Supporting Information for:

Traveling two diverging roads, cytochrome-P450 catalyzed demethylation and γ-lactone formation in bacterial gibberellin biosynthesis

Raimund Nagel and Reuben J. Peters*

Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA. *E-mail: rjpeters@iastate.edu

Materials and Methods

Cloning of EtCYP112 and EtFdR

*Et*CYP112 was amplified from genomic DNA of *E. tracheiphila* with Q5 Hot Start High-Fidelity DNA polymerase (NEB), using the primers given in Table S2. The forward primer was designed to add an alanine, six histidines, and a glycine after the initial methionine to the N-terminus for purification of the protein. The reverse primer included a stop codon at the 3'-end so that the His-Tag of pET101 (Invitrogen) is omitted after cloning the PCR product into the vector according to the manual. Clones were verified by full-gene sequencing. The ferredoxin reductase of *E. tracheiphila* (*Et*FdR) was amplified with Q5 Hot Start High-Fidelity DNA polymerase, using the primers given in Table S2, and the amplified fragment was then cloned into pET100 (Invitrogen).

Expression and Purification of EtCYP112 and EtFdR

*Et*CYP112 or *Et*FdR were transformed into *E. coli* BL21* (Invitrogen) for expression. The starter culture of 50 ml liquid NZY medium (10 g/L NaCl, 10 g /L casein, 5 g/L yeast extract, 1 g/L MgSO₄ (anhydrous), pH 7.0) with 50 µg/mL carbenicillin was inoculated from 3 individual colonies and grown for 2 days at 18°C under constant shaking at 200 rpm. 25 mL were used to inoculate 1 L of NZY including 50 µg/mL carbenicillin at 18°C and constant shaking at 200 rpm until an OD₆₀₀ of 0.8 was reached. At this point the culture was induced with 1 mM IPTG and, for cultures expressing *Et*CYP112, 1 mM aminolevulinic acid, 1 mM riboflavin and 0.1 mM FeCl₃ were added. After 36 hours, the cells were harvested by centrifugation at 5000 x g for 20 min. The *Et*CYP112 cell pellet was re-suspended in 10 mL buffer 1 (25 mM 3-(N-morpholino)-2-hydroxypropanesulfonic acid (MOPSO), pH 7.2, 10% (v/v) glycerol), while the *Et*FdR cell pellet was re-suspended in 10 mL of buffer 2 (50 mM phosphate, pH 7.5, 10% glycerol). Both cell suspensions were then homogenized using an EmulsiFlex C-3 (Avestin, Canada). The lysate was centrifuged at 17,000 x g for 30 min. The cleared lysate was then added to 1 mL of Ni-NTA Agarose (Qiagen), buffer 1 or 2 with 1 M imidazole was added to a final concentration of 20 mM imidazole and

incubated with gentle shaking at 4°C for 1 h. The column was washed with 5 mL buffer 1 or 2 containing 20 mM imidazole and 60 mM imidazole each, before being eluted with buffer 1 or 2 with 250 mM imidazole. The protein was then transferred to dialysis tubing with a molecular weight cutoff of 15 kDa and dialyzed 3 times against buffer 3 (10 mM MOPSO, pH 7.2, 5% (v/v) glycerol) in the case of *Et*CYP112, or buffer 4 (25 mM phosphate, pH 7.5, 10% glycerol) in the case of *Et*FdR. The resulting enzymes were either used fresh or stored at -80°C after flash freezing by brief immersion in liquid nitrogen of 0.5 mL aliquots in 1.5 mL Eppendorf tubes.

