# Luminescent Metal Complexes Featuring Photophysically Innocent Boron Cluster Ligands — SI

Kent O. Kirlikovali, Jonathan C. Axtell, Alejandra Gonzalez, Alice C. Phung, Saeed I. Khan, and Alexander M. Spokoyny\*

Department of Chemistry and Biochemistry, University of California, Los Angeles 607 Charles E. Young Drive East, Los Angeles, California 90095-1569

\*E-mail: <a href="mailto:spokoyny@chem.ucla.edu">spokoyny@chem.ucla.edu</a>

Supporting Information (SI)

### **Table of Contents**

| General Considerations                                                                  | 3     |
|-----------------------------------------------------------------------------------------|-------|
| Materials                                                                               | 3     |
| Instruments                                                                             | 3     |
| Determination of molar extinction coefficients                                          | 4     |
| Preparation of PMMA films                                                               | 4     |
| X-ray data collection and processing parameters                                         | 4     |
| Cyclic Voltammetry                                                                      | 4     |
| DFT Calculations                                                                        | 5     |
| Experimental                                                                            | 5     |
| UV-Vis Spectra of <i>o</i> -carborane (1) and 1,1'-bis-( <i>o</i> -carborane) (2)       | 16    |
| Molecular structures of compounds mentioned in manuscript                               | 16    |
| Molecular structures of Ir(III)-based complexes containing carboranyl functional groups | 17    |
| Single crystal X-ray structures and data of <b>3a-3c</b>                                | 17    |
| Analysis of X-ray data for <b>3a-3c</b>                                                 | 18    |
| Scheme for oxidation of <b>3c</b>                                                       | 21    |
| Scheme for formation of side products during the synthesis of <b>3a-3c</b>              | 22    |
| UV-Vis spectra of <b>3a-3c</b>                                                          | 23    |
| DFT analysis for <b>3a-3c</b>                                                           | 24    |
| Single crystal X-ray structure and solid-state stacking of 4a                           | 24    |
| Analysis of X-ray data for <b>4a</b>                                                    | 25    |
| Single crystal X-ray structure for 7                                                    | 26    |
| Single crystal X-ray structure and data for 8                                           | 27    |
| Thermogravimetric analysis (TGA) of 8                                                   | 28    |
| Coordinates for geometry optimized structures of <b>3a-3c</b> , <b>8</b>                | 28    |
| References                                                                              | 42-43 |

**General considerations.** All experiments were performed air and moisture free under an atmosphere of nitrogen using standard Schlenk and cannula techniques. THF used for reactions and MeCN used for cyclic voltammetry was purified and dried using a Grubbs column.<sup>[1]</sup> All post-Schlenk work-up and characterization was performed under ambient conditions. The "ambient conditions" for this manuscript refer to room temperature (20 - 25 °C) and uncontrolled laboratory air. Thin-layer chromatography (TLC) samples for carborane-containing compounds were stained with 1 wt. % PdCl<sub>2</sub> in 6M HCl and were developed with heat. Elemental analyses were carried out by Atlantic Microlab, Inc. in Norcross, GA.

**Materials.** Deuterated solvents were purchased from Cambridge Isotope Laboratories and used as received. MilliQ water described in this manuscript refers to purified potable water with a resistivity at 25 °C of  $\leq 18.2 \text{ M}\Omega \cdot \text{cm}$ . Pd(cod)Cl<sub>2</sub><sup>[2]</sup> and Pt(cod)Cl<sub>2</sub><sup>[3]</sup> were made according to literature procedures. *O*-carborane (1,2-C<sub>2</sub>B<sub>10</sub>H<sub>12</sub>) was purchased from Boron Specialties (USA). K<sub>2</sub>[PtCl<sub>6</sub>], PdCl<sub>2</sub>, Ni(dppe)Cl<sub>2</sub>, 1,2-bis(diphenylphosphino)ethane (dppe), 2,2'-bipyridine (bpy), 4,4'-di-*tert*-butyl-2,2'-bipyridine (dtb-bpy), 1,5-cyclooctadiene (cod), iodine, ethyl magnesium bromide, Pd(PPh<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>, and tetrabutylammonium hexafluorophosphate ( $\geq$ 99.0%, electrochemical grade) were purchased from Sigma-Aldrich. Glass-backed Silica Gel 60 GLA TLC plates were purchased from Fisher Scientific. Aluminum oxide (activated, basic, Brockmann Grade I, 58 Å, 60 mesh powder) was purchased from Alfa Aesar. All reagents were used as received unless otherwise indicated.

**Instruments.** <sup>1</sup>H NMR spectra were obtained on a Bruker AV500 or a Bruker AV400 spectrometer; <sup>13</sup>C{<sup>1</sup>H} NMR spectra were obtained on a Bruker AV500 spectrometer; <sup>11</sup>B and <sup>31</sup>P NMR spectra were obtained on a Bruker DRX500 spectrometer. Bruker Topspin software was used to process the NMR data. <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were referenced to residual solvent resonances in deuterated solvents (CD<sub>2</sub>Cl<sub>2</sub>: <sup>1</sup>H, 5.320 ppm; <sup>13</sup>C, 53.840 ppm; CDCl<sub>3</sub>: <sup>1</sup>H, 7.260 ppm; <sup>13</sup>C, 73.840 ppm; THF-d<sup>8</sup>: <sup>1</sup>H, 5.020 ppm; <sup>13</sup>C, 61.500 ppm; Note: due to high humidity H<sub>2</sub>O resonances are often present). <sup>11</sup>B and <sup>31</sup>P and NMR spectra were referenced to BF<sub>3</sub>·Et<sub>2</sub>O (0 ppm) and H<sub>3</sub>PO<sub>4</sub> (0 ppm) standards, respectively. Mass spectrometry data was acquired using a Thermo Instruments Exactive Plus with IonSense ID-CUBE DART source instrument (compound **4a** and **4b**), and a Thermo Scientific<sup>TM</sup> Q-Exactive<sup>TM</sup> Plus instrument with a quadrupole mass filter and Orbitrap mass analyzer (compound **8**). UV–Vis spectra were

recorded on a Hewlett-Packard 4853 diode array spectrometer. Phosphorescence lifetime measurements for **8** were performed by a time-correlated single-photon counting method using an IBH fluorocube lifetime instrument equipped with a 405 nm LED excitation source. Quantum yield measurements were carried out using a Hamamatsu C9920 system equipped with a xenon lamp, calibrated integrating sphere, and model C10027 photonic multichannel analyzer. Steady-state emission measurements of **8** as a solid, in the thin film, and in solution at 77 K were performed using a Photon Technology International QuantaMaster spectrofluorimeter.

**Preparation of PMMA thin film:** A solution of PMMA (0.085 g, 120 kDa) in toluene (1.5 mL) was thermally sonicated for 3 hours at 40°C, or until PMMA was completely dissolved. Next, **8** (0.0017 mg, 2 wt. %) was added to the solution and sonicated for 5 minutes, yielding an orange solution. The solution of **8**/PMMA was spin coated on a quartz substrate (3-5 drops, 800-1,000 RPM, 30 seconds), and this was repeated until the film was thick enough emit light under  $\lambda$  = 365 nm excitation in a dark room under ambient conditions.

**Determination of molar extinction coefficients**: Extinction coefficients were determined through a series of 5 dilutions with a maximum absorption between 0.1 and 0.7.

X-ray data collection and processing parameters. For 3a-3c, 4a, and 8 a single crystal was mounted on a nylon loop using perfluoropolyether oil and cooled rapidly to 100 K with a stream of cold dinitrogen. Diffraction data were measured using a Bruker APEX-II CCD diffractometer using Mo- $K_{\alpha}$  radiation. The cell refinement and data reduction were carried out using Bruker SAINT and the structure was solved with SHELXS-97. All subsequent crystallographic calculations were performed using SHELXL-2013.

**Cyclic voltammetry.** Cyclic voltammetry was performed on **8** and using a CH Instruments Model 600D potentiostat with a glassy carbon disc working electrode, platinum wire counter electrode, and Ag/AgCl wire reference in a saturated solution of KCl in MeCN. All experiments were conducted in  $0.1M [N^nBu_4]PF_6/MeCN$  with 0.5 mM analyte concentrations. MeCN solutions were degassed by sparging with argon for 10 minutes, and the cyclic voltammetry was performed under constant flow of argon gas. A scan rate of 0.1 mV/s was used with ferrocene as

an internal standard.

**DFT Calculations**. All optimized geometries were calculated from crystallographic data and optimized with DFT calculations using standard triple- $\xi$  polarization (TZP) basis sets available in the Amsterdam Density Functional 2014.04 Rev. 44409 (ADF)<sup>[4]</sup> software suite, with Becke<sup>[5]</sup> and Perdew<sup>[6]</sup> (BP) Slater-type orbitals (STOs) on a 6 core Apple computer. The local density approximation (LDA) was made with BP and exchange and correlation corrections available by default in the ADF 2014.04 suite. Single point calculations were performed using BP86 level of theory with the Grimme D3 dispersion correction<sup>[7]</sup> and a TZP basis set. Electron cores were frozen to 2p for Ni, Pd, and Pt; 1s for B, C, and N; and 2s for P atoms. Electron spins were restricted for S<sub>0</sub> calculations, and electron spins were unrestricted for T<sub>1</sub> calculations. Relativistic correlations were made using Zero-Order Relativistic Approximation (ZORA) for Pt (**3c** and **8**).

#### Experimental

#### 1,1'-Bis(o-carborane) [2].

*O*-carborane (5.00 g, 34.67 mmol) was added to a 500mL Schlenk flask, which was then evacuated and backfilled with N<sub>2</sub> three times. Dry toluene (200 mL) was transferred *via* cannula, and the contents were stirred to give a slightly cloudy white solution. Next, <sup>n</sup>BuLi (28.4 mL, 71.0 mmol, 2.5 M in hexane) was added slowly *via* syringe. The solution immediately turned milky white and the mixture was allowed to stir at room temperature for 21 hours. CuCl powder (9.44 g, 95.3 mmol) was then added, causing the reaction mixture to immediately turn gray and then dark red over the course of 30 minutes. This suspension was stirred for 3 days, after which toluene was removed by rotary evaporation. CH<sub>2</sub>Cl<sub>2</sub> (50 mL) and aqueous HCl (120 mL, 12 M) were added and stirred vigorously for 3 hours, or until the color turned green (indicating the formation of CuCl). The organic layer was separated, and the aqueous layer was washed with CH<sub>2</sub>Cl<sub>2</sub> (3 x 100mL). The combined organic fractions were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and dried *in vacuo*, yielding a light brown solid (4.60 g). This crude product was purified by stepwise vacuum sublimation: sublimation under dynamic vacuum (0.20 Torr) at 75°C for 1 hour yielded crystals of unreacted *o*-carborane. After removal, the remaining solid was heated to 180°C under dynamic vacuum (0.20 Torr) for 1-2 hours. Pure product in the form of white crystals was

isolated from the cold finger and dried under vacuum overnight (3.61 g, 73%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz):  $\delta$  3.90 (s, 2H, CH<sub>cage</sub>), 3.40-1.40 (br. m, 18H, BH); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz): 2.38 (4B), -8.98 (2B), -10.00 (6B), -11.17 (4B), 12.24 (2B), -13.29 (2B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz): 72.31, 63.25. Synthesis adapted from Reference 8.

#### 9,12-diiodo-o-carborane [5].

To a 200 mL Schlenk flask was added o-carborane (2.88 g, 20.0 mmol) and one equivalent I<sub>2</sub> (5.08 g, 20.0 mmol). The flask was evacuated and backfilled with N<sub>2</sub> at least three times to remove residual moisture. Dry CH<sub>2</sub>Cl<sub>2</sub> (100 mL) was transferred to the reaction vessel via cannula and the contents of the flask were stirred to give a purple solution. Next, AlCl<sub>3</sub> (0.533 g, 4.0 mmol) was added under positive N<sub>2</sub> flow, and the reaction was refluxed until the color fades to pale yellow (~2-3 hours). A second equivalent of I<sub>2</sub> (5.08 g, 20.0 mmol) and AlCl<sub>3</sub> (0.267g, 2.0 mmol) were added, and the reaction was heated to 45°C and allowed to reflux overnight. The next day, the dark brown reaction mixture was diluted with H<sub>2</sub>O (50 mL, or until effervescence subsided), and unreacted I<sub>2</sub> was quenched with Na<sub>2</sub>SO<sub>3</sub> (0.708 g, 5.62 mmol). After stirring for 10 minutes, the purple organic layer was separated and the aqueous layer was washed with CH<sub>2</sub>Cl<sub>2</sub> (40 mL x 3) and dried over MgSO<sub>4</sub>. If the solution is still colored, activated charcoal can be added. This solution was passed through a silica plug and eluted with CH<sub>2</sub>Cl<sub>2</sub> to give a light gray solution. Solvent was then removed by rotary evaporation, yielding a lavender solid. The crude product was then sublimed under vacuum (150-160°C, 5-6 hours, 0.20 Torr) to afford a white solid (6.52 g, 82%) on the cold finger, which was isolated and dried under vacuum overnight before further use. Alternatively, the crude product can be purified by recrystallization by layering CH<sub>2</sub>Cl<sub>2</sub> with an equal volume of hexane and storing at -20°C. After 3-4 hours, the white crystals can be filtered off and washed with cold hexane. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$ 3.99 (s, 2H, CH), 3.50-1.80 (m, 9H, BH); <sup>11</sup>B NMR (CDCl<sub>3</sub>, 160 MHz): -5.50 (d, 2B), -12.67 (d, 4B), -14.01 (s, 3B), -14.89 (s, 1B); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm): 51.71. Synthesis adapted from Reference 9.

#### 9,12-diethyl-o-carborane [6].

To a 50 mL Schlenk flask was added 9,12-diiodo-*o*-carborane (1.98 g, 5.00 mmol) and PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>2</sub> (0.07091 g, 0.10 mmol). The flask was left under vacuum for 30 minutes, then

backfilled with N<sub>2</sub>. Dry THF (20 mL) was added *via* cannula, and the flask was stirred in an ice bath for 10 minutes. EtMgBr (7.9 mL, 3.0 M, 23.7 mmol) was then slowly added. The resulting mixture was gently refluxed for 10 days and monitored by GC-MS. The reaction was cooled to room temperature and quenched with H<sub>2</sub>O, then charged with diethyl ether (150 mL). The organic layer was separated, and the aqueous layer was extracted with diethyl ether (3 x 80mL). Aqueous HCl (5%, 30 mL) was added to the organic layer, and the organic layer was separated and solvent removed *via* rotary evaporation. The crude product was purified *via* silica column chromatography (ethyl acetate:hexanes 1:9). Solvent was removed under vacuum to afford the desired product as a low-melting red solid (0.250g, 31%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz)  $\delta$  3.47 (2H, s, CH<sub>cage</sub>), 3.00-1.20 (8H, br. m, BH), 0.89 (t, 6H, CH<sub>3</sub>), 0.71 (q, 4H, CH<sub>2</sub>); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz): 9.64 (s, 2B), -8.43 (d, 2B), -14.24 (d, 4B), -16.21 (d, 2B); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz): 47.71, 13.52, 9.35 (br). Synthesis adapted from Reference 9.

