Supplement to: The role of ultrasound in physician-provided prehospital critical care: a systematic review

Morten Thingemann Bøtker, Søren Steemann Rudolph, Lars Jacobsen, Lars Knudsen

Content

Search strings	2
Supplementary Table 1. Studies excluded based on full-text	3
Supplementary Table 2. SIGN 50 checklist of cohort studies included in the review	4
Supplementary Table 3. SIGN 50 checklist of controlled studies included in the review	5
Supplementary Table 4. SIGN 50 checklist of diagnostic accuracy studies included in the review	6
Supplementary references	7

Search Strings

Pubmed

("Emergency Medical Services" [Mesh] OR "Emergency Medical Services" OR prehospital OR pre-hospital OR out-of-hospital OR "out of hospital") AND ([ultraso*[tiab] OR sonograph*[tiab] OR echocardiograph*[tiab]) Limited to 2012-2017

Cochrane

#1 MeSH descriptor: [Emergency Medical Services] explode all trees #2 "Emergency Medical Services" #3 prehospital OR pre-hospital OR out-of-hospital OR "out-of-hospital" #4 ultraso* or sonograph* or echocardiograph* (#1 OR #2 OR #3) AND #4 Limited to 2012-2017

EMBASE:

#1 'emergency health service'/exp OR 'emergency care'/exp OR prehospital OR 'pre-hospital' OR 'out-of-hospital' #2 'ultraso*' OR 'sonograph*' OR 'echocardiograph*' #1 AND #2
Limited to 2012-2017

