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1 Bayesian switching dynamical systems

1.1 Model

Let yst = (yst1, . . . , y
s
1D)> denote a D-dimensional vector of ROI timeseries measured from subject

s in time t, where D is the number of ROIs and > denotes the transpose operator. We collect a
sequence of T measurements from S subjects in Y = {Y s | s = 1, . . . , S} where
Y s = {ys1, . . . ,ysT }.

Following the general formulation of the switching state-space models, we define zst as the latent
state variables and xskt as the latent space variables associated to yst at the k-th latent state, that
is zskt = 1. The set of latent state and latent space variables are shown by Z = {Zs | s = 1, . . . , S}
and X = {Xs

k | s = 1, . . . , S, k = 1, . . . ,K}, respectively. The latent state variable zst is a 1–of–K
discrete vector with elements of zskt, ∀k = 1, . . . ,K. As shown in the left panel of Supplementary
Figure 1, two consecutive time instances are dependent via a first-order Markov chain through a
hidden Markov model (HMM). HMMs are statistical Markov models which have been extensively
used in various applications for modeling timeseries1,2,3 including dynamic functional connectivity
analysis of the fMRI data4,5,6,7. Let elements of the HMM model be defined as:

• initial state probability distribution, π =
{
πk |

∑K
j=1 πk = 1

}
;

• state transition probability distribution, A =
{

[aij ] |
∑K

j=1 aij , ∀i = 1, . . . ,K
}

;
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• emission probability distribution Os
t = {Oskt | ∀ k = 1, . . . ,K}.

Given A, π, and using Markovian properties, the probability mass for the latent state variables is
expressed as:

p(Z | π,A) =

S∏
s=1

p(zs1 | π)

T∏
t=2

p(zst | zst−1,A). (1)

We assume that at a given latent state k in time t, shown by zskt = 1, the observed vector yst is
generated via probabilistic interpretation of factor analysis model8,9 as:

yst = Ukx
s
kt + µk + ekt, ∀t, s | zskt = 1,

where Uk = (uk1, . . . ,ukP ) is the linear transformation matrix, and P is the dimensionality of the
latent space variable (in general P < D), µk is the overall bias, ekt(t) is the measurement noise.
With the normality assumption, that is xskt ∼ N (0, 1) and ekt ∼ N (0,Ψk), the marginal
distribution of yst follows a Gaussian distribution as9: p(yst | µk,Uk,Ψk) = N

(
µk,UkU

>
k + Ψk

)
.

Note that here we have assumed noise with the same covariance across subjects.

We then define a dynamical process on the latent space variables10 using an autoregressive
(AR) model of order R as (Supplementary Figure 1):

xskt = X̄
s
kt
~V k + εkt, ∀t, s | zskt = 1,

where ~V k is a P 2R-dimensional vector defined as:

~V k = (vk1,vk2, . . . ,vkP )> , where vkp =
(
vkp,1 vkp,2 . . . vkp,PR

)
,

X̄
s
kt is a (P × P 2R)-dimensional matrix defined using a (1×RP )-dimensional vector x̄skt as:

X̄
s
kt =


x̄skt 0RP · · · 0RP
0RP x̄skt · · · 0RP

...
...

. . .
...

0RP 0RP · · · x̄skt

 , where x̄skt =
(
xsk,t−1

> xsk,t−2
> . . . xsk,t−R

>
)
,

where 0RP is a (1×RP )-dimensional zero-vector and xsk,t−r is a P -dimensional vector of latent
space variables at t− r, and finally εkt ∼ N (mk,Σk) is the remaining error term in the latent
space.

A graphical representation of the model is presented in Supplementary Figure 1. We have
introduced some hierarchical parameters, νkp, which are not explicit in the generative model. As
we shall see in § 1.2, these hyperparameters play the role of regularizers on the model
complexity and are used to determine effective number of latent space variables. The idea of
using such hierarchical structure was first introduced by11,12 and it is now regarded as a common
approach for regularizing model complexity by imposing sparsity in various Bayesian probabilistic
models, for example, in Bayesian principal component analysis13,14. Supplementary Table 1
summarizes various variables introduced in this section.

Given the latent state variables zst , the marginal density of yst is given by:

p(yst |zst ,µ,U ,Ψ)=
K∏
k=1

∫
p(yst |xskt,zst ,µ,U ,Ψ)p(xskt)dx

s
kt=

K∏
k=1

[
N
(
µk,UkU

>
k +Ψk

)]zskt
, (2)
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where the effect of autoregressive process model parameters, (~V ,Σ,m), are implicit in the
definition of the marginal density of yst . More specifically, Σk in Eq. (2) is assumed as identity
matrix to avoid possible identifiability/degeneracy problems. Note that Σk includes information
about the noise variance in the latent space variables. We will still need to formally compute its
posterior distribution in order to robustly estimate parameters involved in the expression of the
dynamical process on the latent space variables. However, on the observation level, the effect of
Σk remains throughout as identity to avoid degeneracy.

To keep notation uncluttered, we define: θHMM={π,A}, θFA={µ,U ,Ψ}, and θAR={~V ,Σ,m}. Note
that θHMM, θFA, and θAR are group parameters, learnt using observed data from all subjects. The
latent state variables, zst , and latent space variables, xskt, are however subject specific, inferred
using the learnt group parameters.

