SUPPLEMENTARY MATERIALS

for

Impact of global mean normalization on regional glucose metabolism in the human brain

Kristian N. Mortensen, ^{1,2} Albert Gjedde, ² Garth J. Thompson ¹, Peter Herman ¹, Maxime J. Parent ¹, Douglas L. Rothman ^{1,3}, Ron Kupers ², Maurice Ptito, ^{2,4,5} Johan Stender ^{2,6}, Steven Laureys ⁶, Valentin Riedl ⁷, Michael T. Alkire ⁸, Fahmeed Hyder ^{1,3}

¹Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center,

Yale University, New Haven, CT, USA

²Department of Neuroscience and Pharmacology,

University of Copenhagen, Copenhagen, Denmark

³ Department of Biomedical Engineering, Yale University, New Haven, CT, USA

⁴Chaire de Recherche Harland Sanders, School of Optometry,

University of Montreal, Montreal, Canada

⁵ Neuropsychiatry laboratory, Psychiatric Centre, Rigshospitalet, Copenhagen, Denmark

⁶ GIGA-Consciousness, Coma Science Group, Université de Liège, Liège, Belgium

⁷ Departments of Neuroradiology, Nuclear Medicine and Neuroimaging Center,

Technische Universität München, München, Germany

⁸ Department of Anesthesiology, University of California, Irvine, CA, USA

Figure S1. Voxel-to-voxel correlations of qCMR_{glc} in gray matter of human brain.

The horizontal axis represents the qCMR_{glc} for the control group (i.e., normal awake sighted people with eyes closed; Figure 2A, middle), whereas the vertical axis displays the qCMR_{elc} for the 8 other groups, which included (A) normal awake sighted people with eyes open (Figure 2A, top), (B) awake people with congenital blindness (Figure 2A, bottom), (C) normal people under sedation (i.e., 1% desflurane, 0.25% sevoflurane, 0.5% sevoflurane; Figure 2B), and (D) patients with disorders of consciousness (i.e., unresponsive wakefulness syndrome (UWS), minimally conscious state (MCS), emergence from MCS (EMCS); Figure 2C). All correlation coefficients, derived from all voxels in gray matter, were highly significant (i.e., R² ranging from 0.73 to 0.98), where lines for regression and identity are, respectively, shown with solid and dashed lines. (A) The normal eyes open group (vs. the control group) showed ~12% higher qCMR_{glc}. (B) The congenitally blind group (vs. the control group) showed 2-3% lower qCMR_{elc}. (C) The sedated groups (vs. the control group) showed ~8% lower qCMR $_{glc}$ with 0.25% sevoflurane, ~15% lower qCMR $_{glc}$ with 0.5% sevoflurane, and ~14% lower qCMR_{glc} with 1% desflurane. (D) The disorders of consciousness groups (vs. the control group) showed ~36% lower qCMR_{glc} with EMCS, ~40% lower qCMR_{glc} with MCS, and \sim 54% lower qCMR $_{glc}$ with UWS. See **Table 3** for comparison of slopes and intercepts when the linear regression was conducted without forcing the intercept through the origin.

Figure S2. Voxel-to-voxel correlations of qCMR_{glc} in white matter of human brain.

