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S.1.  SUPPLEMENTARY INFORMATION
S.1.1. Coulomb matrix space cluster analysis: choosing the best grid-search BChl molecule

The neural networks were trained on Coulomb matrices representing BChl conformations gen-
erated during the classical MD simulation in a supervised training-scheme. TDDFT excited state
energies were used as training target. To design an optimal neural network architecture with a
minimal deviation between predictions and targets, a grid search on several neural network hyper-
parameters was performed. Learning rate and number of neurons in the first and second hidden
layer were changed step-wise, as reported in Sec. S.1.2.

We found that BChls in the FMO complex show a high Coulomb matrix space overlap through-
out the entire MD trajectory (see Fig. S.1). By determining the site with the highest Coulomb ma-
trix space overlap with all other sites we were therefore able to limit the number of grid searches
for optimal neural network hyperparameters to one. Optimal neural network hyperparameters ob-
tained for the most representative site with the highest Coulomb matrix space overlap were used
for all other sites.

To identify the most representative site we first started a cluster analysis on all Coulomb ma-
trices representing site 1 based on the gromos method. Coulomb matrix distances were mea-
sured with the Frobenius norm (see main text, Sec. 2.2.3). The clustering cut-off was chosen to
be 90 ¢? / A to clearly distinguish Coulomb matrices. Then, for all other sites, distances of all
Coulomb matrices of all frames in the MD trajectory to all Coulomb matrices representing on
particular cluster were calculated. If the distance was below the cut-off, the Coulomb matrix was
attributed to the cluster. The pool of remaining Coulomb matrices was again clustered with the
same method as site 1.

Coulomb matrix space overlap of one site with all other sites was then estimated by counting
the number of Coulomb matrices of the considered site and of Coulomb matrices of all other sites
in every individual cluster. Whenever two sites ¢ and j contributed to the same cluster different
numbers of Coulomb matrices n; and n;, the smaller number of Coulomb matrices min(n; n;) was
added to the Coulomb matrix space overlap estimation of both sites. This summation was carried
out over all sites and all clusters. Quantitative results are presented in Fig. S.1.

We observed that of all BChls in the FMO complex, site 3 has the most shared Coulomb matrix

space with all other sites. However, the difference of shared Coulomb matrix space volumes is
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Figure S.1: Common Coulomb matrix space regions of bacteriochlorophylls observed during the 40 ps
production run. We report the number of frames (in %) of one site contributing to Coulomb matrix space
clusters shared with at least one other site (cluster cut-off: 90 e?/ A). Stick representations of corresponding

representative geometries of each individual site are shown for comparison.

small. The highest observed value (34.19 % for site 3) is only about 10 % greater than the smallest
observed value (31.15 % for site 4) and for every site about one third of all Coulomb matrices lies
in shared Coulomb matrix space regions. Hence, we expect neural network architectures optimized
on one site to also work well for all other sites. This assumption was confirmed by the similarity

in prediction accuracy of neural networks trained on different sites (see Sec.3.1).

S.1.2. Neural network parameter grid search: finding the best network architecture

The prediction accuracy of a neural network is highly influenced by its architecture. Introducing
hidden layers to the neural network architecture allows for the distinction of data which is not
linearly separable. In this study we used multi-layer perceptrons (i.e. fully connected neural
networks with at least one hidden layer) with two hidden layers and logistic activation functions.
Several neural networks with different learning rates and numbers of neurons in the first and second
hidden layer were designed and trained on Coulomb matrices and corresponding excited state
energies. We used the back-propagation algorithm and a supervised training scheme with excited
state energies as target. Overfitting was avoided with the early stopping method (see main text,

Sec. 2.2). Thus we determined an optimal set of hyperparameters to identify a neural network



architecture suitable for accurate excited state energy predictions for BChls in the FMO complex
from classical MD simulations.

The entire grid search was performed on BChl 3, which was shown to represent the most
of the Coulomb matrix space covered by all BChl molecules in the FMO complex during the
40 ps production run (see Sec. S.1.1). Since optimal neural network architectures were not known
beforehand we chose particular initial hyperparameter values prior to the grid search. Unless
specified otherwise neural networks were trained with a learning rate of 103 and 180 neurons
in the first and second hidden layer. Neural networks were trained on 3000 frames to keep the

training times during the grid search reasonably small.

S.1.2.1.  Learning rate.