Supplementary Table 1. Studies excluded based on full-text

Number		
	Study	Cause
1	Brun et al., 2013. The value of prehospital echocardiography in shock management[1]	Case report
2	Callerova et al, 2015. TRACE: A new protocol for ultrasound examination during out-of-hospital cardiac arrest[2]	Conference abstract
3	Castellani et al., 2012. Telementoring: Ultrasound training and research[3]	Conference abstract
4	Grmec et al., 2012. Sonographic B-Line, NT-proBNP and pressure of end-tidal CO2 (petCO2) in diagnosis of acute heart failure in prehospital emergency setting[4]	Conference abstract
5	Hanlin et al., 2016. Airway ultrasound for the confirmation of endotracheal tube placement in military flight medic trainees[5]	Conference abstract
6	Jones et al., 2014. The effect of thoracic ultrasound for the detection of pneumothorax on medical decisionmaking in trauma patients in the out-of-hospital setting[6]	Conference abstract
7	Kamp et al., 2012. Ultrasound enhanced prehospital thrombolysis using microbubbles in patients with acute ST elevation myocardial infarction[7]	Conference abstract
8	Knapp et al., 2015. Quality and accuracy of fast exams performed by ems providers in the outof-hospital setting[8]	Conference abstract
9	Knap et et al., 2012. Emergency medical services focused assessment with sonography in trauma and cardiac ultrasound in cardiac arrest: The training phase $[9]$	Conference asbstract
10	Lahham et al., 2015. Prehospital assessment with ultrasound in emergencies-pause II[10]	Conference abstract
11	Lema et al., 2014. Ultrasound identification of successful endotracheal tube placement by paramedics and residents[11]	Conference abstract
12	Lyon et al., 2012 Is there a role for pre-hospital chest ultrasound in trauma patients?[12]	Conference abstract
13	Ogedegbe et al., 2012. A novel portable telesonography system for out-of-hospital trauma care[13]	Conference abstract
14	Schlachetzki et al., 2014. Pre-hospital thrombolysis - Is the ultrasound diagnosis of occlusion enough?[14]	Conference abstract
15	Skulec et al., 2015. TRACE: A new protocol for ultrasound examination during out-of-hospital cardiac arrest[15]	Conference abstract
16	Vitto et al., 2015. Implementation of a flight medical crew ultrasound training program[16]	Coherence abstract
17	Schlachetzki et al., 2012. Transcranial ultrasound from diagnosis to early stroke treatment: part 2: prehospital neurosonography in patients with acute stroke: the Regensburg stroke mobile project[17]	Cohort included in other publication with more clinical data (Herzberg et al., 2014)
18	Atkinsion et al., 2014. Coming of age: emergency point of care ultrasonography in Canada[18]	Editorial
19	Lien, 2014. Emergency ultrasound[19]	Editorial
20	Brun et al., 2014. Ultrasound evaluation of the nasogastric tube position in prehospital [20]	Non-english
21	Weilbach et al., 2017. Introduction of Prehospital Emergency Ultrasound into an Emergency Medical Service Area[21]	Non-english
22	Brandt et al., 2016. The use of ultrasound to identify veins for peripheral venous access in morbidly obese patients [22]	Not prehospital
23	Breitkreutz et al., 2013. Thorax, trachea, and lung ultrasonography in emergency and critical care medicine: Assessment of an objective structured training concept[23]	Not prehospital
24	Cazes et al., 2013. Emergency ultrasound: A prospective study on sufficient adequate training for military doctors $[24]$	Not prehospital
25	Chaudery et al., 2016. Can contrast-enhanced ultrasonography improve Zone III REBOA placement for prehospital care? [25]	Not prehospital
	Jang et al., 2012. Sonographic assessment of jugular venous distension and B-type natriuretic peptide levels in patients with dyspnoea[26]	Not prehospital
27	Jang et al., 2012. The technical errors of physicians learning to perform focused assessment with sonography in trauma[27]	Not prehospital
28	Kim et al., 2016. Can serial focussed echocardiographic evaluation in life support (FEEL) predict resuscitation outcome or termination of resuscitation (TOR)? A pilot study [28]	Not prehospital
29	Lee et al., 2015. Combined ECG, echocardiographic, and biomarker criteria for diagnosing acute myocardial infarction in out-of-hospital cardiac arrest patients [29]	Not prehospital
30	Ozkan et al., 2015. Stethoscope versus point-of-care ultrasound in the differential diagnosis of dyspnea: a randomized trial[30]	Not prehospital
31	Slikkerveer et al., 2012. Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study[31]	Not prehospital
32	Ogedegbe et at., 2012. Development and evaluation of a novel, real time mobile telesonography system in management of patients with abdominal trauma: Study protocol[32]	Study protocol
33	Hong et al., 2012. Detecting prehospital hemoperitoneum remotely through fast and 3 g network: A simulation study[33]	Simulation study, no patients included
34	Kirkpatrick et al., 2016. Remote just-in-time telementored trauma ultrasound: a double-factorial randomized controlled trial examining fluid detection and remote knobology control through an ultrasound graphic user interface display[34]	Simulation study, no patients included
35	Lyon et al., 2012. M-mode ultrasound for the detection of pneumothorax during helicopter transport[35]	Simulation study, no patients included
36	Lyon et al., 2012. Ultrasound detection of the sliding lung sign by prehospital critical care providers[36]	Simulation study, no patients included
37	McBeth et al., 2013. Help is in your pocket: the potential accuracy of smartphone- and laptop-based remotely guided resuscitative telesonography[37]	Simulation study, no patients included
38	Song et al., 2013. Clinical applicability of real-time, prehospital image transmission for FAST (Focused Assessment with Sonography for Trauma)[38]	Simulation study, no patients included

Supplementary Table 2. SIGN 50 checklist of cohort studies included in the review