The horizontal axis represents the qCMR_{glc} for the control group (i.e., normal awake sighted people with eyes closed; Figure 2A, middle), whereas the vertical axis displays the qCMR_{elc} for the 8 other groups, which included (A) normal awake sighted people with eyes open (Figure 2A, top), (B) awake people with congenital blindness (Figure 2A, bottom), (C) normal people under sedation (i.e., 1% desflurane, 0.25% sevoflurane, 0.5% sevoflurane; Figure 2B), and (D) patients with disorders of consciousness (i.e., unresponsive wakefulness syndrome (UWS), minimally conscious state (MCS), emergence from MCS (EMCS); Figure 2C). All correlation coefficients, derived from all voxels in white matter, were highly significant (i.e., R² ranging from 0.73 to 0.99), where lines for regression and identity are, respectively, shown with solid and dashed lines. (A) The normal eyes open group (vs. the control group) showed ~8% higher qCMR_{olc}. (B) The congenitally blind group (vs. the control group) showed 1-2% lower qCMR_{glc}. (C) The sedated groups (vs. the control group) showed ~8% lower qCMR $_{glc}$ with 0.25% sevoflurane, ~12% lower qCMR $_{glc}$ with 0.5% sevoflurane, and $\sim 9\%$ lower qCMR_{elc} with 1% desflurane. (D) The disorders of consciousness groups (vs. the control group) showed ~29% lower qCMR_{glc} with EMCS, ~31% lower qCMR_{glc} with MCS, and \sim 43% lower qCMR_{glc} with UWS. See **Table 3** for comparison of slopes and intercepts when the linear regression was conducted without forcing the intercept through the origin.

Figure S3. Thresholded t-maps of metabolic variations in disorders of consciousness.

Spatial distributions of metabolic variations in patients with disorders of consciousness (i.e., UWS, MCS, EMCS in **Figure 2C** in the main text) vs. the control group (i.e., HAEC in **Figure 2A** in the main text), shown with respect to *thresholded* student's *t*-maps using **(A)** qCMR_{glc} images and **(B)** GMN images. In qCMR_{glc} images there are only large sized negative clusters (>98% of voxels), whereas in GMN images there are many smaller sized negative (6-7% of voxels) and positive (0.1-14% of voxels) clusters. The *unthresholded* student's *t*-maps are shown in **Figure 3** in the main text.

Figure S4. Thresholded t-maps of metabolic variations in anesthetic sedation.

Spatial distributions of metabolic variations in patients with sedation (i.e., Des1%, Sev0.25%, Sev0.5% in **Figure 2B** in the main text) vs. the control group (i.e., HAEC in **Figure 2A** in the main text), shown with respect to *thresholded* student's *t*-maps using **(A)** qCMR_{glc} images and **(B)** GMN images. In qCMR_{glc} images there are only large sized negative clusters (71-96% of voxels), whereas in GMN images there are many smaller sized negative (0.2-13% of voxels) and positive (0.3-11% of voxels) clusters. The *unthresholded* student's *t*-maps are shown in **Figure 4** in the main text.

Figure S5. Thresholded *t*-maps of metabolic variations with eyes open.

Spatial distributions of metabolic variations with healthy participants with eyes open (i.e., HAEO in **Figure 2B** in the main text) vs. the eyes-closed control group (i.e., HAEC in **Figure 2A** in the main text), shown with respect to *thresholded* student's *t*-maps using **(A)** qCMR_{glc} images and **(B)** GMN images. In qCMR_{glc} images there is only one large sized positive cluster (60% of voxels), whereas in GMN images there are many smaller sized negative (2-20% of voxels) and positive (0.1-9% of voxels) clusters. The *unthresholded* student's t-maps are shown in **Figure 5** in the main text.

Figure S6. Thresholded *t*-maps of metabolic variations in congenital blindness.

Spatial distributions of metabolic variations in the congenitally blind (i.e., CB in **Figure 2B** in the main text) vs. the eyes-closed control group (i.e., HAEC in **Figure 2A** in the main text), shown with respect to *thresholded* student's *t*-maps using **(A)** qCMR_{glc} images and **(B)** GMN images. In qCMR_{glc} images there is only one small sized positive cluster and two small sized negative clusters (each 1% of voxels), whereas in GMN images there is one large sized negative cluster (45% of voxels) and three smaller sized positive clusters (0.2-27% of voxels) clusters. The *unthresholded* student's t-maps are shown in **Figure 6** in the main text.

Figure S7. Magnitude of metabolic variations with and without GMN.