Using Eq. (1), and Eq. (2), the joint distribution over observations and latent state variables is
given by:

p(Y ,Z |X,θHMM,θFA)=

S∏
s=1

p(zs1 |π)

[
T∏
t=2

p(zst |zst−1,A)

][
T∏
t=1

p(yst |zst ,xskt,θFA)

]
. (3)

1.2 Prior parameter distribution

Bayesian inference combines priors with data to produce posterior distributions of all model
parameters. Here, we work with conjugate priors to the data likelihood so that the posteriors
would have the same functional form as their priors. This would simplify learning and allow
efficient implementations.

1.2.1 Prior over HMM parameters

Following Bayesian HMM model15, the prior distributions on the HMM model parameters are
chosen as follows:

a. p(π)=Dir(α∗πm
∗), such that m∗=

[
1
K ,...,

1
K

]>,

b. p(A)=
∏K
i=1p(ai)=

∏K
i=1Dir(α∗ai

m∗), such that m∗=
[
1
K ,...,

1
K

]>,

where, for instance, Dir(α∗πm
∗) is a symmetric Dirichlet distribution with strength α∗π. ai indicates

the i-th row of the transition matrix A. For a noninformative initialization, we set α∗π=α∗ai
=1,

∀i=1,...,K.

1.2.2 Prior over factor analysis model parameters

We use the same choice of prior distributions over the factor analysis model parameters, θFA, as
proposed by Ghahramani and Beal14 as follows:
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a. p(U |ν)=
∏K
k=1

∏D
d=1p(u̇kd |νk)=

∏K
k=1

∏D
d=1N

(
0,diag(νk)

−1
)

, where u̇kd shows the
column vector corresponding to the d-th row of the linear transformation matrix U at the
k-th state and 0 is a P -dimensional vector of zero values.

b. p(ν)=
∏K
k=1

∏P
p=1p(νkp)=

∏K
k=1

∏P
p=1G(a∗,b∗), where a∗ and b∗ are shape and inverse-scale

hyperparameters for a Gamma distribution. For a noninformative initialization we set these
parameters as: a∗=b∗=1. As discussed in14, when ν→inf, then the outgoing weights for
latent space variable xskt will approach zero, allowing the model to reduce the intrinsic
dimensionality of the latent space if data do not provide enough evidence to keep the added
dimension—this effect is commonly known as automatic relevance determination in
Bayesian learning11,12,13.

c. p(µ)=
∏K
k=1p(µk)=

∏K
k=1N

(
µ∗,diag(ν∗)−1

)
. For a noninformative initialization we set

µ∗=0D, ∀ k=1,...,K, where 0D is a D-dimensional zero vector and ν∗=10−3×1D, where
1D is a D-dimensional vector of unit values.

1.2.3 Prior over autoregressive process model parameters

We use the same choice of prior distributions proposed by Fox10, as:

a. p(~V )=
∏K
k=1p(

~V k)=
∏K
k=1N

(
m

(~V )∗
k ,Σ

(~V )∗
k

)
, where m(~V )∗ is a P 2R-dimensional vector,

and Σ
(~V )∗
k is a P 2R×P 2R-dimensional covariance matrix of the Gaussian densities.

b. p(Σ)=
∏K
k=1p(Σk)=

∏K
k=1IW

(
ν
(Σ)∗
k ,S

(Σ)∗
k

)
where ν(Σ)∗

k and S(Σ)∗
k indicate the degree of

freedom and scale matrix of the inverse-Wishart densities.

c. p(m)=
∏K
k=1p(mk)=

∏K
k=1N

(
µ
(m)∗
k ,Σ

(m)∗
k

)
where µ(m)∗

k and Σ
(m)∗
k are mean vectors and

covariance matrices of the Gaussian densities.

1.3 Variational inference

In a Bayesian view to uncertainty, all uncertain quantities are treated as random variables.
Bayesian approach integrates over possible settings of all random variables. The resulting
quantity is known as the marginal likelihood. Following the graphical model in Supplementary
Figure 1, the marginal likelihood for the BSDS model is expressed as:

p(Y )=

S∏
s=1

T∏
t=1

K∑
k=1

∫ ∫ ∫
p(yst ,z

s
kt,x

s
kt,θ

FA
k ,θ

AR
k ,θ

HMM
k ) dxskt dθ

FA
k dθAR

k dθHMM
k ,

where p(yst ,zskt,x
s
t ,θ

FA
k ,θ

AR
k ,θ

HMM
k ) is the joint probability distribution over all variables given by

p(yst ,z
s
kt,x

s
kt,θ

FA
k ,θ

AR
k ,θ

HMM
k )=p(yst |zst ,xst ,θFA

k )p(xst |zskt)p(zskt |θHMM
k )p(θHMM

k )p(θFA
k )p(θAR

k ), (4)

where p(θHMM
k ), p(θFA

k ), p(θAR
k ) are the prior distributions. The choice of prior distributions is

discussed in § 1.2.
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Given the observed data and the priors, the posterior distribution may be inferred using Bayes’s
rule as

p(Z,X,θFA,θAR,θHMM |Y )=
p(Y ,Z,X,θFA,θAR,θHMM)

p(Y )
.