	Juj	promorran y rubio 2 1 oru.	50 CHECKIST OF COHOFT STUDIES II	iciaaca				Study			
		In a well conducted cohort study		Aichinger, 2012	Chin, 2013	Ketelaars, 2013	ODochartaigh, 2017	Reed, 2017	Roline, 2013	Rooney, 2016	Strnad, 2016
	1.1	The study addresses an appropri	ate and clearly focused question	0	0	0	0	0	0	0	0
	1.2		e selected from source populations that her that the factor under investigation	0	0	0	0	0	0	0	0
	1.3		the people asked to take part did so, in	0	0	0	0	0	0	0	0
	1.4		subjects might have the outcome at the d taken into account in the analysis	0	0	0	0	0		0	0
	1.5		r clusters recruited into each arm of	Total 0	Total 0	0	0	Total 13	Total 0	Total 80	I/C 14/0
dity	1.6	Comparison is made between ful	l participants and those lost to follow	0	0	0	0	0	O	0	0
Vali	1.7	up, by exposure status The outcomes are clearly defined		0	0	0	0	0	0	0	0
Internal Validity	1.8	The assessment of outcome is ma	ade blind to exposure status	0	0	0	0	0	0	0	0
Inte	1.9		re is some recognition that knowledge luenced the assessment of outcome	0	0	0	0	0	0	0	0
	1.10	The measure of assessment of ex		0	0		0	0	0		0
	1.11		to demonstrate that the method of	0	0	0	0	0	0	0	0
	1.12	outcome assessment is valid and Exposure level or prognostic fact		0	0	0	0	0	0	0	0
	1.13	The main potential confounders the design and analysis	are identified and taken into account in	0	0	0	0	0	0	0	0
	1.14	Confidence intervals are provide	d	0	0	0	0	0	0	0	0
=	2.1	How well was the study done to confounding?	minimise the risk of bias or	+	0	+	0	+	+	+	0
Overall	2.2	There is a clear evidence of an as outcome	sociation between exposure and	0	0	0	0	0	0	0	0
0	2.3	Are the results of this study directargeted?	tly applicable to the patient group	0	0	0	0	0	0	0	0
	Leg	end	Quality rating								
Yes		0	High quality	4	+						
Can't	say	0	Acceptable		+						
No		0	Unacceptable		0						
Not r	eported	0									

Does not apply	0

Supplementary Table 3. SIGN 50 checklist of controlled studies included in the review

								Study					
		In a well conducted controlled study	Bobbia, 2015	Botker, 2017	Brun, 2014	Krogh, 2016	Bhat, 2015	Booth, 2015	Brun, 2014	Paddock, 2015	Press, 2013	Quick, 2016	Yates, 2017
	1.1	The study addresses an appropriate and clearly focused question	0	0	0	0	0	0	0	0	0	0	0
	1.2	The assignment of subjects to treatment groups is randomized	0	0	0	0	0	0	0	0	0	0	0
	1.3	An adequate concealment method is used	0	0	0	0	0	0	0	0	0	0	0
Ę.	1.4	The design keeps subjects and investigators 'blind' about treatment allocation	0	0		0	0	0	0	0	0	0	0
lidi	1.5	The treatment and control groups are similar at the start of the trial	0	0	0	0	0	0	0	0	0	0	0
l Va	1.6	The only difference between groups is the treatment under investigation	0							0			
rna	1.7	All relevant outcomes are measured in a standard, valid and reliable way	0	0	0	0	0	0	0	0	0	0	0
Internal Validity	1.8	What percentage of the individuals or clusters recruited into each treatment arm of the study dropped out before the study was completed?	0%	Total 10%		Total 34%	Total 2%	Total 9%		0%	Total 3%	Total 22%	Total 48%
	1.9	All the subjects are analyzed in the groups to which they were randomly allocated (often referred to as intention to treat analysis)	0	0	0	0	0	0	0	0	0	0	0
	1.10	Where the study is carried out at more than one site, results are comparable for all sites	0	0	0	0	0	0	0	0	0	0	0
=	2.1	How well was the study done to minimize bias?	+	+	-	+	+	-	0	+	+	+	-
Overall	2.2	It seems certain that the overall effect is due to the study association	0	0	0	0	0	0	0	0	0	0	0
0	2.3	The results are directly applicable to the patients targeted	0	0	0	0	0	0	0	0	0	0	0