Magnitude of changes in glucose metabolism (Δ CMR_{gle}) across gray matter for different resting states in relation to the control group of healthy awake sighted people with eyes closed (i.e., HAEC in **Figure 1A**, middle) using **(A)** qCMR_{gle} images and **(B)** GMN images. The horizontal axis represents Brodmann-like regions **(Table S1)**, whereas the vertical axis displays Δ CMR_{gle} for 8 groups (vs. the control group), which included healthy awake sighted people with eyes open (i.e., HAEO in **Figure 1A**, top), awake people with congenital blindness (i.e., CB in **Figure 1A**, bottom), normal people under sedation (i.e., Des1%, Sev0.25%, Sev0.5% in **Figure 1B**), and patients with disorders of consciousness (i.e., UWS, MCS, EMCS in **Figure 1C**). **(A)** With qCMR_{gle} images for all groups, except CB, globally unidirectional Δ CMR_{gle} were detected, where the dynamic range of Δ CMR_{gle} from UWS to HAEO was ~0.3 μmol/g/min. **(B)** With GMN images for all groups regionally bidirectional Δ CMR_{gle} were detected, where the dynamic range of Δ CMR_{gle} from UWS to HAEO was ~0.1 μmol/g/min. See **Figures 3-6** and **Figures S3-S6** for unthresholded and thresholded *t*-maps, respectively.

Table S1. Description of Brodmann-like regions in the human gray matter.

Region	Size	Description of Region in terms of neuroanatomical identity (similar to Brodmann areas)
1	3.46%	Primary Somatosensory Cortex
4	2.35%	Primary Motor Cortex
5	0.65%	Somatosenory Association Cortex
6	8.68%	Premotor Cortex, Supplementary Motor Cortex
7	6.06%	Somatosenory Association Cortex, Precuneus
8		includes Frontal Eye Fields
9	4.06%	Dorsolateral Prefrontal Cortex
10	6.26% 2.65%	Anterior Prefrontal Cortex (most rostral part of superior and middle frontal gyri)
11		Orbitofrontal Area (orbital and rectus gyri, plus the rostral part of the superior frontal gyrus) Insular Cortex
13	1.95%	
17	1.57%	Primary Visual Cortex (V1)
18	6.28%	Secondary Visual Cortex (V2)
19	5.71%	Associative Visual Cortex (V3)
20	2.55%	Inferior Temporal Gyrus
21	3.43%	Middle Temporal Gyrus
22	2.63%	Superior Temporal Gyrus, of which the caudal part is considered to contain the Wernicke's area
23	1.69%	Ventral Posterior Cingulate Cortex
24	1.18%	Ventral Anterior Cingulate Cortex
25	0.22%	Subgenual Cortex
30	0.33%	Part of Cingulate Cortex
31	1.84%	Dorsal Posterior Cingulate Cortex
32	1.37%	Dorsal Anterior Cingulate Cortex
34	0.07%	Anterior Entorhinal Cortex (on the parahippocampal gyrus)
36	1.80%	Parahippocampal Cortex (on the parahippocampal gyrus)
37	4.91%	Fusiform Gyrus
38	3.05%	Temporopolar Area (most rostral part of the superior and middle temporal gyri)
39	4.97%	Angular Gyrus, considered by some to be part of Wernicke's area
40	3.50%	Supramarginal Gyrus, considered by some to be part of Wernicke's area
41	1.13%	Primary and Auditory Association Cortex
44	2.46%	Pars Opercularis, part of Broca's area
45	1.30%	Pars Triangularis Broca's area
46	1.00%	Dorsolateral Prefrontal Cortex
47	2.59%	Inferior Prefrontal Gyrus
48	0.96%	Caudate
49	0.99%	Putamen
50	1.28%	Thalamus
51	0.15%	Globus Pallidus
52	0.04%	Nucleus Accumbens
53	0.41%	Amygdala
54	0.83%	Hippocampus
55	0.10%	Hypothalamus

Regions are some well-defined gray matter regions based on neuroanatomy. Shown above are 41 regions, their description in terms of the underlying neuroanatomy, and size in relation to the entire gray matter space.