Directly computing the posterior may not be analytically tractable. In the following, we
approximate the posterior using a family of optimization methods known as variational
inference16,17. Variational inference is based on reformulating the problem of computing the
posterior distribution as an optimization problem. Here, we work with a particular class of
variational methods known as mean-field methods, which are based on optimizing
Kullback-Leibler divergence16. We aim to minimize the Kullback-Leibler divergence between the
variational posterior distribution, shown as q(Z,X,θFA,θAR,θHMM), and the true posterior
distribution, p(Z,X,θFA,θAR,θHMM |Y ), which can be expressed as:

D
[
q(Z,X,θFA,θAR,θHMM) || p(Z,X,θFA,θAR,θHMM |Y )

]
=

=−
〈

log
p(Y ,Z,X,θFA,θAR,θHMM)

q(Z,X,θFA,θAR,θHMM)

〉
q(Z,X,θFA,θAR,θHMM)

+logp(Y ), (5)

where the operator 〈·〉 takes the expectation of variables in its argument with respect to the
variational distribution q(·), e.g., 〈f(x)〉g(x)=

∫
f(x)g(x)dx. The minimization of Eq. (5) is

equivalent to the maximization of a lower bound, L, on the log marginal likelihood defined as:

L=

〈
log

p(Y ,Z,X,θFA,θAR,θHMM)

q(Z,X,θFA,θAR,θHMM)

〉
q(Z,X,θFA,θAR,θHMM)

. (6)

For the mean-field framework to yield a computationally efficient inference method, it is
necessary to choose a family of distributions q(Z,X,θFA,θAR,θHMM) such that we can tractably
optimize the lower bound. Here, we approximate the true posterior distribution using a partly
factorized approximation in the form of:

p(Z,X,θFA,θAR,θHMM)'q(Z,X,θFA,θAR,θHMM)=q(θFA)q(θAR)q(θHMM)q(X |Z)q(Z). (7)

Given our choice of factorization in Eq. (7), we can express the lower bound explicitly as:

L=

〈〈
log

p(Y ,X,θFA,θAR |Z,θHMM)

q(X,θFA,θAR |Z)

〉
q(X,θFA,θAR|Z)

〉
q(Z)︸ ︷︷ ︸

L(Y |Z)

+

〈〈
log

p(Z,θHMM)

q(Z)q(θHMM)

〉
q(θHMM)

〉
q(Z)

, (8)

where L has been separated into two parts. The first part, L(Y |Z), is the Z-conditional expected
value calculated using q(X,θFA,θAR |Z) across X, θFA, θAR related only to the generation of Y .
This part is calculated as a function of any given Z. The second term depends only on the
Markov-chain model for the latent variables Z. Thus, the total lower bound can be maximized by
alternating optimization of each of these two parts, while the other part of the model is kept
unaltered.
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1.4 Posterior parameter distribution

1.4.1 Posterior distributions of HMM parameters

For the model defined through the joint probability distribution in Eq. (4) and prior parameter
distributions specified in § 1.2.1, posterior distributions of the HMM model parameters,
q(θHMM)=q(π)q(A), which maximize the lower bound, Eq. (8), are given by:

a. a Dirichlet density in form of:

q(π)=Dir(απ)

απ=
S∑
s=1

(α∗πm
∗)+〈zs1〉q(zst )

, (9)

b. and independent Dirichlet densities on each row of A in form of:

q(A)=
K∏
i=1

ai=
K∏
i=1

Dir(αai)

αA=

[
αa1

αaK

]
=

[
α∗a1

m∗>

α∗aK
m∗>

]
+

S∑
s=1

T∑
t=2

〈
zst−1 z

s
t

〉
q(zst )

. (10)

Using Eq. (9) and Eq. (10), it follows:

〈logaij〉q(A)=ψ(αaij )−ψ

(
K∑
l=1

αai,l

)
, ∀ i,j=1,...,K , (11)

〈logπk〉q(π)=ψ(απk)−ψ

 K∑
j=1

απj

, ∀ k=1,...,K , (12)

where ψ(·) indicates the mathematical digamma function, αaij is the j-th element of αai and
similarly απk is the k-th element of απ.

1.4.2 Posterior distributions of factor analysis parameters

At a given latent state, zskt=1, and a given latent space variable characterized with the sufficient

statistics x̃
s
kt and x̃skt(x̃

s
kt)
>, generative model of the BSDS can be viewed as a factor analysis

model with an autoregressive process on its factor sources (latent space variables). Hence, in the
following, we adopt similar methodology as in static factor analysis model14. For detailed
discussions on the static factor analysis, readers are referred to18.