#### 9,9',12,12'-Tetra-ethyl-1,1'-bis(o-carborane) [7].

To a clean 25 mL Schlenk flask, 9,12-diethyl-o-carborane (0.500 g, 2.50 mmol) was added, and the flask was cooled to -78°C. The flask was evacuated and backfilled with N<sub>2</sub> five times, followed by the addition of dry toluene (10 mL) via cannula, yielding a yellow solution. Next, <sup>n</sup>BuLi (2.1 mL, 5.25 mmol, 2.5 M in hexanes) was added *via* syringe. The mixture, which immediately turned clear and gradually acquired a yellow color, was allowed to warm and was stirred at room temperature for 24 hours. CuCl was added (0.680 g, 6.87 mmol), and the resulting dark green suspension was allowed to stir for 3 days. Toluene was then removed under reduced pressure, and CH<sub>2</sub>Cl<sub>2</sub> (5 mL) and aqueous HCl (15 mL, 10 M) were added and stirred vigorously to quench the resulting dark green reaction mixture. The mixture was allowed to stir until the aqueous layer turned light green (~3h). The organic layer was separated, and the aqueous layer was washed with CH<sub>2</sub>Cl<sub>2</sub> (3 x 15mL). The combined organic fractions were dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated to dryness yielding a yellow-orange solid. The crude product was eluted through a pad of silica with hexanes and concentrated to dryness, yielding a pale yellow solid (0.385 g). Minimal pentane (2-3 mL) was added to the solid and stored in the freezer (-20°C) for recrystallization. The next day, pentane was decanted yielding white crystals. The supernatant was stored in the freezer and decanted after four hours, and this process was repeated once more yielding pure white crystals (Total: 0.231 g, 46%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500

MHz)  $\delta$  3.72 (s, 2H, cage CH), 3.4-1.2 (br. m, 16H, BH), 0.86 (m, 12H, CH<sub>3</sub>), 0.69 (m, 8H, CH<sub>2</sub>); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz): 10.04 (s, 4B), -8.58 (d, 4B), -12.09 (m, 12B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz): 65.48, 56.19, 13.32, 8.36. Single crystals for X-ray diffraction analysis were grown from a concentrated solution of pentane stored in a freezer at -15°C overnight.

#### Pd(dppe)Cl<sub>2</sub>

Pd(cod)Cl<sub>2</sub> (0.286 g, 1.00 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (6 mL) were combined and stirred in a large *via*l to give a yellow slurry, and 1,2-bis(diphenylphosphino)ethane (dppe, 0.398 g, 1.00 mmol) was then added. The color quickly changed to a lighter shade of yellow. After 15 minutes, hexane (14 mL) was added, and the *via*l was capped and stored in the freezer (-20°C) for 4 hours. The solid was filtered and washed with pentane (5 mL x 3) yielding the pale yellow product (0.517 g, 90%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 400 MHz): 7.87 (8H, m), 7.60 (4H, m), 7.53 (8H, m), 2.47 (4H, d, CH<sub>2</sub>); <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>, 121 MHz): 64.7. Synthesis adapted from Reference 10.

### Pt(dppe)Cl<sub>2</sub>

Pt(cod)Cl<sub>2</sub> (0.374 g, 1.00 mmol) and CH<sub>2</sub>Cl<sub>2</sub> (6 mL) were combined and stirred in a large *via*l to give a white slurry, and 1,2-bis(diphenylphosphino)ethane (dppe, 0.398 g, 1.00 mmol) was then added. After 15 minutes, hexane (14 mL) was added, and the *via*l was capped and stored in the freezer (-20°C) for 4 hours. The solid was filtered and washed with pentane (5 mL x 3) yielding the white product (0.576 g, 87%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 400 MHz): 7.86 (8H, m), 7.56 (4H, m), 7.52 (8H, m), 2.36 (4H, d, CH<sub>2</sub>); <sup>31</sup>P NMR (CD<sub>2</sub>Cl<sub>2</sub>, 121 MHz): 41.8 (<sup>1</sup>*J*<sub>Pt-P</sub> = 3622 Hz). Synthesis adapted from the synthesis for **Pd(dppe)Cl<sub>2</sub>** in Reference 10.

#### Pt(dtb-bpy)Cl<sub>2</sub>

Pt(cod)Cl<sub>2</sub> (0.350 g, 0.935 mmol), 4,4'-ditertbutyl-2,2'-bipyridine (dtb-bpy, 0.251 g, 0.935 mmol), and 8 mL methanol were stirred in a sealed tube at 75°C for 22 hours. As the suspension warmed up, the color changed to yellow-orange and eventually turned bright yellow. The tube was cooled to room temperature in a water bath and the yellow solid was filtered. After washing with diethyl ether (3 mL x 5) to remove 1,5-cyclooctadiene, the yellow product was dried under vacuum overnight (0.458 g, 92%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz): 9.52 (2H, d), 7.91

(2H, d), 7.57 (2H, dd), 1.44 (18H, s, CH<sub>3</sub>); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 126 MHz): 164.9, 157.2, 149.3, 124.8, 119.9, 36.2, 30.3. Synthesis adapted from Reference 11.

#### Ni(bc)(dppe) [3a].

1,1'-Bis-(o-carborane) (0.100 g, 0.349 mmol) was added to a 10 mL Schlenk flask, which was then evacuated and backfilled with N<sub>2</sub> three times. Dry THF (4 mL) was transferred to the flask via cannula to give a clear solution. While stirring at room temperature, "BuLi (0.45 mL, 1.6 M, 0.72 mmol) was added drop-wise *via* syringe, giving a dark yellow solution. The reaction was then heated at 60°C for 3 hours, and the color slowly turned to a lighter yellow. After 3 hours, the flask was allowed to cool to room temperature yielding a golden-yellow solution. To a separate 25 mL Schlenk flask was added Ni(dppe)Cl<sub>2</sub> (0.184 g, 0.349 mmol), and the flask was evacuated and backfilled with N2 three times. Dry THF (20 mL) was then transferred via cannula to give a red-orange slurry. This flask was cooled to -78°C and stirred for 5 minutes. The dilithio-bis-carborane mixture was added dropwise (~1 mL/min) to the cold Ni(dppe)Cl<sub>2</sub> slurry, and the reaction was allowed to warm up to room temperature and react overnight, giving a deep orange solution the following day. The solvent was removed via rotary evaporation after 18 hours, and the orange solid was dissolved in 5-10 mL CH<sub>2</sub>Cl<sub>2</sub> and passed through a pad of Celite. After removal of solvent, crude orange product (0.160 g) remained and was purified via column chromatography: a wide 60 mL filter frit was loaded halfway with silica in hexanes, and the crude product was dissolved in the minimum amount of 1:1  $CH_2Cl_2$ :hexanes ( $R_f = 0.50$ ) and loaded on the silica. Any unreacted bis-carborane ( $R_f = 0.90$ ) can be removed as the initial clear/light yellow elution, and the desired product can be cleanly collected as the orange band that follows. The orange solution was concentrated to dryness to give a yellow solid (0.125 g, 49%) that was dried under vacuum overnight. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz) δ 7.77 (br. t, 8H, Ar), 7.64 (t, 4H, Ar), 7.54 (t, 8H, Ar), 4.0-0.6 (br. m, 20H, BH), 2.0 (d, 4H,  $CH_2^{-2}J_{PH} = 15.60$ Hz); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz) -1.96 (d, 2B), -3.83 (d, 2B), -8.35 (d, 12B), -10.62 (m, 4B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz) 134.62 (t,  ${}^{2}J_{PC} = 5.2$  Hz), 132.51, 129.46 (t,  ${}^{3}J_{PC} = 5.2$  Hz), 127.78 (m), 87.31 (dd,  ${}^{2}J_{PC(trans)} = 91.8$  Hz,  ${}^{2}J_{PC(cis)} = 38.4$  Hz), 84.70, 28.28 (t,  ${}^{1}J_{PC} = 21.5$  Hz); <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 202 MHz): 49.09. NMR chemical shifts comparable to those in Reference 12. Single crystals for X-ray diffraction analysis were grown from slow vapor

diffusion of diethyl ether into dichloromethane. Elemental analysis (including  $0.5 \text{ CH}_2\text{Cl}_2$ ) found (calculated for  $C_{30.5}\text{H}_{45}\text{B}_{20}\text{ClNiP}_2$ ): C, 46.40 (46.73); H, 5.89 (5.79).

#### **Pd(bc)(dppe)** [3b].

1,1'-Bis-(o-carborane) (0.100 g, 0.349 mmol) was added to a 10 mL Schlenk flask, which was then evacuated and backfilled with N<sub>2</sub> three times. Dry THF (4 mL) was transferred to the flask via cannula to give a clear solution. While stirring at room temperature, "BuLi (0.45 mL, 1.6 M, 0.72 mmol) was added dropwise *via* syringe, giving a dark yellow solution. The reaction mixture was then heated at 60°C for 3 hours, and the color slowly turned lighter yellow. After 3 hours, the flask was allowed to cool to room temperature yielding a golden-yellow solution. Pd(dppe)Cl<sub>2</sub> (0.202 g, 0.349 mmol) was added to a separate 25mL Schlenk flask, which was then evacuated and backfilled with N2 three times. Dry THF (20 mL) was then transferred via cannula to give a white slurry. This flask was cooled to -78°C and stirred for 10 minutes. The dilithiobis-carborane solution was added dropwise (~1 mL/min) to the cold Pd(dppe)Cl<sub>2</sub> slurry, and the reaction was allowed to warm up to room temperature and stir overnight, giving a deep orange mixture the following day. THF was removed via rotary evaporation after 20 hours, and the remaining orange solid was dissolved in 5-10 mL CH<sub>2</sub>Cl<sub>2</sub> and passed through a pad of Celite. After removal of solvent in vacuo, crude orange product (0.225 g) remained and was purified via column chromatography. A wide 60 mL filter frit was loaded halfway with silica in hexanes, and the crude product was dissolved in minimal 1:1  $CH_2Cl_2$ :hexanes ( $R_f = 0.50$ ) and loaded on the silica. Any unreacted bis-carborane ( $R_f = 0.90$ ) can be removed as the initial clear/light yellow elution, and the desired product can be cleanly collected as the orange band that follows. The orange solution was concentrated to dryness to give an orange solid (0.70 g, 25%) that was dried under vacuum overnight. <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz) & 7.64 (t, 4H, Ar), 7.62 (t, 8H, Ar), 7.55 (t, 8H, Ar), 3.6-0.6 (br. m, 20H, BH), 2.12 (d, 4H,  $CH^2$ ,  ${}^2J_{PH} = 20.4 Hz$ );  ${}^{11}B NMR (CD_2Cl_2, 160)$ MHz) -3.20 (m, 4B), -8.74 (m, 16B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz) 134.57 (t,  ${}^{2}J_{PC} = 5.6$  Hz), 132.74, 129.64 (t,  ${}^{3}J_{PC} = 5.4$  Hz), 127.13, 91.90 (dd,  ${}^{2}J_{PC(trans)} = 138.7$  Hz,  ${}^{2}J_{PC(cis)} = 14.7$  Hz), 84.80, 28.82 (t,  ${}^{1}J_{PC} = 22.3 \text{ Hz}$ );  ${}^{31}P{}^{1}H{}$  NMR (CD<sub>2</sub>Cl<sub>2</sub>, 202 MHz) 51.63. Single crystals for Xray diffraction analysis were grown by cooling a concentrated solution of hot benzene to room temperature. Elemental analysis found (calculated for C<sub>30</sub>H<sub>44</sub>B<sub>20</sub>PdP<sub>2</sub>): C, 45.80 (45.65); H, 5.89 (5.62).

#### Pt(bc)(dppe) [3c].

1,1'-Bis-(o-carborane) (0.100 g, 0.349 mmol) was added to a 10 mL Schlenk flask, which was then evacuated and backfilled with N<sub>2</sub> three times. Dry THF (4 mL) was transferred to the flask via cannula to give a clear solution. While stirring at room temperature, "BuLi (0.45 mL, 1.6 M, 0.72 mmol) was added drop-wise via syringe, giving a dark yellow solution. The reaction was then heated at 60°C for 3 hours, and the color slowly turned lighter yellow. After 3 hours, the flask was allowed to cool to room temperature yielding a golden-yellow solution. Pt(dppe)Cl<sub>2</sub> (0.234 g, 0.349 mmol) was added to a separate 25mL Schlenk flask, which was then evacuated and backfilled with N<sub>2</sub> three times. Dry THF (15 mL) was then transferred via cannula to give a white slurry. This flask was cooled to -78°C and stirred for 10 minutes. The dilithio-biscarborane solution was added dropwise (~1 mL/min) to the cold Pt(dppe)Cl<sub>2</sub> slurry, and the reaction was allowed to warm up to room temperature and stir overnight, giving a deep orange solution the following day. The orange solution was passed through a pad of Celite and washed with THF. The filtrate was then dried *via* rotary evaporation to yield a brown-orange solid. This solid was dissolved in 5-10 mL CH<sub>2</sub>Cl<sub>2</sub> and passed through a pad of Celite. After removal of solvent, crude orange product (0.225 g) remained and was purified via column chromatography through a pad of basic alumina. A wide 60 mL filter frit was loaded halfway with basic alumina in  $CH_2Cl_2$ , and the crude product was dissolved in minimal  $CH_2Cl_2$  ( $R_f = 0.90$ ) and loaded on the basic alumina. The orange filtrate (mix of product and unreacted bis-carborane) was collected, and the volume was reduced to about 1-2 mL via rotary evaporation. Next, 5-10 mL hexanes was added, causing a yellow solid to crash out. This solid was filtered and washed with hexanes (3 x 5 mL) and dried under vacuum for 24 hours to afford **3c** as a yellow powder (0.082 g, 27%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz) δ 7.70 (m, 8H, Ar), 7.63 (t, 4H, Ar), 7.55 (m, 8H, Ar), 3.5-0.7 (br. m, 20H, BH), 2.07 (d, 4H, CH<sub>2</sub>,  ${}^{2}J_{PH} = 17.7$  Hz);  ${}^{11}B$  NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz): -3.67 (m, 4B), -8.08 (m, 16B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz) 134.75 (t,  ${}^{2}J_{PC} = 5.4$  Hz), 132.69, 129.48 (t,  ${}^{3}J_{PC} =$ 5.5 Hz), 126.77 (m), 84.57, 89.12 (dd, bis-carborane C-Pt,  ${}^{2}J_{PC(trans)} = 128.4$  Hz,  ${}^{2}J_{PC(cis)} = 8.34$ Hz), 29.86 (m); <sup>31</sup>P{<sup>1</sup>H} NMR (CD<sub>2</sub>Cl<sub>2</sub>, 202 MHz): 41.44 (s,  ${}^{1}J_{PtP} = 2493$  Hz). Single crystals for X-ray diffraction analysis were grown from slow vapor diffusion of diethyl ether into dichloromethane. Elemental analysis found (calculated for C<sub>30</sub>H<sub>44</sub>B<sub>20</sub>PtP<sub>2</sub>): C, 40.55 (41.04); H, 5.05 (4.80).