Enzyme assays

For activity assays 0.01 ml each of purified *Et*CYP112, spinach ferredoxin (Sigma-Aldrich), and *Et*FdR (all at 1 mg/mL in buffer 1) were diluted with 1.5 mL of buffer 3 in 4 mL clear glass vials, and 20 μ M of the specified substrate and 60 µM NADPH were added. The vial was sealed with a Teflon septum and incubated for 12 h at 25 °C. For ¹⁸O₂ labeling experiments clear 4 mL glass vials with a Teflon seal were flushed with nitrogen for 5 min then 0.05 mL each of purified EtCYP112, spinach ferredoxin (Sigma-Aldrich), and EtFdR (all at 1 mg/mL in buffer 1), and 1.7 mL degassed buffer 1 were added using a syringe. ¹⁸O₂ (Sigma-Aldrich, 97% labeled; max loaded pressure less than 2.4 bar) was added from the gas cylinder via a needle puncturing the septum until the pressure equilibrated between the tank and the vial. The reaction was started with the addition of substrates to a final concentration of 40 µM. NADPH was added in 3- or 10- fold excess relative to substrate in assays with GA12, with 2-fold excess in assays with GA15 and at equal concentrations in assays with GA24. The assay was incubated at 25 °C for 16 h. When H₂O₂ or *tert*-butyl hydroperoxide was used as the reduction agent and oxygen donor, no NADPH, *Et*FdR, or Fd were added, instead H₂O₂ was added to a final concentration of 60 µM or *tert*-butyl hydroperoxide to a final concentration of 100 μ M. The products of all assays were extracted three times with 2 ml ethyl acetate, the pooled extract evaporated to dryness, and the residue methylated with diazomethane and, after re-evaporation, dissolved in hexane for GC-MS analysis as described in (4). Assays from ¹⁸O₂ labeling experiments were analyzed with an Agilent 6540 GC coupled to a Waters GCT Premier mass spectrometer, separation was achieved on a DB-5MS column (30 m, 250 µm, 0.25 µm) with the same gradient as described in (4). When GA₁₂-aldehyde was used as a substrate, two-thirds of the extracted products were separated and, after evaporation, dissolved in 300 μ L of methanol:DMSO (1:1, v/v) without methylation. This extract was added to a culture expressing the SDR from the GA operon in E. tracheiphila and, after incubation for 3 days, extracted and analyzed with a 3900 Saturn GC coupled to a 2100T ion trap mass spectrometer (Varian, Palo Alto, CA, USA) as described (4). GC-MS spectra of GA₉ differed in the abundance of higher molecular weight fragments between the GC-MS ion trap and GC-MS time of flight.

$C^{18}O_2$ measurement by GC-MS

The reaction was carried out as described under enzyme assays with NADPH added in 10-fold excess, and the assay incubated for 4 h at 25°C. 200 μ L of the gas phase were manually injected into the inlet of a GC-MS, 3900 Saturn GC coupled to a 2100T ion trap mass spectrometer (Varian, Palo Alto, CA, USA), using a gas-tight syringe. A HP-PLOT/Q column (30 m x 0.32 mm x 20 μ m) (Agilent) was used for separation with a constant He flow of 4 mL min⁻¹, the inlet temperature was set at 250 °C and the oven temperature was initially kept at 50 °C for 2 min, the temperature was then increased by 90 °C/min to 240 °C, where it was held for 1 min.

Supplemental Tables

Table 1: Incorporation of ${}^{18}O_2$ by *Et*CYP112 into various substrates.

Analyte		Substrates						
		GA ₁₂	GA ₁₂	GA ₁₅ (closed)	GA ₁₅ (open)	GA ₂₄	MeGA ₁₂	MeGA ₁₅
	[M ⁺]	excess NADPH	limited NADPH	limited NADPH	limited NADPH	limited NADPH	limited NADPH	limited NADPH
GA12	360							
	0	n.d.	99 ± 0.5				99 ± 0.2	
	+2	n.d.	1 ± 0.2				1 ± 0.1	
GA15	344							
	0	n.d.	3 ± 1	98 ± 1	98 ± 1.5		1 ± 0.5	98 ± 1
	+2	n.d.	96 ± 2	2 ± 1	2 ± 1		98 ± 1	2 ± 0.6
	+4	n.d.	1 ± 0.4				1 ± 0.1	
GA24	374							
	0	n.d.	3 ± 1	3 ± 0.5	32 ± 1.5	99 ± 0.1	0	2 ± 0.3
	+2	n.d.	60 ± 0.4	95 ± 1	67 ± 1.5	1 ± 0.1	1 ± 0.1	96 ± 1
	+4	n.d.	37 ± 0.5	2 ± 1	1 ± 0.4		99 ± 0.6	2 ± 0.4
GA9	330							
	0	56 ± 1	86 ± 0.5	98 ± 0.3	99 ± 0.5	98 ± 1.5	1 ± 0.2	99 ± 0.1
	+2	44 ± 1	14 ± 0.3	2 ± 0.2	1 ± 0.3	2 ± 1	99 ± 0.4	1 ± 0.1