For the model defined through the joint probability distribution in Eq. (4) and prior parameter
distributions specified in § 1.2.2, posterior distributions of the model parameters which maximize
the lower bound, Eq. (8), are given as follows:
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a. Posterior distribution of U and µ is given by independent Gaussian densities in form of:

q

([
U
µ

])
=

K∏
k=1

D∏
d=1

q

([
u̇kd
µkd

])
=

K∏
k=1

D∏
d=1

N
([

¯̇ukd
µ̄kd

]
,Γkd

)
, (13)

where µ̄kd denotes the d-th element of µk and u̇kd denotes the column vector
corresponding to the d-th row of Uk, and

Γkd=

[(
ΣUUkd

)−1 (
ΣUµkd

)−1(
ΣµUkd

)−1 (
Σµµkd

)−1
]
,

(
ΣUUkd

)−1
=diag

(
〈νk〉q(νk)

)
+Ψ−1dd

S∑
s=1

T∑
t=1

x̃skt(x̃
s
kt)
>

(
ΣUµkd

)−1
=
(

ΣµUkd

)−1
=Ψ−1dd

S∑
s=1

T∑
t=1

x̃
s
kt

(
Σµµkd

)−1
=ν∗d+Ψ−1dd

S∑
s=1

T∑
t=1

〈zskt〉q(zskt)

¯̇ukd=[Γkd]UU

(
Ψ−1dd

S∑
s=1

T∑
t=1

ysdtx̃
s
kt

)

µ̄kd=[Γkd]µµ

(
Ψ−1dd

S∑
s=1

T∑
t=1

〈zskt〉q(zskt)y
s
dt+ν

∗
dµ
∗
d

)
.

(14)

b. Posterior distribution of ν is given by independent Gamma densities in form of:

q(ν)=

K∏
k=1

D∏
d=1

p(νkd)=

K∏
k=1

D∏
d=1

G(ak,bk), (15)

where ak and bk are the shape and inverse scale posterior hyperparameters of the Gamma
densities given by,

ak=a∗+
D

2
, bk=b∗+

1

2

D∑
d=1

〈
u>kdukd

〉
q(U)

. (16)

1.4.3 Posterior distribution of the autoregressive process parameters

For the model defined through the joint probability distribution in Eq. (4) and prior parameter
distributions specified in § 1.2.3, posterior distribution of the model parameters (~V ,Σ,m) which
maximizes the lower bound, Eq. (8), are given as follows:

a. Posterior distribution of the autoregressive coefficients are given by independent Gaussian
densities in form of

p(~V )=

K∏
k=1

p(~V k)=

K∏
k=1

N
(
m

(~V )
k ,Σ

(~V )
k

)
, (17)
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with posterior hyperparameters,

m
(~V )
k =

(
Σ

(~V )∗
k

)−1
m

(~V )∗
k +

S∑
s=1

T∑
t=1

X̃
s

kt

>
〈Σk〉−1q(Σk)

(
x̃skt−〈mk〉q(mk)

)
,

Σ
(~V )
k =

(
Σ

(~V )∗
k

)−1
+

S∑
s=1

T∑
t=1

X̃
s

kt

>
〈Σk〉−1q(Σk)

X̃
s

kt.

(18)

b. Posterior distribution of the noise covariance matrices in the process, Σ, are given by
inverse-Wishart densities in form of:

q(Σ)=
K∏
k=1

q(Σk)=IW
(
ν
(Σ)
k ,S

(Σ)
k

)
, (19)

with degree of freedom, ν(Σ)
k , and scale matrix S(Σ)

k as

ν
(Σ)
k =ν

(Σ)∗
k +

S∑
s=1

T∑
t=1

〈zskt〉q(zskt) ,

S
(Σ)
k =S

(Σ)∗
k +

S∑
s=1

T∑
t=1

(
x̃st−X̃

s

kt

〈
~V k

〉
q(~V k)

−〈mk〉q(mk)

)(
x̃st−X̃

s

kt

〈
~V k

〉
q(~V k)

−〈mk〉q(mk)

)>
.

(20)

c. Posterior distribution of the noise mean vectors, m, are given by Gaussian densities in form
of:

p(m)=

K∏
k=1

p(mk)=

K∏
k=1

N
(
µ
(m)
k ,Σ

(m)
k

)
, (21)

with posterior hyperparameters µ(m)
k and Σ

(m)
k given by:

µ
(m)
k =

(
Σ

(m)∗
k

)−1
µ
(m)∗
k +〈Σk〉−1q(Σk)

S∑
s=1

T∑
t=1

x̃st−X̃
s

kt

〈
~V k

〉
q(~V k)

,

Σ
(m)
k =Σ

(m)∗
k +〈Σk〉−1q(Σk)

S∑
s=1

T∑
t=1

〈zskt〉q(zskt) .

(22)

1.5 Optimization of the posterior hyperparameters

We then follow a similar approach as in static factor analysis model14 for optimization of the
posterior hyperparameters, {α∗m∗,a∗,b∗,µ∗,ν∗,Ψ}, in the model. The optimized
hyperparameters are computed as follows:

a. Noise covariance, Ψ, is updated using maximum likelihood estimation given by:

Ψ−1=diag

 1

TS

S∑
s=1

T∑
t=1

K∑
k=1

〈
ΦΦ>

〉
q

Uk

µk

q(xs
kt|zskt)q(zskt)

, (23)
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where Φ=yst−
[
Uk

µk

][
xskt
1

]
.

b. Hyperparameters a∗,b∗ are computed from the following fixed-point equations:

ψ(a∗)=log(b∗)+
1

KP

K∑
k=1

P∑
p=1

〈logνkp〉q(νkp) , (24)

b∗−1=
1

a∗KP

K∑
k=1

P∑
p=1

〈νkp〉q(νkp) . (25)

c. The scale prior m∗k= 1
K is fixed and α∗π=α∗ai

=α∗ are given for all i=1,...,K as:

ψ(α∗)−ψ(
α∗

K
)=

1

K

K∑
k=1

ψ(α)−ψ(αmk). (26)

d. µ∗ and ν∗ are optimized as:

µ∗=
1

K

K∑
k=1

〈µk〉q(µk)
, (27)

ν∗=[ν∗1 ,...,ν
∗
D], with ν∗d=

1

K

K∑
k=1

〈(µkd−µ∗d)(µkd−µ∗d)〉q(µk)
. (28)

1.6 Sufficient statistics of the latent variables

We only require to know sufficient statistics of the latent space variables and the latent state
variables which are inferred for each subject using group-level learnt posterior parameters in
§ 1.4.