#### Pt(bc)(dtb-bpy) [4a] and [4b].

2 (0.080 g, 0.279 mmol) was charged to a 10mL Schlenk flask, which was then evacuated and backfilled 3 times with N2. Dry THF (3 mL) was added via cannula and the solution was stirred, followed by the addition of "BuLi (0.36 mL, 1.6 M, 0.576 mmol) at room temperature. The flask was heated at 60°C for 3 hours and then cooled to room temperature.  $Pt(dtb-bpy)Cl_2(dtb-bpy = 4,4'-di-dtb-bpy)Cl_2(dtb-bpy = 4,4'-dtb-bpy)Cl_2(dtb-bpy = 4,4'-dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-bpy)Cl_2(dtb-b$ tert-butyl-2,2'-bipyridine, 0.149 g, 0.279 mmol) was charged to a separate 50mL Schlenk flask, which was evacuated and backfilled 3 times with N<sub>2</sub>. Next, dry THF (20 mL) was added, and the resulting yellow slurry was cooled to -78°C. The mixture of Li<sub>2</sub>[bc] was added dropwise to the cooled slurry. The reaction mixture was allowed to warm up to room temperature and was heated to 60°C. The reaction mixture slowly turned from bright yellow to dark brown/black. After 21 hours, the solvent was moved via rotary evaporation to yield a yellow-brown solid. This solid was washed with CH<sub>2</sub>Cl<sub>2</sub> (3 x 10 mL), yielding a gray solid (0.082 g) that was emissive under UV excitation ( $\lambda_{exc}$ = 365 nm). To this solid was added 5 mL hot 1,2-difluorobenzene, and this dark brown slurry was heated with a heat gun the solid completely dissolved. Next, the solution was passed through a pad of Celite, yielding a yellow-orange solution with black precipitate at the top of the Celite. This procedure was repeated two more times. The filtrate was dried in vacuo, and the pale orange solid was dried under vacuum overnight (0.055 g, 26%). <sup>1</sup>H NMR suggests a 1.0:1.4 mix of  $\kappa^2$ -B,C-bound (4a) and  $\kappa^2$ -C,C-bound (4b) isomers. Single crystals of 4a for X-ray diffraction analysis were by cooling a concentrated solution of hot 2-MeTHF to room temperature. Attempts to reproduce this result led to products with various mixes of isomers, including both a majority  $\kappa^2$ -B,C-bound isomer and a majority  $\kappa^2$ -C.C-bound isomer, as evidenced by the <sup>1</sup>H NMR spectrum of the aryl region (See NMR spectra). HRMS (DART): m/z calculated for C<sub>22</sub>H<sub>44</sub>B<sub>20</sub>N<sub>2</sub>Pt [M+H]<sup>+</sup>, 748.5237 Da; found, 748.5246 Da.

**4a**: <sup>1</sup>**H NMR** (THF-d<sup>8</sup>, 500 MHz) δ 9.44 (d, 2H, Ar), 8.39 (d, 2H, Ar), 7.92 (dd, 2H, Ar), 3.1-1.0 (br. m, 20H, BH), 1.44 (s, 18H, <sup>t</sup>Bu); <sup>13</sup>**C NMR** (THF-d<sup>8</sup>, 125 MHz) 166.32, 157.51, 151.77, 124.54, 121.02, 82.92, 81.01, 36.06, 30.13.

**4b**: <sup>1</sup>**H NMR** (THF-d<sup>8</sup>, 500 MHz) δ 9.83 (d, 1H, Ar), 9.27 (d, 1H, Ar), 8.41 (d, 1H, Ar), 8.37 (d, 1H, Ar), 7.97 (dd, 1H, Ar), 7.84 (dd, 1H, Ar), 4.47 (s, 1H, CH<sub>bis-carborane</sub>), 3.2-1.6 (br m, 20H, BH), 1.459 (9H, s, <sup>t</sup>Bu), 1.457 (9H, s, <sup>t</sup>Bu); <sup>13</sup>C NMR (THF-d<sup>8</sup>, 125 MHz) 165.44, 165.00, 157.99, 156.52,

154.24, 150.23, 125.15, 124.52, 121.12, 120.36, 85.17, 77.03, 70.52, 68.19, 36.53, 36.46, 30.27, 30.14.

*Note:* <sup>11</sup>*B NMR chemical shifts for 4a and 4b overlap, so values for the mixture are reported.* <sup>11</sup>**B NMR** (THF-d<sup>8</sup>, 160 MHz) -4.01 (4B), -8.79 (8B), -11.15 (8B).

#### Pt(tebc)(dtb-bpy) [8].

7 (0.0689 g, 0.171 mmol, tebc) was charged to a 10mL Schlenk flask, which was then evacuated and backfilled 3 times with N2. Dry THF (2 mL) was added via cannula and the solution was stirred, followed by the slow addition of "BuLi (0.22 mL, 1.6 M, 0.351 mmol) at room temperature. The flask was heated at 60°C for 3 hours and then cooled to room temperature. Pt(dtbbpy)Cl<sub>2</sub> (dtb-bpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 0.0914 g, 0.171 mmol) was charged to a separate 25mL Schlenk flask, which was evacuated and backfilled 3 times with N<sub>2</sub>. Next, dry THF (15 mL) was added, affording a yellow slurry, which was cooled to -78°C. The mixture containing [Li<sub>2-</sub>(tebc)] was added dropwise to the cooled slurry. The reaction mixture was allowed to warm up to room temperature and was then heated at 60°C for 60 hours. The reaction slowly turned from bright yellow to yellow-brown. After 60 hours, the solvent was moved via rotary evaporation to yield a yellow-brown solid. This solid was dissolved in diethyl ether and passed through a pad of Celite, and the filtrate was then dried in vacuo. Next, the resulting solid was washed with cold pentane (5 x 2 mL), yielding a pale orange solid. The solid was dissolved in CH<sub>2</sub>Cl<sub>2</sub> and passed through a silica plug. The filtrate was dried in vacuo, and the resulting solid was dried under vacuum overnight (0.063 g, 43%). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz) δ 9.56 (d, 1H, Ar), 9.36 (d, 1H, Ar), 8.08 (d, 1H, Ar), 8.02 (d, 1H, Ar), 7.68 (dd, 1H, Ar), 7.47 (dd, 1H, Ar), 3.87 (s, 1H, CH<sub>bis-carborane</sub>), 3.3-1.2 (16H, br. m, BH), 1.45 (9H, s, <sup>t</sup>Bu), 1.43 (9H, s, <sup>t</sup>Bu), 1.02-0.82 (m, 12H, CH<sub>2</sub>CH<sub>3</sub>), 0.56-0.79 (m, 8H, CH<sub>2</sub>); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz) 7.74 (m, 4B), -8.46 (s, 8B), -11.25 (s, 4B), -13.81 (s, 4B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz) 164.12 (s, C<sup>2</sup> dtb-bpy, C—Pt<sub>trans</sub>), 163.58, 157.22, 155.85, 155.19, 149.79, 123.99, 123.77, 120.02, 119.17, 76.63, 73.20, 59.56, 55.39, 35.98, 35.90, 30.36, 30.23 (d, *tert*-butyl CH<sub>3</sub>, J = 16.2 Hz), 13.95, 13.71, 13.57, 13.51, (ethyl CH<sub>3</sub>), 9.11 (br. m, ethyl CH<sub>2</sub>). Single crystals for X-ray diffraction analysis were grown the slow evaporation of diethyl ether over the course of one week. HRMS (Orbitrap): m/z calculated for C<sub>30</sub>H<sub>64</sub>B<sub>20</sub>N<sub>2</sub>Pt [M<sup>-</sup>], 863.6724 Da; found, 863.0652 Da.

#### $[NEt_4]_2[Pd(bc)_2]$

2 (0.100 g, 0.349 mmol) was added to a 25 mL Schlenk flask, which was then evacuated and backfilled with N<sub>2</sub> three times. Dry THF (4 mL) was transferred to the flask via cannula, generating a clear solution. While stirring at room temperature, "BuLi (0.45 mL, 1.6 M, 0.72 mmol) was added dropwise via syringe to give a dark yellow solution. The reaction was then heated to 60°C for 3 hours, and the color slowly turned lighter yellow. After 3 hours, the flask was cooled to room temperature, and under positive N2 flow, PdCl2 (0.0309 g, 0.175 mmol) was added. The temperature was increased to 60°C and the mixture was allowed to stir for 21 hours. The reaction was cooled to room temperature, passed through a pad of Celite, and the filtrate was dried in vacuo. The resulting brown solid was then dissolved in H<sub>2</sub>O (10 mL). To this solution was added a solution of tetraethylammonium bromide (NEt<sub>4</sub>Br, 0.0736 g, 0.349 mmol) dissolved in 2 mL H<sub>2</sub>O, and brown solid immediately precipitated. The solid was filtered and washed with H<sub>2</sub>O (3 x 10 mL) was then dissolved in CH<sub>2</sub>Cl<sub>2</sub> and dried over Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent removed via rotary evaporation. Next, the solid was dissolved in minimal CH<sub>2</sub>Cl<sub>2</sub> and loaded on silica. The plug was flushed with CH<sub>2</sub>Cl<sub>2</sub> (100 mL) to remove side products, and then flushed with acetone (50 mL) to collect the product. Solvent was removed via rotary evaporation, and the brown solid was vacuum dried (0.059 g, 25%). Note: We believe B-H activation and/or deboronation may be occurring under the given reaction conditions for [NEt<sub>4</sub>]<sub>2</sub>[Pd(bc)<sub>2</sub>]; however, the <sup>11</sup>B NMR spectrum for [NEt<sub>4</sub>]<sub>2</sub>[Pd(bc)<sub>2</sub>] isolated under these conditions are in agreement with the <sup>11</sup>B NMR spectrum for the side product isolated during the synthesis of **3b** (see Figure S7 below). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz) δ 3.4-1.0 (br. m, 20H, BH), 3.21 (q, 16H, CH<sub>2</sub>), 1.35 (tt, 24H, CH<sub>3</sub>); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz) -2.66 (m, 9B), -9.31 (m, 26B),-16.75 (2B), -22.07 (2B), -32.64 (0.5B), -35.11 (0.5B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz) 125.77, 82.77, 82.39, 72.30, 65.49, 65.22, 63.25, 34.46, 30.44, 30.05, 7.87. Elemental analysis found (calculated for C<sub>24</sub>H<sub>80</sub>B<sub>40</sub>N<sub>2</sub>Pd): C, 32.68 (30.81); H, 8.58 (8.62).

#### $[NEt_4]_2[Pt(bc)_2]$

2 (0.100 g, 0.349 mmol) was added to a 25 mL Schlenk flask, which was then evacuated and backfilled with  $N_2$  three times. Dry THF (4 mL) was transferred to the flask *via* cannula, generating a clear solution. While stirring at room temperature, <sup>n</sup>BuLi (0.45 mL, 1.6 M, 0.72

mmol) was added dropwise *via* syringe to give a dark yellow solution. The reaction mixture was then heated at 60°C for 3 hours, and the color slowly turned lighter yellow. After 3 hours, the flask was cooled to  $-78^{\circ}$ C, and under positive N<sub>2</sub> flow, Pt(cod)Cl<sub>2</sub> (cod = 1,5-cyclooctadiene, 0.065 g, 0.175 mmol) was added. The temperature was increased to 60°C and the resulting mixture was allowed to stir for 21 hours. The resulting dark brown mixture was allowed to cool to room temperature and was passed through a pad of Celite. The filtrate was dried in vacuo. The resulting solid was then dissolved in H<sub>2</sub>O (10 mL). To this solution was added a solution of tetraethylammonium bromide (NEt<sub>4</sub>Br, 0.0736 g, 0.349 mmol) dissolved in 2 mL H<sub>2</sub>O, and dark green solid immediately precipitated. The solid was filtered and washed with H<sub>2</sub>O (3 x 10 mL) and was then dissolved in CH<sub>2</sub>Cl<sub>2</sub> and dried over Na<sub>2</sub>SO<sub>4</sub>. The dark brown solution was filtered and the solvent removed via rotary evaporation. Next, the solid was dissolved in minimal CH<sub>2</sub>Cl<sub>2</sub> and loaded on silica. The plug was flushed with CH<sub>2</sub>Cl<sub>2</sub> (100 mL) to remove side products, and then flushed with acetone (50 mL) to collect the product. Solvent was removed via rotary evaporation, and the resulting brown solid was vacuum dried (0.182 g, 68%). Note: We believe B—H activation and/or deboronation may be occurring under the given reaction conditions for [NEt<sub>4</sub>]<sub>2</sub>[Pt(bc)<sub>2</sub>]; however, the <sup>11</sup>B NMR spectrum for [NEt<sub>4</sub>]<sub>2</sub>[Pt(bc)<sub>2</sub>] isolated under these conditions are in agreement with the <sup>11</sup>B NMR spectrum for the side product isolated during the synthesis of 3c (see Figure S7 below). <sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 500 MHz): 3.3-1.0 (br. m, 20H, BH), 3.21 (g, 16H, CH<sub>2</sub>), 1.35 (tt, 24H, CH<sub>3</sub>); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>, 160 MHz) -2.84 (m, 8B), -9.45 (m, 25H), -16.94 (d, 4B), -22.25 (d, 2B), -32.77 (d, 0.5B), -35.21 (d, 0.5B); <sup>13</sup>C NMR (CD<sub>2</sub>Cl<sub>2</sub>, 125 MHz) 72.31, 71.22, 65.43, 63.26, 29.88, 22.72, 14.21, 7.86. Elemental analysis found (calculated for C<sub>24</sub>H<sub>80</sub>B<sub>40</sub>N<sub>2</sub>Pt): C, 31.37 (28.14); H, 7.56 (7.87).



Figure S1: UV-Vis absorption spectrum of 1 and 2. Solutions were made to 0.002 M concentration.



**Figure S2**: Structures of luminescent compounds mentioned in manuscript. A) Ir(III) compounds containing a  $\kappa^2$ -C,N-bound 1-(2-pyridyl)-*o*-carboranyl ligand (page 1 of manuscript, reference 13, SI); B) Ir(III) compounds containing a  $\kappa^2$ -C,P-bound 1-( ${}^{i}$ Pr<sub>2</sub>PCH<sub>2</sub>)-*o*-carboranyl (page 1 of manuscript, reference 14, SI); C) Pt(bph)(bpy) where bph = biphenyl and bpy = 2,2'-bipyridine (page 2 of manuscript, reference 15, SI).



**Figure S3**: Structures of Ir(III) compounds that contain *ortho-*, *meta-*, *para*, and *nido-*carborane as substituents. A) Reference 16; B) Reference 17; C) Reference 18; D) Reference 19.



Figure S4: Thermal ellipsoid plots of **3a-3c** at 50% probability.

| Parameter                       | 3a     | 3b     | 3c     |
|---------------------------------|--------|--------|--------|
| M-C1 (Å)                        | 2.007  | 2.097  | 2.090  |
| M-C4 (Å)                        | 1.995  | 2.103  | 2.093  |
| C1-C2 (Å)                       | 1.694  | 1.688  | 1.744  |
| C2-C3 (Å)                       | 1.514  | 1.531  | 1.514  |
| C3-C4 (Å)                       | 1.694  | 1.690  | 1.728  |
| M-P1 (Å)                        | 2.253  | 2.312  | 2.297  |
| M-P2 (Å)                        | 2.243  | 2.304  | 2.310  |
| C1-M-C4 (°)                     | 90.82  | 88.20  | 86.88  |
| M-C1-C2 (°)                     | 111.25 | 111.60 | 113.48 |
| C1-C2-C3 (°)                    | 113.04 | 114.43 | 112.52 |
| C2-C3-C4 (°)                    | 113.40 | 114.18 | 113.69 |
| C3-C4-M (°)                     | 111.43 | 111.51 | 113.36 |
| C1-M-P2 (°)                     | 171.46 | 174.30 | 173.20 |
| C4-M-P1 (°)                     | 172.40 | 174.71 | 173.05 |
| M-M (Å)                         | 10.976 | 12.176 | 8.685  |
| C1-C4 (Å)                       | 2.850  | 2.923  | 2.876  |
| C1-C2-C3-C4 dihedral            | -0.2   | -2.91  | 0.59   |
| C1-C2-C3-C4-M sum of angles (°) | 539.94 | 539.92 | 539.93 |

 Table S1: Selected bond distances and angles for 3a-3c.