To determine an optimal learning rate we set up five different neural networks with learning
rates of: 1073, 5-107%, 1074, 5 - 10~* and 107°. All of these neural networks were trained on
30 % of all trajectory frames representing BChl 3 by Coulomb matrices. The neural networks were

designed with two hidden layers consisting of 180 respectively.
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Figure S.2: Average absolute deviations of predicted excited state energies from TDDFT excited state

energies for neural networks with different learning rates. Neural networks were trained on 3000 Coulomb

matrices randomly drawn from the 10000 frame data set. A learning rate of 10~ resulted in the lowest

prediction error. However, prediction error for other learning rates are less than 10 % larger than the minimal

value.

The average absolute deviations of predicted excited state energies from TDDFT results for
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each neural network are depicted in Fig. S.2. We see that deviations of single predicted excited
state energies from TDDFT excited state energies ranges from 31.8 meV for a learning rate of 10~*
to 33.2meV for a learning rate of 1072 In any case, we found that the prediction error increases as
the learning rate deviates from 10~%. Hence, we consider a learning rate of 10~ to be optimal for
the case of excited state energies of BChls in the FMO complex. However, the small changes of
the prediction accuracy with different applied learning rates indicates that the prediction accuracy

of a neural network is not very sensitive to the learning rate for this application.

S.1.2.2.  Choice of number of neurons.

The influence of the number of neurons in the first and second hidden layer on the prediction
accuracy of a neural network was investigated with several neural networks with a learning rate
of 10 3. Neuron numbers in each of the two hidden layers were varied from 96 to 240 in steps of
12. Each of the constructed neural networks was trained on site 3 with 3000 Coulomb matrices
randomly selected from the 10000 frame data set. Results are illustrated in Fig. S.3. The neural
network with 204 neurons in the first hidden layer and 192 neurons in the second hidden layer
showed the smallest average absolute deviation of 31 meV between single predicted excited state

energies and TDDFT excited state energies.

S.1.2.3.  Training set size.

Aside from neural network hyperparameters we also investigated the effect of the number of
Coulomb matrices in the training set on the prediction accuracy of the neural network. In general,
the more data is provided to the neural network during training, the more accurately it can predict
the targets. However, with the training set size the computational time spent on neural network
training also increases. So we looked for a balance between the amount of data provided to the
neural network during training and the computational cost of the neural network training.

Investigated training set sizes ranged from 500 Coulomb matrices to 5000 in steps of 500. In
every case, Coulomb matrices of site 3 were drawn randomly from the 10000 frame data set. For
each training set size a total of 12 neural networks was trained. Neural networks had a learning
rate of 10~* with 204 neurons in the first hidden layer and 192 neurons in the second hidden layer.

Recorded training times for different training set sizes are reported in Tab. S.1 as a 12 neural
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Figure S.3: Average absolute deviations of predicted excited state energies from TDDFT calculated excited
state energies for different numbers of neurons in the first and second hidden layer. Deviations are reported
in eV. Neural networks were trained on 3000 Coulomb matrices randomly drawn from the 10000 frame
data set. A hidden layer combination of 204 neurons in the first hidden layer and 192 neurons in the second

hidden layer resulted in the smallest deviation of 31 meV.

network average. Prediction errors for all eight sites in the FMO complex and different training
set sizes are illustrated in Fig. S.4. Four cores of Intel(R) Xeon(R) CPUs (X5650 @ 2.67 GHz)
with 4 GB of RAM were used to train one neural network.

We found that neural network training times significantly increase when including more than
4000 frames. Up to this training set size, neural network training takes about one day, which
we considered a reasonable time for neural network training. Including 500 more frames to the
training set increased the training time by about 6 h or 24 core hours. As a balance of the amount
of input data and computational cost we therefore decided to use 4000 frames in the training set

for neural network training.