1.6.1 Sufficient statistics of the latent space variables

For the model defined through the joint probability distribution in Eq. (4) and the marginal density
of yst given by Eq. (2), sufficient statistics of the latent space variables are inferred as:

x̃
s
kt=X̃

s

kt

〈
~V k

〉
q(V k)

+〈Σk〉q(Σk)
, (29)

x̃skt(x̃
s
kt)
>=X̃

s

kt

〈
~V k

~V
>
k

〉
q(~V k)

X̃
s

kt

>
+2X̃

s

kt
~V k 〈Σk〉>q(Σk)

+
〈
ΣkΣ

>
k

〉
q(Σk)

, (30)

where X̃
s

kt is expressed using x̃skt as:

X̃
s

kt=


x̄skt 0RP ··· 0RP
0RP x̄skt ··· 0RP

...
...

. . .
...

0RP 0RP ··· x̄skt

, x̄skt=(x̃sk,t−1 > x̃sk,t−2
> ... x̃sk,t−R

>
)
,
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where x̃st denote the data representations at time t for subject s computed as:

x̃skt=〈zskt〉q(zskt)〈x
s
kt〉q(xs

kt|zskt) ,

〈xskt〉q(xs
kt|zskt)=

(
IP×P+

〈
U>k Ψ−1Uk

〉
q(Uk)

)−1
〈Uk〉>q(Uk)

Ψ−1
(
yst−〈µk〉q(µk)

)
.

(31)

1.6.2 Sufficient statistics of the latent state variables

Posterior distribution of the latent state variables, q(Z), are obtained by maximizing the second
term in the lower bound expression by Eq. (8), and using the Markov properties for Z. In practice,
a variant of the forward algorithm and backward algorithm can be used to efficiently compute the
necessary marginal probabilities, namely, 〈zst 〉q(zst ) and

〈
zst z

s
t−1
〉
q(zst )

. Computation of these
statistics using the forward and backward algorithms requires the emission probability
distribution, Os

t={Oskt |1≤k≤K}, which is given by:

Oskt=exp(L(yst |zskt=1)), ∀ k,t,s (32)

where

L(yst |zskt=1)=〈logp(yst |zskt,xskt,Uk,Ψk,)〉q(Uk)q(x
s
kt|zskt)−〈logq(xskt |zskt)〉q(xs

kt|zskt)=

=
1

2
log|Σk|−

1

2
trace

Ψ−1
〈(

yst−
[
Uk

µk

][
xskt
1

])(
yst−

[
Uk

µk

][
xskt
1

])>〉
q

Uk

µk

q(xs
kt|zskt)

. (33)

Details of the forward-backward computations are discussed in the following.

Forward Algorithm The forward procedure is initialized for t=1 as

αsi1=ãKiOsit, where ãij=exp
(
〈logaij〉q(A)

)
, ∀ 1≤i≤K.

Then, the forward iteration can formally run for t=2,...,T as

αsjt=
K∑
i=1

αst−1,iãijOsjt, ∀ 1≤j≤K.

For later use in the computation of the lower bound, we compute the the normalization constant
C as

C=

S∑
s=1

K∑
k=1

αskT . (34)

Backward Algorithm To supplement the forward calculation, we need a backward variable to
represent the observed conditions after time t. The backward variable is initialized as βsjT =1 for
all j=1,...,K. The backward variable is recursively defined for t=T−1,...,1 as

βsit=
K∑
j=1

ãijOsj,t+1β
s
j,t+1, ∀1≤i≤K. (35)
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Finally, 〈zsit〉q(zsit) and
〈
zsitz

s
j,t−1

〉
q(zst )

are given by:

〈zsit〉q(zsit)=
αsit β

s
it∑K

k=1α
s
kt β

s
kt

, (36)

〈
zsitz

s
j,t−1

〉
q(zst )

=
αsj,t−1ãijOsitβsit∑K

k=1

∑K
l=1α

s
l,t−1ãklOsktβskt

, ∀ 1≤i,j≤K. (37)

1.7 Algorithm

An algorithmic summary of BSDS is shown in Algorithm 1, Supplementary Table 2.

2 Measures

Transition probability between states Transition probabilities between latent states are given
by:

Â=[âij ] where âij=exp
(
〈logaij〉q(A)

)
, ∀ i,j=1,...,K (38)

where 〈logaij〉q(A) is given by Eq. (11). Diagonal values on Â give the self-transition probabilities
and off-diagonal values give the cross-transition probabilities.