% abundance of ¹⁸O label

n.d., not detectable

Table S2: Primers used in cloning.

Primer name	Primer Sequence
E. tracheiphila FdR forward	CACCATGGCCGAATGGATTAATGCAAGCATC
E. tracheiphila FdR reverse	TTACCAATAGTGTTCGCTGGTCATATGCC
E. tracheiphila CYP112 forward	CACCATGGCGCATCATCATCATCATGGTTTTGAAAATAACCCAGTGCAGC
E. tracheiphila CYP112 reverse	TTACAGATACACGGGAAACTTCTCGAATCCGC

Supplemental Figures

Figure S1: Comparison of MS-Spectra of *Et*CYP112 gibberellin products with authentic standards. MS spectra of authentic standards and compounds produced by *Et*CYP112 in *in vitro* enzyme assays.

Figure S2: Enzyme activity of *Et*CYP112 with GA₂₅. GC-MS-chromatograms of *in vitro* assays with *Et*CYP112 and GA₂₅, the inset is an enlargements of the y-axis of the chromatogram by 100 fold.

Figure S3

Figure S3: Enzyme activity of *Et*CYP112 with MeGA₂₄. GC-MS-chromatograms of *in vitro* assays with *Et*CYP112 and MeGA₂₄, the inset is an enlargement of the y-axis of the chromatogram by 100-fold.

Figure S4: Enzyme activity of *Et*CYP112 employing the H₂O₂-shunt. GC-MS-chromatograms of in vitro assays with *Et*CYP112 and GA₁₂, GA₁₅ or GA₂₄ or non-enzyme controls with H₂O₂ or *tert*-butyl hydrogenperoxide (*t*BuOOH), for GA24 only, as the oxygen and electron donor, instead of O₂ and electrons supplied by a ferredoxin.

Supplemental Schemes

Scheme S1

GA₁₂ as substrate

37% (limited NADPH) 14% (limited NADPH) 44% (excess NADPH)

 $\mathsf{GA}_{_{15}}$ (closed δ -lactone) as substrate

н¹⁸О

GA₂₄ as substrate

GA12 methyl ester as substrate

Scheme S1: Position of 18O labels. Schemes depicting the position of the ¹⁸O label, from GA_{12} , GA_{15} , GA_{24} , MeGA₁₂ and MeGA₁₅ into GA₉ or MeGA₉.

Scheme S2

Scheme S2: CYP reaction cycle showing active complexes, use of hydrogen peroxide (H_2O_2) or *tert*-butyl hydroperoxide (*t*BuOOH), and alternative reactivity for Compound II discussed in the text (largely adapted from Krest et al, 2013).

Scheme S3: Proposed reaction mechanisms from GA_{12} to GA_{24} . Potential reactions mechanisms modified after MacMillan (1997) for the transformation of GA_{12} to GA_{24} . Solid arrows in black are enzymatic reactions catalyzed by *Et*CYP112, solid grey arrows are non-enzymatic reactions and dashed black arrows are reactions not catalyzed by *Et*CYP112.

Scheme S4

Scheme S4: Proposed reaction mechanisms from GA₂₄ to GA₉. Potential reaction mechanisms modified after MacMillan (1997) for the transformation of GA₂₄ to GA₉. Pathway A2 was not previously proposed by MacMillan. C-20 is released as CO₂ by pathways A1 A2, B and C, while pathway D releases C-20 as formic acid.