 Table S2: Selected bond distances and angles for 3a-3c and the average bond distances and angles of corresponding  $M(bph)(P^{A}P)$  complexes.

| Parameter   | 3a    | Avg. Ni(bph)(P^P) | 3b    | Avg. Pd(bph)(P^P) | 3c    | Avg. Pt(bph)(P^P) |
|-------------|-------|-------------------|-------|-------------------|-------|-------------------|
| M-C1 (Å)    | 2.007 | 1.960             | 2.097 | 2.050             | 2.090 | 2.050             |
| M-C4 (Å)    | 1.995 | 1.940             | 2.103 | 2.050             | 2.093 | 2.030             |
| C1-M-C4 (°) | 90.82 | 83.25             | 88.20 | 80.82             | 86.88 | 80.66             |



M: Ni, Pd, Pt

**Figure S5**: Numbering scheme for values presented in Table S1 and Table S2. Left: M = Ni, **3a**; M = Pd, **3b**; M = Pd,

To demonstrate that the bc framework is structurally similar to the biphenyl (bph) framework, we compared bond distances, angles, and molecular geometries of M(bc)(dppe) to those of a series of cyclometallated M(bph)(P^P) in reported X-ray crystal structures.<sup>[20]</sup> X-ray quality crystals of **3a-3c** were grown using slow evaporation of diethyl ether, vapor diffusion of diethyl ether into dichloromethane, or cooling of a concentrated solution of hot benzene. For **3a-3c**, the M—C bond is about 0.05 Å longer than the average M—C bond in corresponding biphenyl complexes. Of the three complexes **3a-3c**, the Ni—C bond (**3a**) is the shortest M—C bond at 2.00 Å, and both Pd—C (**3b**) and Pt—C (**3c**) bond lengths are about 2.09 Å. These observations are consistent with Ni possessing the smallest atomic radius and Pd and Pt exhibit similar atomic radii due to the lanthanide contraction for Pt.<sup>[21]</sup>

The C1—M—C4 bond angles decrease as the size of the metal atom increases, which compares well with analogous Group 10 bph complexes. However, the trend is more pronounced in the **bc** series with this angle being 6-8° larger than the average C1—M—C4 angle in the biphenyl complexes. The C1—C2—C3—C4 dihedral angles of 0.20°, 2.91°, and 0.59° for **3a**, **3b**, and **3c**, respectively, suggest the chelation of **2** leads to a minimally distorted square planar structure. The C1—C4 distances between the two metal-bound carbons fall within a range of 0.07 Å of each other (2.850 Å to 2.923 Å), indicating the larger C1—M—C4 angle is likely a structural characteristic of **2**. For comparison, the average corresponding C1—C4 distance in M(bph)(P^P) complexes is about 0.2 Å shorter at 2.662 Å, further rationalizing the more acute C1—M—C4 angles seen in those bph complexes. Furthermore, the **bc** C1—M—C4 bond angles

are larger than all reported C1—M—C4 bond angles for  $M(bph)(P^P)$  complexes. Compounds **3a-3c** have C—M—P<sub>trans</sub> angles of 171-174°, making them slightly distorted square planar complexes. These values are comparable to those of the reported cyclometallated  $M(bph)(P^P)$  compounds, indicating that **bc** does not influence the intramolecular geometry much differently than biphenyl.



**Figure S6**: A) Reaction scheme for the oxidation of **3c** on silica to form Pt(bc)(O=dppe). B) <sup>31</sup>P{<sup>1</sup>H} NMR spectrum of the product Pt(bc)(O=dppe) isolated after passing **3c** through a short plug of silica eluted with CH<sub>2</sub>Cl<sub>2</sub>. Insets show expanded regions of the <sup>31</sup>P NMR spectrum corresponding to each of the phosphorous atoms in the dppe ligand. Asterisks correspond to the <sup>31</sup>P peak and Pt—P satellites for each phosphorous: black = both P atoms in **3c**; red = O=P in Pt(bc)(O=dppe); blue = P in Pt(bc)(O=dppe).

The purification of **3c** proved troublesome as one of the P—Pt bonds easily underwent oxidation on silica, forming the monooxidized dppe species as evidenced by the formation of 2 doublets with unique  ${}^{1}J_{Pt-P}$  values in the  ${}^{31}P\{{}^{1}H\}$  NMR spectrum. For the oxidized P (O=P, red in Figure 3A),  $\delta = 40.75$  ppm with  ${}^{2}J_{Pt-P} = 60$  Hz and  ${}^{3}J_{P-PO} = 3.8$  Hz. For the unoxidized P (P, blue in Figure 3A),  $\delta = 15.70$  ppm with  ${}^{1}J_{Pt-P} = 2800$  Hz and  ${}^{3}J_{P-PO} = 3.8$  Hz. These chemical shifts and coupling constants are similar to those for compounds **2a** and **2b** in Reference 22. Purifying the crude reaction mixture for **3c** *via* column chromatography with basic alumina yielded the unoxidized, isolated compound at 27% yield.



50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -7 f1 (norm) 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -7 f1 (norm)

Figure S7: Left: Stacked <sup>11</sup>B{<sup>1</sup>H} NMR spectra for the  $[Pd(bc)_2]^{2-}$  side product isolated during the synthesis of 3b (top) and independently synthesized  $[Pd(bc)_2]^{2-}$  (see experimental). Right: Stacked <sup>11</sup>B{<sup>1</sup>H} NMR spectra for the  $[Pt(bc)_2]^{2-}$  side product isolated during the synthesis of 3c (top) and independently synthesized  $[Pt(bc)_2]^{2-}$  (see experimental).

For each reaction, the other major by-product is  $[\mathbf{M}(\mathbf{bc})_2]^{2-}$  (where M = Ni, Pd, Pt), which is isolated *via* silica column chromatography. The formation of this di-substituted complex is likely due to the low concentration of  $M(dppe)Cl_2$  relative to newly generated and more soluble M(bc)(dppe) under the reaction conditions, making M(bc)(dppe) more prone to a second nucleophilic attack from the Li<sub>2</sub>-[bc]. The <sup>11</sup>B NMR of the isolated reaction product for **3b** and **3c** matched the <sup>11</sup>B NMR of the independently synthesized  $[Pd(bc)_2]^{2-}$  and  $[Pt(bc)_2]^{2-}$  complexes (Figure S5), supporting our hypothesis.

We believe B—H activation and/or deboronation may be occurring under the given reaction conditions for  $[Pd(bc)_2]^{2-}$  and  $[Pt(bc)_2]^{2-}$ , and that the reaction product contains admixtures of *closo-nido*-[bc] and/or its metalation products. Kazakov and coworkers have reported the partial deboronation of 2 in the presence of water,<sup>[23]</sup> and their reported <sup>11</sup>B NMR chemical shifts are similar to those observed in for  $[Pd(bc)_2]^{2-}$  and  $[Pt(bc)_2]^{2-}$  (Figure S7). However, the <sup>11</sup>B NMR spectra for  $[Pd(bc)_2]^{2-}$  and  $[Pt(bc)_2]^{2-}$  isolated under these conditions are in agreement with the <sup>11</sup>B NMR spectra for the side product isolated during the synthesis of **3b** and **3c**.

Additionally, <sup>31</sup>P NMR shows the *in-situ* formation of mono-oxidized dppe,  $Ph_2P(CH_2)_2P(O)Ph_2$  (**O=dppe**) for the synthesis of **3a-3c**, suggesting the ligand is displaced by an extra equivalent of Li<sub>2</sub>-[bc] as the metal center is substituted twice (Figure S6). The <sup>31</sup>P{<sup>1</sup>H} chemical shifts for **O=dppe** are similar to those for compound **2** in Reference 24. Interestingly, we still observe free **O=dppe** despite stringent air-free conditions.



**Figure S8**: A) Reaction scheme for the formation of  $[\mathbf{M}(\mathbf{bc})_2]^{2-}$  (M = Ni, Pd, Pt) and **O=dppe**. B) Representative *in*situ <sup>31</sup>P{<sup>1</sup>H} NMR spectrum during the synthesis of **3a** shows the formation of free **O=dppe** ( $\delta = 32.1$  ppm, O=P;  $\delta = -12.7$  ppm, P), which results from the reaction of **Li**<sub>2</sub>-[**bc**] with **3a** ( $\delta = 49.09$  ppm) to form  $[\mathbf{Ni}(\mathbf{bc})_2]^{2-}$ . Interestingly, **O=dppe** formed even under rigorous oxygen-free conditions.



Figure S9: UV-Vis absorption spectrum for 3a (black), 3b (red), and 3c (blue). Inset: Zoomed in region depicting MLCT transitions.



**Figure S10**: HOMO and LUMO images derived from DFT calculations of **3a** (left), **3b** (middle), and **3c** (right). Involvement of the **bc** ligand in HOMO-LUMO transitions is negligible, indicating the **bc** ligand is photophysically innocent.



**Figure S11**: A) Thermal ellipsoid plot of **4a** (50% probability). H atoms were omitted for clarity. B) Stacking of **4a** Pt(II)…Pt(II) distances of 5.870 Å and 5.520 Å.

| Parameter                | 4a     |
|--------------------------|--------|
| Pt-C1 (Å)                | 2.043  |
| Pt-C4 (Å)                | 2.045  |
| C1-C2 (Å)                | 1.708  |
| C2-C3 (Å)                | 1.516  |
| C3-C4 (Å)                | 1.71   |
| Pt-N1 (Å)                | 2.109  |
| Pt-N2 (Å)                | 2.105  |
| C1-Pt-C4 (°)             | 86.54  |
| Pt-C1-C2 (°)             | 114.67 |
| C1-C2-C3 (°)             | 112.04 |
| C2-C3-C4 (°)             | 112.15 |
| C3-C4-Pt (°)             | 114.43 |
| C1-Pt-N1 (°)             | 174.27 |
| C4-Pt-N2 (°)             | 173.08 |
| Pt…Pt (Å)                | 5.87   |
| C1-C4 (Å)                | 2.802  |
| C1-C2-C3-C4 dihedral (°) | 1.22   |
| N1-C4-C5-N2 dihedral (°) | 1.27   |

Table S3: Selected bond distances and angles for 4a.

Table S4: Selected bond distances and angles for 4a and the selected average bond distances and angles of

| Parameter    | <b>4</b> a | Pt(bph)(N^N) |
|--------------|------------|--------------|
| Pt-C1 (Å)    | 2.043      | 2.011        |
| Pt-C4 (Å)    | 2.045      | 1.996        |
| Pt-N1 (Å)    | 2.091      | 2.106        |
| Pt-N2 (Å)    | 2.105      | 2.126        |
| C1-Pt-C4 (°) | 86.54      | 80.76        |
| C1-Pt-N1 (°) | 174.27     | 151.44       |
| C4-Pt-N2 (°) | 173.08     | 151.33       |

| Pt(bph) | (N^N) | compl | exes |
|---------|-------|-------|------|

For **4a**, both Pt—C bond lengths are almost identical at 2.043 Å and 2.045 Å, and they are only 0.04 Å longer than the average Pt—C bond found in all Pt(bph)(N^N) crystal structures available in the Cambridge Structural Database. At 2.105 Å and 2.091 Å, Pt—N bonds in this

molecule are roughly the same as the average Pt—N bond in Pt(bph)(N^N) compounds, with the difference in length of about 0.02-0.03 Å. The C—Pt—C angle in the **bc** analogue is about 6° larger than the average corresponding angle in all N^N chelated biphenyl analogues (86.54° versus 80.76°), which is characteristic of **bc**-chelated metal ions reported. This C—M—C angle for **4a** is also consistent with the C—M—C angle seen in **3a-3c** (Table S2). Based on this evidence, the intramolecular geometry of the synthesized **bc** complex is roughly equivalent to that of its biphenyl analogues.



Figure S12: Numbering scheme for Pt(bph)(N^N) complexes listed in Table S3 and Table S4.



**Figure S13:** Thermal ellipsoid plot of **7** (50% probability). Salmon = B; black = C. H atoms were omitted for clarity.



**Figure S14**: Thermal ellipsoid plot of **8** (50% probability). H atoms were omitted for clarity. Labels indicate the numbering scheme used for Table S5.

| Parameter                | 8      |
|--------------------------|--------|
| Pt-C1 (Å)                | 2.036  |
| <b>Pt-B4</b> (Å)         | 2.073  |
| C1-C2 (Å)                | 1.704  |
| C2-C3 (Å)                | 1.517  |
| C3-B4 (Å)                | 1.725  |
| Pt-N1 (Å)                | 2.175  |
| <b>Pt-N2</b> (Å)         | 2.053  |
| C1-Pt-B4 (°)             | 87.02  |
| Pt-C1-C2 (°)             | 115.78 |
| C1-C2-C3 (°)             | 110.73 |
| C2-C3-B4 (°)             | 114.11 |
| C3-B4-Pt (°)             | 112.04 |
| C1-Pt-N2 (°)             | 176.55 |
| B4-Pt-N1 (°)             | 168.82 |
| Pt…Pt (Å)                | 7.979  |
| C1-B4 (Å)                | 2.829  |
| C1-C2-C3-B4 dihedral (°) | 6.1    |
| N1-C4-C5-N2 dihedral (°) | 4.43   |

 Table S5: Selected bond angles and distances for 8.



**Figure S15:** Thermogravimetric analysis (TGA) of compound **8** up to 500°C. The **bc** framework remains intact, and the loss in mass corresponds to the cleavage of alkyl groups from both ligands.