Temporal evolution of states Temporal evolution of the latent states indicates to which latent
state a given time point belongs and it is given by the Viterbi path defined as the most likely
sequence of latent states in the sequence of observed data and is computed using Viterbi
algorithm2. Explicitly, the temporal evolution of states for a given subject s is expressed by the
Viterbi path and is computed using estimated output probability distribution Oskt, given by
Eq. (32), and the estimated transition probabilities given by Eq. (38). Note that, as the model
parameters, (θFA,θHMM,θAR), are learnt in a group-level fashion using sufficient statistics from all
subjects, there is a one-to-one correspondence between states across subjects such that a given
state i would correspond to the same state for all subjects, s=1,...,S.

Occupancy rate and mean lifetime of states The occupancy rate for state i and subject s is
computed as:

Occupancy Rate(i,s)=

∑T
t=1δ(z

s
it=1)

T
×100, (39)

where δ(zsit=1) is the Dirac delta function which is one if the current state at time t is the i-th
state. To know at which state we are at a given time, we will use the temporal evolution of states.

The mean lifetime of a state is the average time that a given state i continuously persists before
switching to another state. This quantity can be simply computed from the temporal evolution of
states.
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Occupancy rate and mean life time are complementary of each other. These quantities are
computed for all states and across all subjects. As there is a one-to-one correspondence
between states across subjects, we can monitor their variations across subjects.

Group-level mean and covariance Using estimated posterior distribution of the model
parameters, estimated group-level mean and covariance for each state are given by:

meank=µ̄k, µ̄k=[µ̄kd, ∀ d=1,...,D], ∀k=1,...,K (40)

covk=
(

¯̇uk ¯̇u>k
)

+Ψ−1, ¯̇uk=[¯̇ukd, ∀ d=1,...,D], ∀k=1,...,K (41)

where µ̄kd, ¯̇ukd and Ψ−1 are given by Eq. (14) and Eq. (23). Note that, using temporal evolution of
states and estimated covariance of states, we can now compute changes in covariance over time.

3 Subject-level learning using BSDS

As before, let {θFA,θHMM,θAR |θFA
k ,θ

HMM
k ,θAR

k ,∀k=1,...,K} show the group level model parameters
computed using data measurements from all subjects, Y ={Y s |s=1,...,S}. To obtain subject
level model parameters, shown as {{θFA}s,{θHMM}s,{θAR}s |∀s=1,...,S}, we initialize BSDS
informative using sufficient statistics of the latent state variables computed from the group-level
analysis, 〈zskt〉q(zskt). From the algorithmic point of view, we only need to replace initialization of
〈zst 〉q(zst ) in Step 1 of Algorithm 1 (Supplementary Table 2) by the estimated 〈zskt〉q(zskt) ,∀k from
the group level analysis. BSDS then uses the prior and data from the given subject s to learn the
subject-level posterior parameters {q(θFA

k )}s,{q(θAR
k )}s,{q(θHMM

k )}s. A summary of algorithm is
shown in Algorithm 2, Supplementary Table 3.

Subject-level mean and covariance Using estimated subject-level posterior distribution of the
model parameters, {q(θFA

k )}s,{q(θAR
k )}s,{q(θHMM

k )}s,∀s=1,...,S, the estimated subject-level mean
and covariance matrices are given by Eq. (40) and Eq. (41).
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Supplementary Note 1: Supplementary Results

1 Robustness of findings with respect to ROI selection: BSDS applied to HCP n-back
working memory (WM) task with ROIs from ICA-derived resting-state brain networks

Our primary analysis focused on fronto-parietal ROIs based on peaks of task-related activation
and deactivation. To examine the robustness of our findings with respect to ROI selection, we
conducted a complete set of parallel supplemental analyses using functional clusters from
previously published brain networks derived using ICA on resting-state fMRI19. Networks of
interest included the salience network (SN), central executive network (CEN), default mode
network (DMN) and dorsal attention network (DAN), from which we chose the following
fronto-parietal regions: bilateral AI, bilateral DLPFC, bilateral FEF, bilateral PPC, PCC, VMPFC
and right DMPFC (Supplementary Figure 5). All other processing steps were identical to the
previous analysis. As described in detail below, all major findings were replicated with this more
general resting-state network-derived choice of ROIs.

1.1 Matching BSDS states between sessions

We applied BSDS to probe latent brain dynamics associated with ROIs in two data sessions
separately. BSDS isolated five latent brain states in Sessions 1 and 2. To determine whether one
brain state identified in one session match one brain state identified in another session, we
conducted cross-session brain state correlation analysis. Using the same state matching
algorithm applied in the main analysis (see Material and Methods for details), we found exclusive
one-to-one mapping of the five latent brain states between two sessions. The Pearson’s
correlation coefficients between the matched brain states across two sessions range from 0.56 to
0.87 (Supplementary Table 15).