1	Leσena	4

Legena	
Yes	0
Can't say	0
No	0
Not reported	0
Does not apply	0

_			
Oua	litv	ratin	ø

Quality rating	
High quality	++
Acceptable	+
Low quality	-
Unacceptable	0

Supplementary Table 4. SIGN 50 checklist of diagnostic accuracy studies included in the review

		depptementary rubte in order of encember of unique order accuracy statutes				Stu	dy			
		In a well conducted diagnostic accuracy study	Herzberg, 2014	Laursen, 2016	Charron, 2015	Chenaita, 2012	Neesse, 2012	Zadel, 2015	Press, 2014	West, 2014
_	1.1	A consecutive sequence or random selection of patients is enrolled	0	0	0	0	0	0	0	0
Patient selection	1.2	Case – control methods are not used	0	0	0	0	0	0	0	0
Pati elec	1.3	Inappropriate exclusions are avoided	0	0	0	0	0	0	0	0
. Š	1.4	The included patients and settings match the key question	0	0	0	0	0	0	0	0
	2.1	The index test results are interpreted without knowledge of the results of the reference standard	0	0	0	0	0	0	0	0
Index	2.2	If a threshold is used, it is pre-specified	0	0		0			0	0
_	2.3	The index test, its conduct, and its interpretation is similar to that used in practice with the target population of the guideline	0	0	0	0	0	0	0	0
d d	3.1	The reference standard is likely to correctly identify the target condition	0	0	0	0	0	0	0	0
ren	3.2	Reference standard results are interpreted without knowledge of the results of the index test	0	0	0	0	0	0	0	0
Reference standard	3.3	The target condition as defined by the reference standard matches that found in the target population of the guideline	0	0	0	0	0	0	0	
ad Ko	4.1	There is an appropriate interval between the index test and reference standard	0	0	0	0	0	0	0	0
Flow & timing	4.2	All patients receive the same reference standard	0	0	0	0	0	0	0	0
E ii	4.3	All patients recruited into the study are included in the analysis	0	0	0	0	0	0	0	0
Overall	2.1	How well was the study done to minimize bias?	0	+	+	+	+	0	+	0
0	2.2	What is the applicability of this study to the target population	0	0	0	0	0	0	0	0