#### Geometry Optimized Coordinates for DFT Calculations.

### Ni(bc)(dppe) [3a].

| Atom | Х           | Y           | Ζ          |
|------|-------------|-------------|------------|
| Ni   | 0.68130784  | 7.86224652  | 3.24437611 |
| Р    | -1.26868014 | 6.72001114  | 3.49170712 |
| Р    | -0.35978197 | 8.8625613   | 1.48195488 |
| В    | 2.994782    | 9.96752888  | 1.84304495 |
| Н    | 2.15585703  | 10.70107025 | 1.43005302 |
| В    | 3.23819456  | 8.35001487  | 1.20090549 |
| Н    | 2.57821322  | 7.90811987  | 0.32079833 |
| В    | 4.91677016  | 7.86346719  | 1.51662324 |
| Н    | 5.47736619  | 7.09155985  | 0.80188353 |
| В    | 5.72325876  | 9.20504807  | 2.36574499 |
| Н    | 6.89104651  | 9.4186741   | 2.25652971 |
| В    | 4.52873294  | 10.51587323 | 2.56025468 |
| Н    | 4.80735364  | 11.67367185 | 2.6067092  |
| В    | 3.60506102  | 7.28269331  | 2.53582347 |
| Н    | 3.21624832  | 6.17007578  | 2.57232808 |
| В    | 5.14459512  | 7.79364483  | 3.28269304 |

| Н | 5.78629056  | 6.99009515  | 3.87502496 |
|---|-------------|-------------|------------|
| В | 4.90873847  | 9.4372323   | 3.92810226 |
| Н | 5.38900024  | 9.76040877  | 4.96402319 |
| В | 3.22580874  | 9.91603121  | 3.57803344 |
| Н | 2.60670085  | 10.57563694 | 4.33280972 |
| В | 4.54729128  | 9.54722488  | 1.06994424 |
| Н | 4.85107648  | 10.00636013 | 0.01242494 |
| В | 2.60772569  | 6.03541539  | 5.17769788 |
| Н | 2.89773382  | 5.35984693  | 4.25706749 |
| В | 3.84885902  | 6.65963133  | 6.29942675 |
| Н | 4.98880656  | 6.41497752  | 6.07806891 |
| В | 3.34270067  | 8.28910086  | 6.8096799  |
| Н | 4.13515     | 9.16323281  | 6.93920908 |
| В | 1.79192645  | 8.64829172  | 5.99882394 |
| Н | 1.50448676  | 9.72803552  | 5.62248972 |
| В | 1.08329627  | 5.89959664  | 6.02883733 |
| Н | 0.3122927   | 5.08756852  | 5.63067479 |
| В | 0.5869789   | 7.50365337  | 6.54357491 |
| Н | -0.54352648 | 7.85927784  | 6.52479365 |
| В | 1.79673804  | 8.1336022   | 7.682261   |
| Н | 1.4943848   | 8.91833046  | 8.52716949 |
| В | 3.06178246  | 6.89127174  | 7.87581888 |
| Н | 3.68343158  | 6.764142    | 8.88497246 |
| В | 2.61071988  | 5.5001382   | 6.85356997 |
| Н | 2.90324816  | 4.37040944  | 7.09598034 |
| В | 1.35053747  | 6.40831532  | 7.7173315  |
| Н | 0.71775639  | 5.93315735  | 8.60900253 |
| С | -1.91952823 | 7.91177759  | 1.08800196 |
| Н | -2.58281384 | 8.52963135  | 0.46663606 |
| Н | -1.62387702 | 7.03743491  | 0.49123538 |
| С | -2.5705466  | 7.48548301  | 2.38974153 |
| Н | -3.38946478 | 6.76892979  | 2.23778317 |
| Н | -2.98066464 | 8.35282125  | 2.92527119 |
| С | -1.0474131  | 5.05443258  | 2.73237353 |
| С | 0.24288978  | 4.63942213  | 2.36840491 |
| Н | 1.09707882  | 5.28630376  | 2.58010927 |
| С | 0.43949325  | 3.40309725  | 1.74601711 |
| Н | 1.4484258   | 3.09148819  | 1.47218807 |
| С | -0.65088629 | 2.57185862  | 1.48147561 |
| Н | -0.49763654 | 1.60539699  | 0.99872821 |
| С | -1.94167344 | 2.97750644  | 1.84029941 |
| Н | -2.795531   | 2.32848128  | 1.63963107 |
| С | -2.1411169  | 4.21143655  | 2.46129865 |

| Н | -3.15141682 | 4.50912923  | 2.7478294   |
|---|-------------|-------------|-------------|
| С | -2.29594903 | 6.45549847  | 5.0041215   |
| С | -2.9761234  | 7.55956098  | 5.54956077  |
| Н | -2.85121997 | 8.55445379  | 5.11901217  |
| С | -3.79819518 | 7.40497557  | 6.66549029  |
| Н | -4.31677757 | 8.27138693  | 7.07805176  |
| С | -3.94312428 | 6.14780841  | 7.26001555  |
| Н | -4.58120248 | 6.02752767  | 8.13671425  |
| С | -3.25883008 | 5.0500927   | 6.7342386   |
| Н | -3.35722195 | 4.06842137  | 7.19976275  |
| С | -2.43748049 | 5.20047844  | 5.61354259  |
| Н | -1.90696793 | 4.3356255   | 5.21768429  |
| С | 0.21883843  | 9.1871958   | -0.24334024 |
| С | 0.47520604  | 10.48188264 | -0.71773625 |
| Н | 0.37231565  | 11.33895554 | -0.0535171  |
| С | 0.86485767  | 10.68321591 | -2.04459738 |
| Н | 1.06303568  | 11.69593879 | -2.39807745 |
| С | 1.00698938  | 9.59669255  | -2.90997871 |
| Η | 1.31491646  | 9.75637099  | -3.94422614 |
| С | 0.7641221   | 8.30161687  | -2.44222271 |
| Η | 0.88608483  | 7.44563465  | -3.10727826 |
| С | 0.37758482  | 8.09670953  | -1.11759315 |
| Η | 0.21941031  | 7.07633048  | -0.76518842 |
| С | -1.02072573 | 10.47452079 | 2.08785902  |
| С | -0.566376   | 10.97767514 | 3.31674014  |
| Н | 0.19465376  | 10.42901651 | 3.87602975  |
| С | -1.07752853 | 12.17621948 | 3.82380492  |
| Н | -0.71197908 | 12.55802354 | 4.77801063  |
| С | -2.04553305 | 12.88221701 | 3.10668539  |
| Н | -2.44294202 | 13.81922213 | 3.50026345  |
| С | -2.5049618  | 12.38832435 | 1.88015861  |
| Н | -3.25782244 | 12.93995193 | 1.31483395  |
| С | -1.99676589 | 11.19210177 | 1.37164925  |
| Н | -2.35156691 | 10.82760083 | 0.40602493  |
| С | 2.48255388  | 8.57661818  | 2.7522921   |
| С | 3.63924617  | 8.28576866  | 3.95188095  |
| С | 1.39900971  | 7.28054514  | 5.02025565  |
| С | 3.02725268  | 7.70851603  | 5.22368025  |
|   |             |             |             |

# Pd(bc)(dppe) [3b].

| Atom | Х           | Y           | Z          |
|------|-------------|-------------|------------|
| Pd   | 15.58256413 | 8.49645518  | 6.2289578  |
| Р    | 15.01837909 | 8.30849417  | 8.5542649  |
| Р    | 15.65562364 | 6.09576714  | 6.33611364 |
| В    | 16.60307539 | 11.69309857 | 5.97702522 |
| Н    | 17.70209199 | 11.29569759 | 6.13361777 |
| В    | 15.45025585 | 11.85015242 | 7.29005019 |
| Н    | 15.81232819 | 11.52468236 | 8.37652499 |
| В    | 13.85303729 | 11.44548776 | 6.68008236 |
| Н    | 13.06824241 | 10.83262751 | 7.32590635 |
| В    | 14.00459414 | 11.02285348 | 4.98540999 |
| Н    | 13.3620404  | 10.16580996 | 4.49223514 |
| В    | 14.57206743 | 12.45614052 | 4.08314336 |
| Н    | 14.3200695  | 12.54198452 | 2.92724544 |
| В    | 16.19058608 | 12.87233603 | 4.70074203 |
| Н    | 17.04637913 | 13.24474433 | 3.96883882 |
| В    | 16.02820289 | 13.29623364 | 6.42455179 |
| Н    | 16.78880618 | 14.05978937 | 6.93408099 |
| В    | 14.31062169 | 13.15470279 | 6.86956146 |
| Н    | 13.81359523 | 13.83008373 | 7.71732687 |
| В    | 13.41307777 | 12.62423949 | 5.42319364 |
| Н    | 12.27322255 | 12.89844065 | 5.20821138 |
| В    | 14.76445909 | 13.77476568 | 5.26030695 |
| Н    | 14.60128367 | 14.9084484  | 4.92990555 |
| В    | 17.82101347 | 9.50511385  | 4.11333045 |
| Н    | 18.36938798 | 9.84580307  | 5.10007737 |
| В    | 17.74674001 | 7.82419216  | 3.61953811 |
| Н    | 18.27728369 | 7.02636937  | 4.32055908 |
| В    | 16.17142232 | 7.53205003  | 2.89807701 |
| Н    | 15.57192947 | 6.52089551  | 3.08538155 |
| В    | 15.25905139 | 9.02957683  | 2.93071524 |
| Н    | 14.09517601 | 9.06808693  | 3.11633389 |
| В    | 16.10156743 | 10.2422882  | 1.92530967 |
| Н    | 15.47303305 | 11.13064293 | 1.45320178 |
| В    | 16.03378037 | 8.53008543  | 1.43038068 |
| Н    | 15.35151433 | 8.19113982  | 0.51347585 |
| В    | 17.58995094 | 7.77323593  | 1.84801716 |
| Н    | 18.04839981 | 6.86889236  | 1.22027561 |
| В    | 18.61265529 | 9.01270075  | 2.61822462 |
| Н    | 19.80327437 | 9.02161977  | 2.56443472 |
| В    | 17.69761742 | 10.5374246  | 2.66209135 |

| Н | 18.16144216 | 11.62870242 | 2.69435277  |
|---|-------------|-------------|-------------|
| В | 17.54872068 | 9.45636923  | 1.25884024  |
| Н | 17.97649458 | 9.7848219   | 0.19572575  |
| С | 15.257256   | 10.61351766 | 6.10059872  |
| С | 15.67866065 | 11.23667068 | 4.58377799  |
| С | 16.33697671 | 8.62816929  | 4.22294213  |
| С | 16.31217381 | 10.21392518 | 3.63083582  |
| С | 15.57892821 | 5.61702877  | 8.14245864  |
| Н | 15.3053562  | 4.55600585  | 8.22787885  |
| Н | 16.59023284 | 5.73449785  | 8.5573958   |
| С | 14.59045863 | 6.51708165  | 8.87431675  |
| Н | 14.5912978  | 6.32733723  | 9.95704275  |
| Н | 13.56746987 | 6.35167369  | 8.50728497  |
| С | 16.52815433 | 8.53887633  | 9.58419723  |
| С | 16.53892468 | 8.22514395  | 10.9557677  |
| Η | 15.62588933 | 7.89094845  | 11.45161237 |
| С | 17.71376567 | 8.35557337  | 11.69756051 |
| Н | 17.71192231 | 8.11336149  | 12.76152402 |
| С | 18.88851274 | 8.80094336  | 11.0804166  |
| Н | 19.80516533 | 8.90254986  | 11.66349661 |
| С | 18.88463739 | 9.12013499  | 9.72102789  |
| Η | 19.79506954 | 9.47597137  | 9.23724282  |
| С | 17.70887112 | 8.99121009  | 8.9750359   |
| Η | 17.70058807 | 9.24774783  | 7.91326066  |
| С | 13.67127949 | 9.18736468  | 9.44304604  |
| С | 13.94097098 | 10.24622502 | 10.32403174 |
| Н | 14.96929755 | 10.55010672 | 10.51581248 |
| С | 12.89314246 | 10.92213484 | 10.95344997 |
| Н | 13.11608685 | 11.7470196  | 11.63147162 |
| С | 11.56881383 | 10.5515707  | 10.71036025 |
| Н | 10.75254689 | 11.0843361  | 11.20027533 |
| С | 11.29182661 | 9.50324225  | 9.82747411  |
| Н | 10.25942705 | 9.21547685  | 9.62400127  |
| С | 12.33456322 | 8.82942861  | 9.1907552   |
| Н | 12.09675222 | 8.03537847  | 8.48118364  |
| С | 14.09886713 | 5.37022822  | 5.67361223  |
| С | 13.18144533 | 6.20528304  | 5.01728525  |
| Η | 13.42636271 | 7.2587865   | 4.86718257  |
| С | 11.96811289 | 5.69193913  | 4.54936639  |
| Н | 11.26513929 | 6.34964298  | 4.03678327  |
| С | 11.66268635 | 4.34180812  | 4.73347776  |
| Н | 10.71687803 | 3.94013569  | 4.36630869  |
| С | 12.57304246 | 3.50098042  | 5.38424692  |

| Н | 12.33947626 | 2.44442833 | 5.52410255 |
|---|-------------|------------|------------|
| С | 13.7847922  | 4.01035194 | 5.85318907 |
| Н | 14.49263642 | 3.34204695 | 6.3466601  |
| С | 17.02267263 | 5.03209254 | 5.72281875 |
| С | 16.88493753 | 4.22135078 | 4.58586054 |
| Н | 15.93878556 | 4.18986281 | 4.04695643 |
| С | 17.96340088 | 3.45767019 | 4.13275667 |
| Н | 17.84551703 | 2.83509287 | 3.24477418 |
| С | 19.18735286 | 3.49692422 | 4.80445721 |
| Н | 20.0283884  | 2.90190281 | 4.44611798 |
| С | 19.33536229 | 4.31253101 | 5.93045388 |
| Н | 20.29194895 | 4.35922862 | 6.45264754 |
| С | 18.26363111 | 5.08174583 | 6.38330304 |
| Н | 18.40791195 | 5.7366142  | 7.24437378 |
|   |             |            |            |

# Pt(bc)(dppe) [3c].

| Atom | Х           | Y          | Ζ           |
|------|-------------|------------|-------------|
| Pt   | -1.57127888 | 5.16033774 | 10.05138955 |
| Р    | -2.65813417 | 6.17826253 | 8.29028714  |
| Р    | -3.55382819 | 4.00652176 | 10.30184773 |
| В    | -0.19915394 | 5.39377446 | 13.07347848 |
| Н    | -0.53555026 | 6.52233185 | 13.05093001 |
| В    | 1.43513248  | 4.88067805 | 13.57614938 |
| Н    | 2.22726566  | 5.71164345 | 13.87512623 |
| В    | 1.90747243  | 3.50044913 | 12.55038509 |
| Н    | 3.0191684   | 3.38950701 | 12.15116437 |
| В    | 0.56486637  | 3.16960204 | 11.43215197 |
| Н    | 0.7205181   | 2.81917381 | 10.31768321 |
| В    | -0.85629841 | 2.71809476 | 12.35721598 |
| Н    | -1.66473941 | 2.03588998 | 11.81187679 |
| В    | 0.76138316  | 2.16857237 | 12.86209245 |
| Н    | 1.09908719  | 1.03266379 | 12.7281856  |
| В    | 1.29751685  | 3.21914901 | 14.20067246 |
| Н    | 2.02924337  | 2.83599853 | 15.06089994 |
| В    | -0.00299561 | 4.40241299 | 14.51291208 |
| Н    | -0.22503051 | 4.88692535 | 15.57957112 |
| В    | -1.32038019 | 4.08245153 | 13.36395287 |
| Н    | -2.44830056 | 4.37401701 | 13.57057719 |
| В    | -0.41532269 | 2.72613798 | 14.07865956 |
| Н    | -0.94079445 | 1.97899033 | 14.84646882 |
| В    | 1.67169504  | 5.13157743 | 9.28706958  |

| Η | 1.53181399  | 3.98116658 | 9.07611392  |
|---|-------------|------------|-------------|
| В | 3.02908587  | 5.78316241 | 10.24756128 |
| Н | 3.81005371  | 5.025678   | 10.72055215 |
| В | 2.40545427  | 7.15708799 | 11.19700806 |
| Н | 2.75993654  | 7.33791764 | 12.31453437 |
| В | 0.67818543  | 7.34870002 | 10.80991274 |
| Н | -0.13157222 | 7.6712395  | 11.60379083 |
| В | 0.50935602  | 7.72305942 | 9.10459095  |
| Н | -0.46256842 | 8.32416913 | 8.77372004  |
| В | 1.12082258  | 6.36373357 | 8.17340595  |
| Н | 0.61907009  | 5.9929045  | 7.16833473  |
| В | 2.85626104  | 6.18405183 | 8.52131583  |
| Н | 3.59855627  | 5.72205318 | 7.71031981  |
| В | 3.3149822   | 7.44966288 | 9.69299436  |
| Н | 4.41151673  | 7.91710079 | 9.72956013  |
| В | 1.85420035  | 8.40995699 | 10.0504317  |
| Н | 1.87147999  | 9.56254832 | 10.35633931 |
| В | 2.13746398  | 7.80776877 | 8.39663073  |
| Н | 2.36705123  | 8.53881158 | 7.48182934  |
| С | -0.66805607 | 4.33271648 | 11.7746308  |
| С | 0.95487918  | 4.79237031 | 11.9368736  |
| С | 0.28159611  | 6.10891902 | 9.67234133  |
| С | 1.43363806  | 5.77767054 | 10.87044881 |
| С | -4.22699635 | 5.23603316 | 7.93718111  |
| Н | -4.89332875 | 5.85592062 | 7.32239418  |
| Н | -3.95393616 | 4.34425771 | 7.3549954   |
| С | -4.85755584 | 4.84548562 | 9.2683929   |
| Н | -5.71570715 | 4.17143446 | 9.14585044  |
| Н | -5.19543279 | 5.73473931 | 9.81941418  |
| С | -1.88672755 | 6.31517159 | 6.64789203  |
| С | -1.58624128 | 5.11382599 | 5.98306734  |
| Н | -1.85375216 | 4.15470897 | 6.43120123  |
| С | -0.89297621 | 5.13876213 | 4.77447213  |
| Н | -0.65189416 | 4.20340806 | 4.26829827  |
| С | -0.48186094 | 6.35966678 | 4.22923447  |
| Н | 0.07745446  | 6.37746722 | 3.29331691  |
| С | -0.77264267 | 7.55394878 | 4.89213023  |
| Н | -0.43721628 | 8.50541434 | 4.47835898  |
| С | -1.47360756 | 7.53607468 | 6.09960891  |
| Н | -1.66892075 | 8.46884135 | 6.62703062  |
| С | -3.29637202 | 7.82848562 | 8.75919539  |
| С | -3.02774138 | 8.32599885 | 10.04328912 |
| Н | -2.38885591 | 7.75285281 | 10.71827517 |