1.2 Fractional occupancy of task-dominant latent brain states during WM task

The 2-back, 0-back and fixation conditions were each dominated by distinct brain states
designated SH (high-load state), SL (low-load state), and SF (fixation state) respectively
(Supplementary Figure 6). The brain state SH during the 2-back WM task had an occupancy
rate of 47.1±6.6% in Session 1 and 36±11.5% in Session 2 (Supplementary Figure 6d). In both
Sessions, the occurrence of the SH during the 2-back task condition was significantly higher than
the occurrence of other non-dominant states (all p-values <0.001, two-tailed t-test) except the 5th
State in Session 2. Although the 5th State had high occupancy rate in 2-back WM task in
Session 2, it also had high occupancy rate in 0-back WM task but low occupancy rate in rest.
Therefore, the 5th State did not have uniquely significant contribution to the 2-back task. So this
state is designated SG (general-control state). The mean lifetime of the state SH in the 2-back
condition was 13±5 seconds in Session 1 and 9±4 seconds in Session 2, significantly longer than
the mean lifetime of the other brain states (all p-values <0.001, two-tailed t-test), but much
shorter than the 27.5 seconds task block (Supplementary Figure 6e). Thus, the 2-back condition
is characterized by a mixture of brain states, with the dominant state active for only a relatively
short interval. A similar pattern was observed for the states that were dominant in the 0-back and
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fixation conditions (Supplementary Figure 6d, 6e). These results demonstrate that the WM task
is characterized by latent task-induced states whose fractional occupancy is relatively short
compared to the task blocks.

1.3 Identification of a novel transition state

In addition to SH, SL, SF and SG, BSDS uncovered a transition state (ST in Supplementary
Figure 6). The occupancy rate and mean lifetime of this state during the 2-back, 0-back and
fixation conditions was comparably lower than the other states. However, ST was more likely to
occur during transition after the onset of new task blocks (27±19% in Session 1 and 41±13% in
Session 2, Supplementary Figure 6f), significantly higher than other latent states in both
sessions (p-values <0.05, two-tailed t-test) but not to SG in Session 1. These results
demonstrate that cognitive tasks with multiple conditions are characterized not only by latent
task-induced states but also by transition states.

1.4 Latent brain states predict WM performance

To probe the relation between latent brain states and task performance, we took advantage of a
key feature of BSDS, which provides estimates of moment-by-moment changes in brain states
and connectivity. We examined whether time-varying brain state changes could predict WM
performance. Specifically, we trained a multiple linear regression model to fit estimated the
2-back accuracy using occupancy rates of brain states in the 2-back condition, applied the model
on unseen data to predict accuracy, and evaluated model performance by comparing estimated
accuracy and observed value across all the subjects. This analysis revealed a significant relation
between predicted and actual accuracy (all p-values <0.005, Pearson’s correlation,
Supplementary Figure 7a). Notably, each of these results was replicated in both Sessions 1 and
2, highlighting the robustness of our brain-behavior findings.

We then tested the hypothesis that the occupancy rate of individual brain states in the 2-back
condition is associated with performance in the 2-back block. We found that WM task accuracy
was positively correlated with the occupancy rate of the dominant state, SH, in the 2-back WM
task condition (all p-values <0.01, Pearson’s correlation, Supplementary Figure 7b). Thus, the
dominant state SH is a behaviorally optimal brain state for 2-back working performance the more
time spent in this brain state the better WM task performance, with more deviations leading to
poorer performance.

Next, we investigated the mean lifetime, another key feature of temporal evolution of latent brain
states, in relation to WM performance using the same analytic procedures described above. We
found that the mean lifetimes of the latent brain states in the 2-back condition predicted WM task
accuracy (all p-values <0.05, Pearson’s correlation, Supplementary Figure 7c). Thus,
maintenance of optimal hidden brain states results in better WM task performance.
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2 Robustness of findings with respect to head movement: BSDS applied to HCP n-back
WM task with 12 head motion regression parameters

To examine whether the key latent brain states uncovered by BSDS are stable with respect to
different motion correction procedures, we conducted additional analysis by regressing out 12
motion parameters, including 6 standard parameters (3 translational and 3 rotational movement)
and derivatives of these 6 standard parameters, and then repeated the same BSDS analysis
using 11 ROIs defined by 2-back vs 0-back contrast. As described in detail below, all major
findings were replicated with this choice of movement parameters.

2.1 Matching BSDS states between sessions

We applied BSDS to probe latent brain dynamics associated with ROIs in two data sessions
separately. BSDS isolated five latent brain states in Session 1 and Session 2. To determine
whether one brain state identified in one session match one brain state identified in another
session, we conducted cross-session brain state correlation analysis. Using the same state
matching algorithm applied in the main analysis (see Material and Methods for details), we found
exclusive one-to-one mapping of the five latent brain states between two sessions. The Pearson’s
correlation coefficients between the matched brain states across two sessions range from 0.93 to
0.97 (Supplementary Table 16).