Legend Yes Can't say No Not reported Does not apply

Quality rating	
High quality	++
Acceptable	+
Unacceptable	0

Applicability	
Directly applicable	0
Some indirectness	0

Supplementary references

- 1. Brun PM, Chenaitia H, Gonzva J, Bessereau J, Bobbia X, Peyrol M. The value of prehospital echocardiography in shock management. Am J Emerg Med. 2013;31:442.
- 2. Callerova J, Skulec R, Knor J, Cerny V. TRACE: A new protocol for ultrasound examination during out-ofhospital cardiac arrest. Crit Care. 2015; DOI:10.1186/cc14496.
- 3. Castellani S, Meneghetti G. Telementoring: Ultrasound training and research. Cerebrovasc Dis. 2012; DOI:10.1159/000338951.
- 4. Grmec S, Hajdinjak E, Prosen G. Sonographic B-Line, NT-proBNP and pressure of end-tidal CO2 (petCO2) in diagnosis of acute heart failure in prehospital emergency setting. Circulation. 2012; DOI: 10.1161/CIR.0b013e31824fcd6b.
- 5. Hanlin E. Airway ultrasound for the confirmation of endotracheal tube placement in military flight medic trainees. Acad Emerg Med. 2016; DOI:10.1111/acem.12974.
- 6. Jones RA, Tabbut M, Emerman C, Stout S. The effect of thoracic ultrasound for the detection of pneumothorax on medical decisionmaking in trauma patients in the out-of-hospital setting. Ann Emerg Med. 2014; DOI:10.1016/j.annemergmed.2014.07.109.
- 7. Kamp O, Slikkerveer J. Ultrasound enhanced prehospital thrombolysis using microbubbles in patients with acute ST elevation myocardial infarction. Circulation. 2012; doi:10.1161/CIR.0b013e31824fcd6b.
- 8. Knapp B, Byars D, Ford L. Quality and accuracy of fast exams performed by ems providers in the outof-hospital setting. Acad Emerg Med. 2015; doi:10.1111/acem.12644.
- 9. Knapp B, Byars D, Stewart V, Ryszkiewicz R, Evans D. Emergency medical services focused assessment with sonography in trauma and cardiac ultrasound in cardiac arrest: The training phase. Acad Emerg Med. 2012; DOI:10.1111/j.1553-2712.2012.01332.x.
- 10. Lahham S, Rooney K, Sloane B, Fox JC. Prehospital assessment with ultrasound in emergencies-pause II. Acad Emerg Med. 2015; DOI:10.1111/acem.12644.
- 11. Lema PC, Wilson J, O'Brien M, Lindstrom H, Tanski C, Consiglio J et al. Ultrasound identification of successful endotracheal tube placement by paramedics and residents. Ann Emerg Med. 2014; DOI:10.1016/j.annemergmed.2014.07.043.
- 12. Lyon R, Weaver A, Wise D, Davies G, Lockey D. Is there a role for pre-hospital chest ultrasound in trauma patients? Resuscitation. 2012; DOI:org/10.1016/j.resuscitation.2012.08.218.
- $13.\ Ogedegbe\ C.\ A\ novel\ portable\ telesonography\ system\ for\ out-of-hospital\ trauma\ care.\ Ann\ Emerg\ Med.\ 2012;\ DOI: 10.1016/j.annemergmed. 2012.06.236.$
- 14. Schlachetzki F, Herzberg M, Pflug K, Backhaus R, Baldaranov D, Ertl M et al. Pre-hospital thrombolysis Is the ultrasound diagnosis of occlusion enough? Cerebrovasc Dis. 2014; DOI: 10.1159/000363090.
- 15. Skulec R, Truhlar A, Knor J, Cerny V. TRACE: A new protocol for ultrasound examination during out-of-hospital cardiac arrest. Resuscitation. 2015; DOI: 10.1016/j.resuscitation.2015.09.111.
- 16. Vitto MJ, Spector D, Evans DP. Implementation of a flight medical crew ultrasound training program. Academic Emergency Medicine. 2015; DOI:10.1111/acem.12644.
- 17. Schlachetzki F, Herzberg M, Holscher T, Ertl M, Zimmermann M, Ittner KP et al. Transcranial ultrasound from diagnosis to early stroke treatment: part 2: prehospital neurosonography in patients with acute stroke: the Regensburg stroke mobile project. Cerebrovasc Dis. 2012;33:262-71.
- 18. Atkinson P, Ross P, Henneberry R. Coming of age: emergency point of care ultrasonography in Canada. CJEM. 2014;16:265-8.
- 19. Lien WC. Emergency ultrasound. J Med Ultrasound. 2014; DOI:10.1016/j.jmu.2014.05.007.
- 20. Brun PM, Chenaitia H, Bessereau J, Leyral J, Barberis C, Pradel-Thierry AL et al. Ultrasound evaluation of the nasogastric tube position in prehospital. Ann Fr Anest Reanim. 2012;31:416-20.
- 21. Weilbach C, Kobiella A, Rahe-Meyer N, Johanning K. [Introduction of Prehospital Emergency Ultrasound into an Emergency Medical Service Area]. Anaesthesist. 2017;66:21-7.
- 22. Brandt HGS, Jepsen CH, Hendriksen OM, Lindekær A, Skjønnemand M. The use of ultrasound to identify veins for peripheral venous access in morbidly obese patients. Dan Med J. 2016;63.
- 23. Breitkreutz R, Dutiné M, Scheiermann P, Hempel D, Kujumdshiev S, Ackermann H et al. Thorax, trachea, and lung ultrasonography in emergency and critical care medicine: Assessment of an objective structured training concept. Emerg Med Int. 2013; DOI:10.1155/2013/312758.
- 24. Cazes N, Desmots F, Geffroy Y, Renard A, Leyral J, Chaumoître K. Emergency ultrasound: A prospective study on sufficient adequate training for military doctors. Diagn Interv Imaging. 2013;94:1109-15.
- 25. Chaudery M, Clark J, Morrison JJ, Wilson MH, Bew D, Darzi A. Can contrast-enhanced ultrasonography improve Zone III REBOA placement for prehospital care? Journal Trauma Acute Care Surg. 2016; doi:10.1097/TA.0000000000000863.
- 26. Jang T, Aubin C, Naunheim R, Lewis LM, Kaji AH. Sonographic assessment of jugular venous distension and B-type natriuretic peptide levels in patients with dyspnoea. Emerg Med J. 2012;29:477-81.