| С | -3.56005971 | 9.55355768  | 10.44369648 |
|---|-------------|-------------|-------------|
| Н | -3.34153576 | 9.9373058   | 11.44073559 |
| С | -4.35745231 | 10.29134504 | 9.56477227  |
| Н | -4.76802751 | 11.25283547 | 9.87632314  |
| С | -4.62507917 | 9.80141783  | 8.28147614  |
| Η | -5.24100093 | 10.37949223 | 7.5911938   |
| С | -4.09984469 | 8.57282938  | 7.87912254  |
| Н | -4.3026496  | 8.20081849  | 6.87332653  |
| С | -4.367009   | 3.82408566  | 11.9188823  |
| С | -4.81062476 | 4.99846103  | 12.5510807  |
| Н | -4.69979959 | 5.96571655  | 12.05677755 |
| С | -5.34502124 | 4.94040022  | 13.83672261 |
| Н | -5.67927185 | 5.85527371  | 14.32690173 |
| С | -5.4245005  | 3.7142708   | 14.50560445 |
| Н | -5.82522645 | 3.67155893  | 15.51911361 |
| С | -4.97560846 | 2.54773789  | 13.88302321 |
| Н | -5.01993672 | 1.594201    | 14.40996441 |
| С | -4.44787929 | 2.59807028  | 12.59139371 |
| Н | -4.07474203 | 1.68893443  | 12.12191278 |
| С | -3.45519229 | 2.34985941  | 9.52998875  |
| С | -4.58891744 | 1.52636373  | 9.42767858  |
| Н | -5.53676871 | 1.8401564   | 9.86851242  |
| С | -4.50175934 | 0.29298135  | 8.78090097  |
| Н | -5.3829744  | -0.34603572 | 8.7113939   |
| С | -3.28578804 | -0.12305493 | 8.22701287  |
| Н | -3.21989918 | -1.08797183 | 7.72239682  |
| С | -2.15594223 | 0.69285299  | 8.32628615  |
| Н | -1.20454036 | 0.36730795  | 7.90432006  |
| С | -2.23729503 | 1.92573687  | 8.97736674  |
| Н | -1.35493851 | 2.56197533  | 9.07167467  |
|   |             |             |             |

## **Pt(tebc)(dtb-bpy)** [8], S<sub>0</sub>.

| Atom | Х          | Y           | Z           |
|------|------------|-------------|-------------|
| Pt   | 4.14329669 | -0.11314597 | 8.17752421  |
| Ν    | 5.32584742 | 1.26298222  | 6.87668211  |
| Ν    | 2.79800596 | 1.42017394  | 7.6811178   |
| В    | 5.13543457 | -3.14947895 | 7.83832985  |
| Н    | 4.15384929 | -3.2653234  | 7.19906101  |
| В    | 5.66670342 | -4.36940745 | 9.02497111  |
| Н    | 4.97590482 | -5.32405207 | 9.19776303  |
| В    | 6.42181697 | -3.51920232 | 10.38780123 |

| Н | 6.26022134  | -3.88525736 | 11.50583817 |
|---|-------------|-------------|-------------|
| В | 6.33082191  | -1.76890397 | 10.04089997 |
| Н | 6.14220168  | -0.96809373 | 10.88312191 |
| В | 6.537634    | -2.28543989 | 7.2531303   |
| Н | 6.47215382  | -1.81690112 | 6.15931922  |
| В | 7.26926286  | -1.43805053 | 8.60513207  |
| Н | 7.74304676  | -0.35004557 | 8.515513    |
| В | 8.00153727  | -2.96908178 | 8.02343375  |
| В | 7.45637432  | -4.28397582 | 9.14851793  |
| В | 6.63117215  | -4.0307487  | 7.57423808  |
| Н | 6.68478373  | -4.81754273 | 6.6782773   |
| В | 7.83365793  | -2.64607668 | 9.77284684  |
| Н | 8.75809032  | -2.42231443 | 10.49214692 |
| В | 2.3445179   | -2.78884934 | 9.11926855  |
| Н | 2.46360449  | -3.30953305 | 8.07070854  |
| С | 2.6388779   | -3.76975827 | 10.50417671 |
| Н | 2.99015191  | -4.77934381 | 10.30638505 |
| В | 3.38652741  | -2.95347473 | 11.81973924 |
| Н | 4.21711678  | -3.5256958  | 12.43743496 |
| В | 3.4929278   | -1.26637312 | 11.26640427 |
| Н | 4.41610137  | -0.63711692 | 11.64814473 |
| В | 1.87117297  | -0.63245951 | 10.97216349 |
| В | 1.18082105  | -1.60904678 | 9.64724298  |
| Н | 0.36821705  | -1.21217655 | 8.86602848  |
| В | 1.03678358  | -3.29363921 | 10.1958718  |
| Н | 0.28100848  | -4.11024847 | 9.77456271  |
| В | 1.66839131  | -3.39852297 | 11.84586825 |
| Н | 1.34761463  | -4.29052333 | 12.56293139 |
| В | 2.17854115  | -1.77716133 | 12.32965158 |
| Н | 2.16567923  | -1.43797059 | 13.4715173  |
| В | 0.70081754  | -1.96713042 | 11.34142947 |
| С | 5.53875688  | -1.5884514  | 8.49025731  |
| С | 5.08478638  | -2.8545376  | 9.55154262  |
| С | 3.71824304  | -2.56915319 | 10.16112539 |
| В | 2.94620937  | -1.14446767 | 9.5458733   |
| С | 9.39465434  | -3.00646563 | 7.22944021  |
| Н | 9.59615312  | -4.04651321 | 6.92231421  |
| Н | 9.28052354  | -2.4509094  | 6.28268283  |
| С | 10.61740825 | -2.46260786 | 7.98748182  |
| Н | 10.46842421 | -1.41609382 | 8.29235622  |
| Н | 11.52910771 | -2.50507248 | 7.37259244  |
| Н | 10.80734249 | -3.03828413 | 8.90477386  |
| С | 8.36319139  | -5.56016507 | 9.48820071  |
| Н | 9.17945085  | -5.61759009 | 8.74834031  |
|---|-------------|-------------|-------------|
| Н | 8.86365986  | -5.39310699 | 10.45670325 |
| С | 7.63371062  | -6.91359107 | 9.52925656  |
| Н | 6.8534428   | -6.92555078 | 10.3049319  |
| Н | 8.32664352  | -7.74051717 | 9.74554983  |
| Н | 7.1430122   | -7.133892   | 8.56963713  |
| С | -0.78296513 | -1.68775832 | 11.87760152 |
| Н | -0.87375804 | -0.61703542 | 12.1257046  |
| Н | -1.49836578 | -1.85541931 | 11.05521357 |
| С | -1.2196039  | -2.51962733 | 13.09594451 |
| Н | -1.2140757  | -3.5957281  | 12.8691194  |
| Н | -2.23665547 | -2.25576713 | 13.4227728  |
| Н | -0.54437765 | -2.36415354 | 13.95005267 |
| С | 1.52252747  | 0.91219614  | 11.24375344 |
| Н | 2.19019659  | 1.53801169  | 10.62834757 |
| Н | 0.50144937  | 1.12460473  | 10.88309765 |
| С | 1.6340956   | 1.37679536  | 12.70659422 |
| Η | 0.94398399  | 0.82388665  | 13.35944366 |
| Н | 1.4025342   | 2.44795918  | 12.80708958 |
| Н | 2.6478037   | 1.21592433  | 13.10017092 |
| С | 6.5957804   | 1.13414126  | 6.45708495  |
| Н | 7.05292203  | 0.16160771  | 6.61676407  |
| С | 7.31628926  | 2.16412519  | 5.85617725  |
| Н | 8.34226703  | 1.96479636  | 5.55339424  |
| С | 6.72824608  | 3.41999004  | 5.67079815  |
| С | 5.39136636  | 3.53518494  | 6.07674545  |
| Н | 4.87185753  | 4.48363446  | 5.9523983   |
| С | 4.71117397  | 2.45821745  | 6.64969081  |
| С | 3.28381885  | 2.50904365  | 7.01384186  |
| С | 2.45078612  | 3.57188448  | 6.64303758  |
| Η | 2.88536632  | 4.40845244  | 6.10275025  |
| С | 1.0834873   | 3.56507588  | 6.92618288  |
| С | 0.60582959  | 2.42052883  | 7.58299841  |
| Н | -0.44815371 | 2.30690828  | 7.83397779  |
| С | 1.46951441  | 1.39594826  | 7.93557833  |
| Η | 1.10108639  | 0.50849885  | 8.44098182  |
| С | 7.4656836   | 4.6196745   | 5.06313754  |
| С | 8.91832136  | 4.27466831  | 4.69163382  |
| Η | 9.40681857  | 5.16189147  | 4.26591234  |
| Н | 8.97027604  | 3.47529982  | 3.93890591  |
| Н | 9.50243537  | 3.96447132  | 5.56935066  |
| С | 7.48188054  | 5.77368595  | 6.09377302  |
| Н | 6.46707239  | 6.09232478  | 6.36889365  |

| Η | 8.00384347  | 6.64441706 | 5.6715911  |
|---|-------------|------------|------------|
| Н | 8.00376151  | 5.47397271 | 7.01299458 |
| С | 6.72486978  | 5.07733298 | 3.78380476 |
| Η | 5.69050871  | 5.38122863 | 3.99481827 |
| Н | 6.6966516   | 4.27293016 | 3.0354054  |
| Н | 7.24320391  | 5.93988479 | 3.34074709 |
| С | 0.13857991  | 4.71161778 | 6.55101006 |
| С | -0.99033389 | 4.16380762 | 5.6460413  |
| Н | -0.58226377 | 3.74054513 | 4.71735545 |
| Н | -1.68059644 | 4.9765739  | 5.37829536 |
| Н | -1.57448127 | 3.38108418 | 6.14782413 |
| С | 0.86342418  | 5.84241533 | 5.80024886 |
| Н | 1.30226005  | 5.49139934 | 4.85498544 |
| Н | 1.65778185  | 6.29607517 | 6.41031951 |
| Н | 0.14527015  | 6.63648808 | 5.5547618  |
| С | -0.47431723 | 5.2922673  | 7.84851641 |
| Н | -1.1681065  | 6.10853315 | 7.60117468 |
| Н | 0.30687444  | 5.69411166 | 8.50884989 |
| Н | -1.03440922 | 4.53284224 | 8.41014041 |

## Pt(tebc)(dtb-bpy) [8], T<sub>1</sub>.

| Atom | Х          | Y           | Ζ           |
|------|------------|-------------|-------------|
| Pt   | 4.09257795 | -0.41049265 | 7.66548585  |
| Ν    | 5.14749894 | 1.45559988  | 7.6747957   |
| Ν    | 2.69019873 | 0.93243385  | 6.91998323  |
| В    | 4.74029355 | -3.48223152 | 7.79531362  |
| Н    | 3.62177445 | -3.54995942 | 7.4298175   |
| В    | 5.41095738 | -4.52913812 | 9.07134763  |
| Н    | 4.68955734 | -5.31844252 | 9.59531486  |
| В    | 6.56678328 | -3.57042321 | 10.02324381 |
| Н    | 6.64633486 | -3.69968704 | 11.2015399  |
| В    | 6.57865735 | -1.92438513 | 9.34015385  |
| Н    | 6.67445    | -0.96567597 | 10.02075958 |
| В    | 6.0349581  | -2.95903283 | 6.73945483  |
| Н    | 5.75206625 | -2.66383426 | 5.62116414  |
| В    | 7.1578204  | -1.99627723 | 7.68311941  |
| Н    | 7.67802397 | -1.02770739 | 7.22553867  |
| В    | 7.5629146  | -3.70466938 | 7.29969971  |
| В    | 7.17610547 | -4.69430809 | 8.77354242  |
| В    | 6.02109657 | -4.6110659  | 7.40196689  |
| Н    | 5.77002756 | -5.5504578  | 6.71066529  |

| В | 7.86804402  | -3.04421982 | 8.93577023  |
|---|-------------|-------------|-------------|
| Н | 8.95900507  | -2.8399948  | 9.37137808  |
| В | 2.37717803  | -2.53231402 | 9.57158608  |
| Н | 2.20707831  | -3.2782388  | 8.67689277  |
| С | 2.92534188  | -3.20830939 | 11.05396109 |
| Н | 3.13191729  | -4.2759762  | 11.04225913 |
| В | 4.0370323   | -2.22956421 | 11.93644779 |
| Н | 4.94198037  | -2.76044151 | 12.48339015 |
| В | 4.14122769  | -0.73701847 | 10.97913103 |
| Н | 5.17705478  | -0.16973952 | 10.96350991 |
| В | 2.54444193  | 0.03579286  | 10.8833219  |
| В | 1.47262993  | -1.10673088 | 10.01844975 |
| Н | 0.5635391   | -0.75129056 | 9.33249369  |
| В | 1.33401964  | -2.59489663 | 10.98903146 |
| Н | 0.44284704  | -3.38158184 | 10.95768421 |
| В | 2.33989357  | -2.41838313 | 12.43476469 |
| Н | 2.12784752  | -3.07838942 | 13.39958085 |
| В | 3.08362256  | -0.81177767 | 12.38709816 |
| Н | 3.37108384  | -0.23002272 | 13.38612331 |
| В | 1.39457667  | -1.01683278 | 11.81936654 |
| С | 5.4607932   | -1.91965792 | 8.00571109  |
| С | 5.14017016  | -2.87378769 | 9.38507435  |
| С | 3.99236498  | -2.27634558 | 10.20312462 |
| В | 3.18616534  | -0.93688915 | 9.48549965  |
| С | 8.70433265  | -4.09582423 | 6.24628564  |
| Н | 8.72400679  | -5.19351615 | 6.13915376  |
| Н | 8.40987391  | -3.71896826 | 5.25238875  |
| С | 10.12312353 | -3.59858823 | 6.57100287  |
| Н | 10.15362835 | -2.50260794 | 6.66048496  |
| Н | 10.84135029 | -3.88836492 | 5.78935323  |
| Н | 10.48406957 | -4.01035889 | 7.52437541  |
| С | 7.99625593  | -6.01318739 | 9.16417295  |
| Н | 8.4851663   | -6.40306375 | 8.25573169  |
| Н | 8.8223815   | -5.7304672  | 9.83770762  |
| С | 7.18459027  | -7.14465637 | 9.81679072  |
| Н | 6.72163517  | -6.81518785 | 10.75879303 |
| Н | 7.81778519  | -8.0142123  | 10.04724125 |
| Н | 6.37422346  | -7.49005549 | 9.15794758  |
| С | 0.12003817  | -0.42530611 | 12.58593652 |
| Н | 0.29317101  | 0.64463393  | 12.78780191 |
| Н | -0.74819354 | -0.45432062 | 11.9068172  |
| С | -0.25288855 | -1.12661766 | 13.90399468 |
| Н | -0.48687291 | -2.18896495 | 13.74252754 |