Training set size [# frames] Training time [h]

500 1.7+ 0.6
1000 3.8+14
1500 6.5+2.8
2000 13.6 £6.5
2500 18.0£7.9
3000 20.3£5.5
3500 22.7+£7.3
4000 23.9£5.0
4500 30.2£1.5
5000 31.2+4.38

Table S.1: Training times for neural network training on four cores. Each neural network was trained on
Intel(R) Xeon(R) CPUs (X5650 @ 2.67 GHz) with 4 GB of RAM. Training set sizes are reported in number
of frames randomly drawn from the 10000 frames of the trajectory of site 3. A total of 12 neural networks
was trained on each training set size. Training times are reported with average and standard deviation of all

neural network training sessions with the particular training set size.
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Figure S.4: Average absolute deviations of predicted excited state energies from TDDFT excited state
energies for neural networks trained on different training set sizes. Neural networks were trained on the
indicated fractions of the 10* frame data set. A total of 12 neural networks was trained on each investigated
fraction of the data set. Neural networks were set up with a learning rate of 10~* and 192 neurons in the

first hidden layer and 204 neurons in the second hidden layer.
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S.1.3. Spread of neural network predictions

We used a total of 12 independent neural networks to predict excited state energies for a partic-
ular BChl in the FMO complex. Predicted trajectories of all 12 neural networks were averaged to
obtain a more accurate predicted excited state energy trajectory. To justify the usage of the average
of predicted excited state energy trajectories we report the spread of individual neural network pre-
dictions in Fig. S.7 and illustrate predicted excited state energy trajectories of one neural network

compared to an average of 12 neural networks in Fig. S.5.
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Figure S.5: Part of the entire excited state energy trajectory of site 1 calculated with TD-DFT (PBEO0/3-
21G, black), predicted from a single neural network (red, dashed) and obtained as a prediction average of
12 independently trained neural networks. Neural networks were trained on 4000 frames randomly drawn

from the 10* data set.

We compared our TDDFT results for excited state energies and the predictions of neural net-
works trained on these excited state energies to the values obtained in different studies conducted
by Shim et al. in Ref. [1], Olbrich et al. in Ref. [2], and Jurinovich et al. in Ref. [3]. The results
are presented in Fig. S.6.

Neural networks with optimal hyperparameters (see Sec. S.1.2) were trained on 4000 Coulomb
matrices randomly drawn from the 10000 frame data set for every respective site. After train-
ing, neural networks were used to predict the entire excited state energy trajectory of the site on

which they were trained. Trajectory averages of predicted excited state averages were calculated
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Site Osingle [meV] Tensemble [MeV]

1 14.0 11.0
2 13.7 12.1
3 12.6 11.6
4 14.3 13.5
5 12.8 11.5
6 13.4 11.5

13.4 12.3
8 13.8 12.3

Table S.2: Average absolute deviations o of neural network predicted excited state energies and excited state
energies calculated with TDDFT (PBE0/3-21G). Deviations were calculated for single neural network pre-
dictions (oingle) and for ensemble averaged neural network predictions with 12 neural networks (Gensemble)-

Ensemble averaging improves the prediction accuracy by up to 3 meV for site 1.

QM/MM point charges BLYP/3-21G (Shim et al.)
QM/MM point charges ZINDO (Olbrich et al.)
MM Pol B3LYP/6-31G(d) (Jurinovich et al.)
QM/MM point charges PBE0/3-21G
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Figure S.6: Averages and standard deviations of excited state energy trajectories for all eight sites in the
FMO complex calculated with different methods (solid lines) and predicted by neural networks (dashed
lines) trained on TDDFT (PBEO0/3-21G). To compare the energies, their values were re-scaled with respect
to their mean for each method. Values were obtained from studies conducted by Shim,[1], Olbrich,[2] and

Jurinovich.[3].
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Figure S.7: Averages of neural network predicted excited state energy trajectory averages. Error bars in-
dicate the standard deviations of the neural network predicted excited state energy trajectory distributions.
A total of 12 neural networks was trained for each of the eight sites on 4000 Coulomb matrices randomly

drawn from the 10000 data frames of the indicated site.

for every neural network prediction. All predicted excited state energy trajectory averages were
then ensemble averaged over the 12 neural networks trained on the particular site. Results are re-
ported in Fig. S.7 with the standard deviation of the neural network predicted excited state energy

trajectory averages as error bars.
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S.1.4. Excited state energy distributions

Excited state energies were calculated for all BChl in the FMO at every 4 fs of the 40 ps pro-
duction run. Results were obtained from TDDFT calculations with the PBEO functional and the
3-21G basis set using the Q-Chem quantum chemistry package. Distributions of the obtained

excited state energy trajectories are depicted in Fig. S.8.
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Figure S.8: Excited state energy distributions for all eight BChls in the FMO monomer A. Excited state
energies were obtained from TDDFT calculations with the PBEO functional and the 3-21G basis set. Dis-

tributions were calculated from a total of 10000 frames spanning 40 ps with a binning of 50.