- 27. Jang T, Kryder G, Sineff S, Naunheim R, Aubin C, Kaji AH. The technical errors of physicians learning to perform focused assessment with sonography in trauma. Acad Emerg Med. 2012;19:98-101.
- 28. Kim HB, Suh JY, Choi JH, Cho YS. Can serial focussed echocardiographic evaluation in life support (FEEL) predict resuscitation outcome or termination of resuscitation (TOR)? A pilot study. Resuscitation. 2016;101:21-6.
- 29. Lee SE, Uhm JS, Kim JY, Pak HN, Lee MH, Joung B. Combined ECG, echocardiographic, and biomarker criteria for diagnosing acute myocardial infarction in out-of-hospital cardiac arrest patients. Yonsei Med J. 2015;56:887-94.
- 30. Ozkan B, Unluer EE, Akyol PY, Karagoz A, Bayata MS, Akoglu H et al. Stethoscope versus point-of-care ultrasound in the differential diagnosis of dyspnea: a randomized trial. Eur J Emerg Med. 2015;22:440-3.
- 31. Slikkerveer J, Kleijn SA, Appelman Y, Porter TR, Veen G, Rossum AC et al. Ultrasound enhanced prehospital thrombolysis using microbubbles infusion in patients with acute ST elevation myocardial infarction: pilot of the Sonolysis study. Ultrasound Med Biol. 2012; doi:10.1016/j.ultrasmedbio.2011.11.001.
- 32. Ogedegbe C, Morchel H, Hazelwood V, Chaplin WF, Feldman J. Development and evaluation of a novel, real time mobile telesonography system in management of patients with abdominal trauma: Study protocol. BMC Emerg Med. 2012; DOI: 10.1186/1471-227X-12-19.
- 33. Hong KJ, Song KJ, Song SW, Shin SD. Detecting prehospital hemoperitoneum remotely through fast and 3 g network: A simulation study. J Emerg Med. 2012; DOI: 10.1016/j.jemermed.2012.09.066.
- 34. Kirkpatrick AW, McKee I, McKee JL, Ma I, McBeth PB, Roberts DJ et al. Remote just-in-time telementored trauma ultrasound: a double-factorial randomized controlled trial examining fluid detection and remote knobology control through an ultrasound graphic user interface display. Am J Surg. 2016; 211:894-902.
- 35. Lyon M, Shiver SA, Walton P. M-mode ultrasound for the detection of pneumothorax during helicopter transport. Am J Emerg Med. 2012;30:1577-80.
- 36. Lyon M, Walton P, Bhalla V, Shiver SA. Ultrasound detection of the sliding lung sign by prehospital critical care providers. Am J Emerg Med. 2012;30:485-8.
- 37. McBeth P, Crawford I, Tiruta C, Xiao Z, Zhu GQ, Shuster M et al. Help is in your pocket: the potential accuracy of smartphone- and laptop-based remotely guided resuscitative telesonography. Telemed J E Health. 2013;19:924-30. 38. Song KJ, Shin SD, Hong KJ, Cheon KW, Shin I, Song SW et al. Clinical applicability of real-time, prehospital image transmission for FAST (Focused Assessment with Sonography for Trauma). J Telemed Telecare. 2013;19:450-5.