| Н | -1.13336951 | -0.66105894 | 14.37127682 |
|---|-------------|-------------|-------------|
| Н | 0.57162272  | -1.08089951 | 14.6305081  |
| С | 2.37057994  | 1.62462421  | 10.77652875 |
| Н | 2.79233562  | 1.96144055  | 9.81559765  |
| Н | 1.29406214  | 1.85504863  | 10.7144098  |
| С | 2.99731816  | 2.44955378  | 11.91342532 |
| Н | 2.55740419  | 2.193519    | 12.88772985 |
| Η | 2.84974553  | 3.5282108   | 11.75507613 |
| Η | 4.07941216  | 2.26958558  | 11.99115948 |
| С | 6.42717122  | 1.63901721  | 8.073698    |
| Η | 6.9234034   | 0.7664898   | 8.49643561  |
| С | 7.07771077  | 2.85154823  | 7.95902844  |
| Η | 8.10277815  | 2.91957319  | 8.31554165  |
| С | 6.41097013  | 3.9696347   | 7.39032302  |
| С | 5.09556894  | 3.76818693  | 6.98879752  |
| Η | 4.53536276  | 4.58485464  | 6.53420748  |
| С | 4.44514927  | 2.5281226   | 7.14381159  |
| С | 3.07915588  | 2.25527765  | 6.78388023  |
| С | 2.16037142  | 3.21601152  | 6.30601655  |
| Η | 2.49529057  | 4.24730378  | 6.22049272  |
| С | 0.86228603  | 2.877975    | 5.95821582  |
| С | 0.49538267  | 1.51075124  | 6.12643231  |
| Η | -0.50485732 | 1.15718718  | 5.88151009  |
| С | 1.41001535  | 0.60147137  | 6.60520921  |
| Н | 1.14758109  | -0.44624826 | 6.7480564   |
| С | 7.08715112  | 5.33649607  | 7.20529711  |
| С | 8.51541341  | 5.35567049  | 7.780892    |
| Н | 8.95514504  | 6.35194141  | 7.63487322  |
| Н | 9.16945654  | 4.62923635  | 7.27860871  |
| Н | 8.52397038  | 5.14342007  | 8.8595934   |
| С | 6.25826314  | 6.42535806  | 7.92650233  |
| Н | 5.23908506  | 6.49900534  | 7.52314964  |
| Н | 6.73755592  | 7.40747721  | 7.80266659  |
| Н | 6.18175806  | 6.21353243  | 9.00222096  |
| С | 7.16463962  | 5.66413866  | 5.69492606  |
| Н | 6.16762306  | 5.69836185  | 5.23454944  |
| Н | 7.75812377  | 4.90998019  | 5.15939722  |
| Η | 7.63956662  | 6.64488118  | 5.54486437  |
| С | -0.16051993 | 3.88735754  | 5.42747164  |
| С | -0.65045365 | 3.42644724  | 4.03325239  |
| Н | 0.18481359  | 3.37567806  | 3.32059216  |
| Н | -1.393769   | 4.13640099  | 3.64193077  |
| Н | -1.12224741 | 2.43542155  | 4.07226173  |

| С | 0.43073729  | 5.30106295 | 5.29060198 |
|---|-------------|------------|------------|
| Н | 1.27998056  | 5.32191102 | 4.59230782 |
| Н | 0.7639283   | 5.70148465 | 6.25899983 |
| Н | -0.3365598  | 5.98297002 | 4.89830704 |
| С | -1.36266771 | 3.94776335 | 6.40004121 |
| Н | -2.12034048 | 4.64894924 | 6.02011562 |
| Н | -1.04562881 | 4.28900713 | 7.39559373 |
| Н | -1.84141649 | 2.96624314 | 6.51677651 |
|   |             |            |            |

## References

- 1. A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers, Organometallics 1996, 15, 1518-1520.
- 2. D. Drew, J. R. Doyle, A. G. Shaver, Inorg. Synth. 1990, 28, 346-349.
- 3. McDermott, J. X., White, J. F., Whitesides, G. M., J. Am. Chem. Soc. 1976, 98, 6521-6528.
- 4. C. F. Guerra, J. G. Snijders, G. te Velde, E. J. Baerends, Theo. Chem. Acc. 1998, 99, 391-403; G. te Velde, F. M. Bickelhaupt, E. J. Baerends C. F. Guerra, S. J. A. Van Gisbergen, J. G. Snijders, T. Ziegler, J. Comput. Chem. 2001, 22, 931-967; ADF 2014/GUI 2014, SCM, Amsterdam, The Netherlands, http://www.scm.com, E.J. Baerends, T. Ziegler, J. Autschbach, D. Bashford, A. Bérces, F.M. Bickelhaupt, C. Bo, P.M. Boerrigter, L. Cavallo, D.P. Chong, L. Deng, R.M. Dickson, D.E. Ellis, M. van Faassen, L. Fan, T.H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S.J.A. van Gisbergen, A.W. Götz, J.A. Groeneveld, O.V. Gritsenko, M. Grüning, S. Gusarov, F.E. Harris, P. van den Hoek, C.R. Jacob, H. Jacobsen, L. Jensen, J.W. Kaminski, G. van Kessel, F. Kootstra, A. Kovalenko, M.V. Krykunov, E. van Lenthe, D.A. McCormack, A. Michalak, M. Mitoraj, S.M. Morton, J. Neugebauer, V.P. Nicu, L. Noodleman, V.P. Osinga, S. Patchkovskii, M. Pavanello, P.H.T. Philipsen, D. Post, C.C. Pye, W. Ravenek, J.I. Rodríguez, P. Ros, P.R.T. Schipper, H. van Schoot, G. Schreckenbach, J.S. Seldenthuis, M. Seth, J.G. Snijders, M. Solà, M. Swart, D. Swerhone, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T.A. Wesolowski, E.M. van Wezenbeek, G. Wiesenekker, S.K. Wolff, T.K. Woo, A.L. Yakovlev.
- 5. A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100.
- 6. J. P. Perdew, Phys. Rev. B 1986, 33, 8822-8824.
- 7. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- 8. Ren, S., Xie, Z., Organometallics 2008, 27, 5167–5168.
- Zheng, Z., Jiang, W., Zinn, A. A., Knobler, C. B., Hawthorne, M. F., *Inorg. Chem.* 1995, 34, 2095-2100.
- 10. G. T. L. Broadwood-Strong, P. A. Chaloner, P. B. Hitchcock, Polyhedron 1993, 12, 721-729.
- J. Yang, D. K. Kersi, L. J. Giles, B. W. Stein, C. Feng, C. R. Tichnell, D. A. Shultz, M. L. Kirk, *Inorg. Chem.* 2014, 53, 4791-4793.
- 12. M. J. Martin, W. Y. Man, G. M. Rosair, A. J. Welch, J. Organomet. Chem. 2015, 798, 36-40.

- H. J. Bae, H. Kim, K. M. Lee, T. Kim, M. Eo, Y. S. Lee, Y. Do, M. H. Lee, *Dalton Trans.* 2013, 42, 8549-8552
- 14. T. Kim, J. Lee, S. U. Lee, M. H. Lee, Organometallics 2015, 34, 3455-3458
- 15. C. Cornioley-Deuschel, A. von Zelewsky, Inorg. Chem. 1987, 26, 3354-3358
- 16. C. Shi, H. Sun, Q. Jiang, J. Wang, W. Huang, H. Yan, Chem. Commun. 2013, 49, 4746-4748.
- 17. C. Shi, H. Sun, X. Tang, W. Lv, H. Yan, Q. Zhao, J. Wang, W. Huang, *Angew. Chem. Int. Ed.* **2013**, *52*, 13434-13438.
- 18. T. Kim, H. Kim, K. M. Lee, Y. S. Lee, M. H. Lee, Inorg. Chem. 2013, 52, 160-168.
- 19. H. J. Bae, J. Chung, H. Kim, J. Park, K. M. Lee, T.-W. Koh, Y. S. Lee, S. Yoo, Y. Do, M. H. Lee, *Inorg. Chem.* 2014, 53, 128-138.
- 20. For crystal structures of corresponding M(bph)(P^P) complexes, where P^P = chelated diphosphine ligand, see: a) B. L. Edelbach, D. A. Vicic, R. J. Lachicotte, W. D. Jones, *Organometallics* 1998, 17, 4784-4794; b) D. A. Vicic, W. D. Jones, *J. Am. Chem. Soc.* 1999, 121, 7606-7617.
- 21. P. Pyykkö, Chem. Rev. 1988, 88, 563-594.
- P. Sgarbossa, E. Pizzo, A. Scarso, S. M. Sbovata, R. A. Michelin, M. Mozzon, G. Strukul, F. Benetollo, J. Organomet. Chem. 2006, 691, 3659-3666.
- 23. G. S. Kazakov, I. B. Sivaev, K. Yu. Suponitsky, A. D. Kirilin, V. I. Bregadze, A. J. Welch, J. Organomet. Chem. 2016, 805, 1-5.
- 24. M. J. Petersson, W. A. Loughlin, I. D. Jenkins, Chem. Commun. 2008, 37, 4493-4494.







|     |     |     |     |     | 72.31 | 63.25 |    |    |     | B                                                                                                                                                                                                                                                                               | RUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|-----|-----|-----|-----|-------|-------|----|----|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     |     |     |     |       |       |    |    |     | Current<br>NAME<br>EXPNO<br>PROCNO<br>F2 - Act<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0<br>=======<br>SF01<br>NUC1<br>P1<br>PLW1<br>=======<br>SF02<br>NUC2<br>CPDPRG[] | Data Parameters<br>bis-carborane<br>11<br>1<br>quisition Parameters<br>20150918<br>16.08<br>av500<br>5 mm DCH 13C-1<br>zgpg30<br>65536<br>CD2C12<br>32<br>2<br>31250.000 Hz<br>0.476837 Hz<br>1.0485760 sec<br>204.54<br>16.000 usec<br>298.0 K<br>2.00000000 sec<br>0.03000000 sec<br>1<br>= CHANNEL f1 =======<br>125.7722511 MHz<br>13C<br>9.63 usec<br>23.0000000 W<br>= CHANNEL f2 =======<br>500.1330008 MHz<br>1H<br>2<br>waltz16<br>80.00 usec<br>13.50000000 W |
| 180 | 160 | 140 | 120 | 100 | 80    | 60    | 40 | 20 | ppm | PLW12<br>PLW13<br>F2 - Pr<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB<br>BC                                                                                                                                                                                                           | 0.21094000 W<br>0.13500001 W<br>pocessing parameters<br>131072<br>125.7577396 MHz<br>EM<br>0<br>1.00 Hz<br>0                                                                                                                                                                                                                                                                                                                                                            |









| Ph Ph<br>Ph Ph<br>Ph Ph |     | 49.09 |   |     |      |      |     | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------|-----|-------|---|-----|------|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |     |       |   |     |      |      |     | Current Data Parameters<br>NAME kk-1-235 ni (bc) (dppe) pure, 31p<br>EXPNO 1<br>FROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20150920<br>Time 15.34<br>INSTRUM drx500<br>PROBHD 5 mm bb-2 2800<br>PULPROG zgdc30<br>TD 131072<br>SOLVENT CD2C12<br>NS 128<br>DS 0<br>SWH 100000.000 Hz<br>FIDRES 0.762939 Hz<br>AQ 0.6553600 sec<br>RG 9195.2<br>DW 5.000 usec<br>DE 6.00 usec<br>TE 297.1 K<br>D1 2.0000000 sec<br>TD 1 2.0000000 sec<br>TD 1 2.0000000 sec<br>TD 202.5370460 MHz<br>CHANNEL f1<br>CPDPRG[2 waltz16<br>NUC1 31P<br>P1 9.00 usec<br>PL1 0 dB<br>SF01 202.5370460 MHz<br>CHANNEL f2<br>CPDPRG[2 waltz16<br>NUC1 1H<br>PCPD2 100.10 usec<br>PL2 0 dB<br>PL1 0 JE<br>SF02 500.3320013 MHz<br>F2 - Processing parameters<br>SI 131072<br>SF 202.5371980 MHz<br>WDW EM<br>SSB 0<br>LB 1.00 Hz<br>GB 0<br>PC 1.40 |
| <br>150                 | 100 | 50    | 0 | -50 | -100 | -150 | ppm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |









| Ph Ph<br>Po<br>Ph Ph |     |    |                                        |     |      |      |     | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|-----|----|----------------------------------------|-----|------|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      |     |    |                                        |     |      |      |     | Current Data Parameters<br>NAME kk-1-241 pd(bc)(dppe) pure, 31p<br>EXPNO 1<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20150920<br>Time 15.47<br>INSTRUM drx500<br>PROBHD 5 mm bb-Z 2800<br>PULPROG zgdc30<br>TD 131072<br>SOLVENT CD2C12<br>NS 100000.000 Hz<br>FIDRES 0.762939 Hz<br>AQ 0.6553600 sec<br>RG 9195.2<br>DW 5.000 usec<br>DE 6.00 usec<br>DE 6.00 usec<br>TE 297.3 K<br>D1 2.00000000 sec<br>d11 0.03000000 sec<br>d11 0.03000000 sec<br>TD0 1<br> |
|                      | 100 | 50 | ······································ | -50 | -100 | -150 | ppm |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |







| Bu | 29.88<br>29.88<br>33.88 | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                         | Current Data Parameters<br>NAME KK-1-285 Pt(bc)(dppe)<br>EXPNO 11<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20151221<br>Time 19.37<br>INSTRUM av500<br>DECEMP 5 m Dec 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                           |                         | PROBHD 5 mm DCH 13C-1   PULPROG zgpg30   TD 65536   SOLVENT CD2C12   NS 1024   DS 2   SWH 31250.000 Hz   FIDRES 0.476837 Hz   AQ 1.0485760 sec   RG 204.54   DW 16.000 usec   DE 18.00 usec   TE 298.0 K   D1 2.00000000 sec   D1 0.03000000 sec   TD0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                           |                         | =====   CHANNEL f1   ======     SF01   125.7722511 MHz     NUC1   13C     P1   9.63 usec     PLW1   23.0000000 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | l                       | =====   CHANNEL f2   f2   ======   f2   second field   f2   second f |
| /////////////////////////////////         | 40 20 ppm               | F2 - Processing parameters<br>SI 131072<br>SF 125.7577387 MHz<br>WDW EM<br>SSB 0<br>LB 1.00 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| <del></del> | <br>80 |    | <br>60 | <b>50</b> | <b>40</b> |   | <b>20</b> | <br>10 | •••••••••••••••••••••••••••••••••••••• | -10 | - <b>20</b> | ppm |                                                                                                                                                                                                                                                     |
|-------------|--------|----|--------|-----------|-----------|---|-----------|--------|----------------------------------------|-----|-------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |        |    | l      |           | ll        | L |           |        |                                        |     |             |     |                                                                                                                                                                                                                                                     |
|             |        |    |        | I         |           | l |           |        |                                        |     |             |     | F2 - Processing parameters<br>SI 131072<br>SF 202.5371730 MHz<br>WDW EM<br>SSB 0<br>LB 1.00 Hz<br>GB 0<br>PC 1.40                                                                                                                                   |
|             |        |    |        |           |           |   |           |        |                                        |     |             |     | CHANNEL f2      CPDPRG[2   waltz16     NUC2   1H     PCPD2   100.00 usec     PL2   0 dB     PL12   17.52 dB     SFO2   500.3320013 MHz                                                                                                              |
|             |        |    |        |           |           |   |           |        |                                        |     |             |     | =====   CHANNEL f1   =====     NUC1   31P     P1   9.00 usec     PL1   0 dB     SF01   202.5370460 MHz                                                                                                                                              |
|             |        |    |        |           |           |   |           |        |                                        |     |             |     | SOLVENT   CD2C12     NS   1024     DS   0     SWH   100000.000 Hz     FIDRES   0.762939 Hz     AQ   0.6553600 sec     RG   13004     DW   5.000 usec     DE   6.00 usec     TE   297.1 K     D1   2.0000000 sec     d11   0.0300000 sec     TD0   1 |
|             |        |    |        |           |           |   |           |        |                                        |     |             |     | PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20151221<br>Time 17.09<br>INSTRUM drx500<br>PROBHD 5 mm bb-Z 2800<br>PULPROG zgdc30<br>TD 101070                                                                                                   |
|             | Ph Ph  | Þh |        |           |           |   |           |        |                                        |     |             |     | Current Data Parameters<br>NAME KK-1-285 Pt(bc)(dppe) pure 31<br>EXPNO 2                                                                                                                                                                            |
|             |        | )  |        |           | 41.       |   |           |        |                                        |     |             |     | BRUKER                                                                                                                                                                                                                                              |
|             | Ph     | Ph |        |           | 44        |   |           |        |                                        |     |             |     |                                                                                                                                                                                                                                                     |









