	$4.71 10^{-3}$
P(20, 8)	0.76	$1.59 10^{-4}$
P(21,7)	0.75	2.65e - 05
P(22, 6)	0.75	4.00e - 08
P(23, 5)	0.74	8.25e - 20
P(24, 4)	$\begin{bmatrix} 2.3710 & 7,1.33 \end{bmatrix}$ 0.73 $\begin{bmatrix} 6.2210 - 41.22 \end{bmatrix}$	1.89e - 28
P(25, 3)	0.72	1.89e - 28
P(26, 2)	$\begin{bmatrix} 2.7410 & -,1.31 \end{bmatrix}$ 0.71	1.89e - 28
P(27, 1)	$\begin{array}{c} [1.98\ 10^{-4}, 1.29] \\ 0.70 \\ [1.91\ 10^{-4}, 1.28] \end{array}$	${1.82e-28,3.53 10^{-3}}\ 1.89e-28\ [1.82e-28,5.74 10^{-4}]$

S3 Table 1: Comparing H protocol to the protocol family $\{P(x, 28-x)\}$. Median values and in square brackets, the 5th and 95th percentiles.