S.1.5. Spectral Densities and Exciton Dynamics
S.1.5.1.  Spectral Densities for individual sites.

Spectral densities for individual BChls in the FMO complex were calculated from TDDFT ex-
cited state energy trajectories and neural network predicted excited state energy trajectories. Neu-
ral networks were trained on Coulomb matrices selected with different selection methods from the
10000 frame trajectory. Harmonic spectral densities for individual BChls are shown in Fig. S.11.

For the average spectral density (see main text, Fig. 5 in Sec. 3.2) we observed that neural net-
works trained on correlation clustered Coulomb matrices predicted spectral densities significantly

better than any other Coulomb matrix selection method. However, the advantage of correlation
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clustering in terms of spectral density prediction accuracy is less obvious for spectral densities
trained on individual BChls.

Nevertheless, for each of the introduced Coulomb matrix selection methods neural networks
were able to predict the general shape of the spectral density, although the area below the curves

is significantly smaller and correlation clustering identified more peaks than the other selection

methods.
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Figure S.9: Deviation of TDDFT calculated exciton dynamics and neural network predicted exciton dynam-
ics over time. The deviation was calculated as o7,(t) = |piP°"" (t) — pi™ (¢)|/pgPTT () with 4 indicating
the BChl. Panel A) shows the deviation for exciton dynamics calculated with the Redfield method and neu-

ral network predicted harmonic average spectral densities. In Panel B), the TDDFT average spectral density

was used for all calculations and neural networks only predicted excited state energy trajectories.

S.1.6. Error estimation of predicted reorganization energies.

Despite the fact that the trained neural networks predict excited state energies with small devi-
ations, significant deviations are observed in the predicted reorganization energies. To investigate
the propagation of error on the energies to the reorganization energies we computed reorganization
energies for TDDFT trajectories with Gaussian noise. We choose Gaussian noise as it appears that
the distribution of error of the neural networks predictions is approximately Gaussian. Results are
depicted in Fig. S.10.

We observe that TDDFT trajectories with Gaussian noise of standard deviation ~10meV (this

13



value corresponds to the prediction errors observed for neural networks) lead to deviations in the

reorganization energy of about 50 %. This is in agreement with the error we found was obtained

by using the neural network predictions.
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Figure S.10: Percentage deviation of reorganization energies o) depending on the standard deviation of

Gaussian noise oyise added to the TDDFT computed excited state energy trajectories. Gaussian noise

with zero mean and different standard deviations was added to the TDDFT computed excited state energy

trajectory of site 3. A total of 12 noisy trajectories per investigated standard deviation was generated to

estimate the error on the reorganization energy. A quadratic polynomial (yellow dashed line) was found

to be a good approximation for the deviation in reorganization energies of noisy trajectories to trajectories

without noise. Black dashed lines indicate the error on the reorganization energy for a standard deviation of

10 %. This values corresponds to the prediction errors observed for neural networks.

S.1.6.1.

Error estimation of predicted exciton dynamics.

The deviation of neural network predicted exciton dynamics and TDDFT calculated exciton

dynamics of the i-th BChl was quantified by calculating o,(t) = |p

2

IPPFT(1) — N0/ AP (0),

(23

Deviations were calculated for the exciton dynamics obtained with the Redfield method as shown

in Fig. S.9.

We observe that for exciton dynamics calculations with neural network predicted average spec-
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tral densities (see panel A in Fig. S.9) the error of neural networks trained on randomly drawn
Coulomb matrices is significantly higher than the error of neural networks trained on correlation
clustered Coulomb matrices. This behavior can be observed for all sites for times up to 1 ps.
However, if we use the TDDFT calculated average spectral densities for all simulations instead
of neural network predicted harmonic average spectral densities, we observe a much smaller error
for neural networks trained on randomly drawn Coulomb matrices for all eight sites. This is due

to the fact that the error on the energies is slightly smaller with the random sampling.
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Figure S.11: Harmonic spectral densities for individual sites in the FMO complex. The spectral densities
were calculated from excited state energy trajectories obtained from TDDFT calculations (PBE0/3-21G)
and compared to spectral densities from neural network predicted excited state energy trajectories. Neural

networks were trained on the BChl they predicted with the indicated Coulomb matrix selection method.
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