|          | 166.31<br>165.44<br>165.00<br>165.00<br>157.99<br>157.51<br>156.52<br>154.24 | 125.23<br>149.60<br>125.83<br>125.79<br>125.74                                                                                                                                           | 124.54   | 118.12                                                                                                                                                                                                                            |                                                                                                                                                                                                                                      | 1         | 36.60<br>36.53<br>36.46<br>30.26                    | 30.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | B                                                                                                                                                                                               | RUKER                                                                                                                                                                                                                                                                                                                  |
|----------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Bu<br>+                                                                      |                                                                                                                                                                                          | Bu<br>Bu |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                      |           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | Current<br>NAME<br>EXPNO<br>PROCNO<br>F2 - Acq<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | Data Parameters<br>KK-1-297 Pt (bc) (dtb-bp)<br>11<br>1<br>puisition Parameters<br>20160127<br>2.06<br>av500<br>5 mm DCH 13C-1<br>zgpg30<br>65536<br>THF<br>1024<br>2<br>31250.000 Hz<br>0.476837 Hz<br>1.0485760 sec<br>204.54<br>16.000 usec<br>18.00 usec<br>298.0 K<br>2.0000000 sec<br>0.03000000 sec<br>1        |
| 1. and 1 |                                                                              | aa sid 11, kuul kuud ay aa taa aa dhaa aa aa aa aa aa a<br>Y ma waxaa ay aa y may aa y may aa a |          | den de se de la se d<br>La se de la grif y la se de ja se de la | en 166 de set de set de la constante de set<br>Sur per per per per set de set de set de la constante de set de set<br>Sur per per per per set de |           | וויין אונער איז | And the second s |     | SF01<br>NUC1<br>P1<br>PLW1<br>SF02<br>NUC2<br>CPDPRG[2<br>PLW2<br>PLW12<br>PLW13<br>F2 - Prc<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB<br>PC                                                        | CHANNEL f1 ======<br>125.7722511 MHz<br>13C<br>9.63 usec<br>23.0000000 W<br>CHANNEL f2 =====<br>500.1330008 MHz<br>1H<br>waltz16<br>80.00 usec<br>13.5000000 W<br>0.21094000 W<br>0.21094000 W<br>0.21094000 W<br>0.13500001 W<br>Decessing parameters<br>131072<br>125.7574332 MHz<br>EM<br>0<br>1.00 Hz<br>0<br>1.40 |
| 180      | 160                                                                          | 140                                                                                                                                                                                      | 120      | 100                                                                                                                                                                                                                               | 80                                                                                                                                                                                                                                   | <b>60</b> | <b>4</b> 0                                          | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ppm |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                        |







|     |     |     |        | 51.71 |    |    |     | BI                                                                                                                                                              | RUKE                                                                                                                                                                                                     | R                                          |
|-----|-----|-----|--------|-------|----|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|     |     |     |        |       |    |    |     | Current<br>NAME<br>EXPNO<br>PROCNO                                                                                                                              | Data Parameters<br>i2-ocb kk-1-26<br>11<br>1                                                                                                                                                             | 5ish                                       |
|     |     |     |        |       |    |    |     | F2 - Acq<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D1<br>D11<br>TD0 | uisition Parame<br>20151002<br>11.33<br>av500<br>5 mm DCH 13C-1<br>zgpg30<br>65536<br>CDC13<br>32<br>31250.000<br>0.476837<br>1.0485760<br>204.54<br>16.000<br>18.00<br>298.0<br>2.0000000<br>0.03000000 | Hz<br>Hz<br>sec<br>usec<br>K<br>sec<br>sec |
|     |     |     |        |       |    |    |     | ======<br>SF01<br>NUC1<br>P1<br>PLW1                                                                                                                            | CHANNEL f1 ====<br>125.7722511<br>13C<br>9.63<br>23.00000000                                                                                                                                             | MHz<br>USEC<br>W                           |
|     |     |     | <br>   |       |    |    |     | SFO2<br>NUC2<br>CPDPRG[2<br>PCPD2<br>PLW2<br>PLW12<br>PLW13                                                                                                     | CHANNEL f2 ===<br>500.1330008<br>1H<br>waltz16<br>80.00<br>13.5000000<br>0.21094000<br>0.13500001                                                                                                        | MHz<br>MHz<br>usec<br>W<br>W               |
| 160 | 140 | 120 | <br>80 | 60    | 40 | 20 | ppm | F2 - Pro<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB<br>PC                                                                                                            | cessing paramet<br>131072<br>125.7577744<br>EM<br>0<br>1.00<br>0<br>1.40                                                                                                                                 | ers<br>MHz<br>Hz                           |

**N** 

180

ľ



3.38



0.88

| Current I<br>NAME<br>EXPNO<br>PROCNO                                                           | Data Parameters<br>diethyl-o-carbo<br>10<br>1                                                                      | orane pure        |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------|
| F2 - Acqu<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH | uisition Paramet<br>20151103<br>17.47<br>av500<br>5 mm DCH 13C-1<br>zg30<br>65536<br>CDC13<br>64<br>0<br>10000.000 | Hz                |
| FIDRES<br>AQ<br>RG<br>DW                                                                       | 0.152588<br>3.2767999<br>3.63<br>50.000                                                                            | Hz<br>sec<br>usec |
| DE<br>TE<br>D1<br>TD0                                                                          | 10.00<br>298.0<br>2.00000000<br>1                                                                                  | usec<br>K<br>sec  |
| SF01<br>NUC1<br>P1<br>PLW1                                                                     | CHANNEL f1 ====<br>500.1330008<br>1H<br>10.00<br>13.50000000                                                       | MHz<br>usec<br>W  |
| F2 - Proc<br>SI<br>SF                                                                          | cessing paramete<br>65536<br>500.1300123                                                                           | ers<br>MHz        |
| WDW<br>SSB<br>LB<br>GB                                                                         | EM<br>0<br>0.30                                                                                                    | Hz                |
| PC                                                                                             | 1.00                                                                                                               |                   |














| 65.62       | $\bigwedge_{8.50}^{13.51}$ | BRUKER                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                            | Current Data Parameters   NAME kk-1-210 tebc   EXPNO 11   PROCNO 1   F2 - Acquisition Parameters   Date_ 20151012   Time 18.10   INSTRUM av500   PROBHD 5 mm DCH 13C-1   PULPROG zgpg30   TD 65536   SOLVENT CDC13   NS 1024   DS 2   SWH 31250.000 Hz   FIDRES 0.476837 Hz   AQ 1.0485760 sec   RG 204.54   DW 16.000 usec   DE 18.00 usec   TE 298.0 K   D1 2.00000000 sec   D11 0.03000000 sec   D11 0.103000000 sec |
| <br>) 60 40 | 20 ppm                     |                                                                                                                                                                                                                                                                                                                                                                                                                         |

-----





















| <br> | · · · · · · · · · · · · · · · · · · · | · | <br>, | • | łll   | <b>_</b>                                                       | , | <u></u> | <u> </u> | GB 0<br>PC                                                                                         | 1.40                                                                                                                            |      |
|------|---------------------------------------|---|-------|---|-------|----------------------------------------------------------------|---|---------|----------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------|
|      |                                       |   |       |   |       |                                                                |   |         |          | PCPD2<br>PLW2<br>PLW12<br>PLW13<br>F2 - Proces<br>SI<br>SF<br>WDW<br>SSB 0<br>LB                   | 80.00 usec<br>13.5000000 W<br>0.21094000 W<br>0.13500001 W<br>ssing parameters<br>131072<br>125.7577397 MHz<br>EM<br>1.00 Hz    |      |
|      |                                       |   |       |   |       |                                                                |   |         |          | ====== CF<br>SF01<br>NUC1<br>P1<br>PLW1<br>======= CI<br>SF02<br>NUC2<br>CPDPRG[2                  | IANNEL f1 ======<br>125.7722511 MHz<br>13C<br>9.63 usec<br>23.0000000 W<br>HANNEL f2 ======<br>500.1330008 MHz<br>1H<br>waltz16 |      |
|      |                                       |   |       |   |       |                                                                |   |         |          | FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0                                           | 0.476837 Hz<br>1.0485760 sec<br>204.54<br>16.000 usec<br>18.00 usec<br>298.0 K<br>2.0000000 sec<br>0.03000000 sec<br>1          |      |
|      |                                       |   |       |   |       |                                                                |   |         |          | F2 - Acquis<br>Date_<br>Time<br>INSTRUM<br>PROBHD 5<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH | :ition Parameters<br>20160205<br>18.06<br>av500<br>mm DCH 13C-1<br>zgpg30<br>65536<br>CD2C12<br>1024<br>2<br>31250.000 Hz       |      |
|      |                                       |   |       |   |       |                                                                |   |         |          | Current Dat<br>NAME KH<br>EXPNO<br>PROCNO                                                          | :a Parameters<br>(-2-017 Pt(bc)2 vac d<br>11<br>1                                                                               | ried |
|      |                                       |   |       |   | 72.33 | (1.127)<br>(45:49)<br>(53:20)<br>(53:21)<br>(53:21)<br>(53:11) |   | 22.7    | 7.86     | BI                                                                                                 | RUKER                                                                                                                           | R    |







| Cl Pd Ph | Ph<br>)<br>Ph |                                                                                                                 | 64.67 |                                    |     |      |      |                      | BI                                                                                                                                                        | RUKER                                                                                                                                                                                                                                                |
|----------|---------------|-----------------------------------------------------------------------------------------------------------------|-------|------------------------------------|-----|------|------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |               |                                                                                                                 |       |                                    |     |      |      |                      | Current<br>NAME<br>EXPNO<br>PROCNO                                                                                                                        | Data Parameters<br>Pd(dppe)Cl2<br>61<br>1                                                                                                                                                                                                            |
|          |               |                                                                                                                 |       |                                    |     |      |      |                      | F2 - Acq<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS<br>DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0 | uisition Parameters<br>20150324<br>10.42<br>av400<br>5 mm PABBO BB/<br>zgpg30<br>262144<br>CD2C12<br>64<br>0<br>131578.953 Hz<br>0.501934 Hz<br>0.9961472 sec<br>189.85<br>3.800 usec<br>6.50 usec<br>299.0 K<br>2.0000000 sec<br>0.0300000 sec<br>1 |
|          |               |                                                                                                                 |       |                                    |     |      |      |                      | SFO1<br>NUC1<br>P1<br>PLW1                                                                                                                                | CHANNEL f1 =======<br>161.9755930 MHz<br>31P<br>14.00 usec<br>12.0000000 W                                                                                                                                                                           |
|          |               | ng tige strategy in special stategy stategy in special stategy in special stategy in special stategy in special |       | dalaha kula kuman daman kuman kula |     |      |      | rakyaka yang karanga | SF02<br>NUC2<br>CPDPRG[2<br>PCPD2<br>PLW2<br>PLW12<br>PLW13                                                                                               | CHANNEL f2 =======<br>400.1324008 MHz<br>1H<br>waltz16<br>90.00 usec<br>13.0000000 W<br>0.36111000 W<br>0.29249999 W                                                                                                                                 |
|          | 150           | 100                                                                                                             | 50    | 0<br>0                             | -50 | -100 | -150 | ppm                  | F2 - Pro<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB<br>PC                                                                                                      | cessing parameters<br>262144<br>161.9755930 MHz<br>EM<br>0<br>1.00 Hz<br>0<br>1.40                                                                                                                                                                   |



| Cl<br>Cl<br>Ph<br>Ph<br>Ph<br>Ph                                          |                                                   |           |                  |     |                                                                  |                                                                                                                |     | B                                                                                                                      | RUKER                                                                                                                                                                                     |
|---------------------------------------------------------------------------|---------------------------------------------------|-----------|------------------|-----|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                           |                                                   |           |                  |     |                                                                  |                                                                                                                |     | Current<br>NAME<br>EXPNO<br>PROCNO<br>F2 - Acq<br>Date_<br>Time<br>INSTRUM<br>PROBHD<br>PULPROG<br>TD<br>SOLVENT<br>NS | Data Parameters<br>Pt(dppe)Cl2<br>51<br>1<br>uisition Parameters<br>20150324<br>10.29<br>av400<br>5 mm PABBO BB/<br>2gpg30<br>262144<br>CD2Cl2<br>64                                      |
|                                                                           |                                                   |           |                  |     |                                                                  |                                                                                                                |     | DS<br>SWH<br>FIDRES<br>AQ<br>RG<br>DW<br>DE<br>TE<br>D1<br>D11<br>TD0                                                  | 0<br>131578.953 Hz<br>0.501934 Hz<br>0.9961472 sec<br>189.85<br>3.800 usec<br>6.50 usec<br>299.0 K<br>2.0000000 sec<br>0.03000000 sec<br>1<br>CHANNEL f1 =======                          |
| Managani yandin kanana kati ka nanga kati shi ya da ka kiya ya da kati ya | A de mandelante seja da contesta de segundo de se |           |                  |     | dan ku mana unita ya kali ku | ne de se |     | SF01<br>NUC1<br>P1<br>PLW1<br>=======<br>SF02<br>NUC2<br>CPDPRG[2<br>PCPD2<br>PLW2<br>PLW12<br>PLW13                   | CHANNEL 11<br>161.9755930 MHz<br>31P<br>14.00 usec<br>12.0000000 W<br>CHANNEL f2 ======<br>400.1324008 MHz<br>1H<br>waltz16<br>90.00 usec<br>13.0000000 W<br>0.36111000 W<br>0.29249999 W |
| <b>150</b>                                                                | 100                                               | <b>50</b> | • • • • • •<br>0 | -50 | -100                                                             | -150                                                                                                           | ppm | F2 - Pro<br>SI<br>SF<br>WDW<br>SSB<br>LB<br>GB<br>PC                                                                   | cessing parameters<br>262144<br>161.9755930 MHz<br>EM<br>0<br>1.00 Hz<br>0<br>1.40                                                                                                        |