2.2 Fractional occupancy of task-dominant latent brain states during WM task

The 2-back, 0-back and fixation conditions were each dominated by distinct brain states
designated SH (high-load state), SL (low-load state), and SF (fixation state) respectively
(Supplementary Figure 8). The brain state SH during the 2-back WM task had an occupancy
rate of 37.6±12.2% in Session 1 and 34.7±11.5% in Session 2 (Supplementary Figure 8d). In
both Sessions, the occurrence of the SH during the 2-back task condition was significantly higher
than the occurrence of other non-dominant states (all p-values <0.001, two-tailed t-test) except
the 5th State. Although the 5th State had high occupancy rate in 2-back WM task too, it also had
high occupancy rate in 0-back WM task but low occupancy rate in rest. Therefore, the 5th State
did not have uniquely significant contribution to the 2-back task. So this state is designated SG
(general-control state). The mean lifetime of the state SH in the 2-back condition was 10±4
seconds in Session 1 and 8±7 seconds in Session 2, significantly longer than the mean lifetime
of the other brain states (all p-values <0.001, two-tailed t-test), but much shorter than the 27.5
seconds task block (Supplementary Figure 8e). Thus, the 2-back condition is characterized by
a mixture of brain states, with the dominant state active for only a relatively short interval. A
similar pattern was observed for the states that were dominant in the 0-back and fixation
conditions (Supplementary Figure 8d, 8e). These results demonstrate that the WM task is
characterized by latent task-induced states whose fractional occupancy is relatively short
compared to the task blocks.
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2.3 Identification of a novel transition state

In addition to SH, SL, SF and SG, BSDS uncovered a transition state (ST in Supplementary
Figure 8). The occupancy rate and mean lifetime of this state during the 2-back, 0-back and
fixation conditions was comparably lower than the other states. However, ST was more likely to
occur during transition after the onset of new task blocks (30±20% in Session 1 and 33±17% in
Session 2, Supplementary Figure 8f), significantly higher than other latent states in both
sessions (p-values <0.05, two-tailed t-test) except that it is marginally significant compared to SH
in Session 1 (p=0.07, two-tailed t-test). These results demonstrate that cognitive tasks with
multiple conditions are characterized not only by latent task-induced states but also by transition
states.

2.4 Latent brain states predict WM performance

To probe the relation between latent brain states and task performance, we took advantage of a
key feature of BSDS, which provides estimates of moment-by-moment changes in brain states
and connectivity. We examined whether time-varying brain state changes could predict WM
performance. Specifically, we trained a multiple linear regression model to fit estimated the
2-back accuracy using occupancy rates of brain states in the 2-back condition, applied the model
on unseen data to predict accuracy, and evaluated model performance by comparing estimated
accuracy and observed value across all the subjects. This analysis revealed a significant relation
between predicted and actual accuracy (all p-values <0.01, Pearson’s correlation,
Supplementary Figure 9a). Notably, each of these results was replicated in both Sessions 1 and
2, highlighting the robustness of our brain-behavior findings.

We then tested the hypothesis that the occupancy rate of individual brain states in the 2-back
condition is associated with performance in the 2-back block. We found that WM task accuracy
was positively correlated with the occupancy rate of the dominant state, SH, in the 2-back WM
task condition (all p-values <0.005, Pearson’s correlation, Supplementary Figure 9b).
Conversely, the occupancy rate of non-dominant brain states during the 2-back task was
associated with poorer performance. Thus, the dominant state SH is a behaviorally optimal brain
state for 2-back working performance – the more time spent in this brain state the better WM task
performance, with more deviations leading to poorer performance.

Next, we investigated the mean lifetime, another key feature of temporal evolution of latent brain
states, in relation to WM performance using the same analytic procedures described above. We
found that the mean lifetimes of the latent brain states in the 2-back condition predicted WM task
accuracy (all p-values <0.01, Pearson’s correlation, Supplementary Figure 9c). Thus,
maintenance of optimal hidden brain states results in better WM task performance.

3 Performance of related HMM-based models on optofMRI and n-back WM data

We next examined the performance of a broad class of HMM based methods and applied them to
opto-fMRI and n-back WM fMRI task data. HMM models can be categorized based on their
inference into maximum-likelihood and Bayesian models. In its standard form, the ML-based
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HMM model has limited application in practice, as the number of states has to be specified in
advance. Thus, here, we only consider Bayesian HMM-based methods. The Bayesian models
may also be broadly categorized into parametric Bayesian models and nonparametric Bayesian
models. Bayesian inference in either forms provides a structured way of handling model
complexity, and with sufficient amount of data, they can automatically prune away states with little
influence. Here, we consider examples of each category.

In the following, we consider multiple Bayesian HMM-based methods and evaluate their
performance on opto-fMRI and n-back WM data. Briefly, our analysis of these methods revealed
they are unable to properly handle the model complexity by either overestimating uncertainties
resulting in over-pruning of the latent states and converging to a single state, or underestimating
uncertainties resulting in multiple states (>10) with little resemblance to the task. The latter case
arises when models have limited flexibility and are strongly constrained by the Markovian
assumptions as the only mechanism for capturing complex dynamical processes hidden in the
data. Such models cannot deal with abrupt changes in data which may not be relevant to group
patterns of interest. The former case arises in models where each state has extensive degree of
flexibility with many parameters to be learnt from data. Although theoretically appealing, in
practice, it is difficult to robustly learn all these parameters from noisy data and hence the model
behaves too conservatively and can reliably estimate only one state.

In comparison, BSDS takes advantage of the strengths of each while minimizing the
weaknesses. Similar to the nonparametric Bayesian switching linear dynamical systems20, it is
rich in flexibility. It benefits from both Markovian assumptions and the autoregressive processes
in its latent space. However, its flexibility is constrained by using a parametric model with fewer
parameters to estimate from the data. On the other hand, it is flexible enough to not react too
quickly to every local change in data, allowing it to estimate an optimal and parsimonious set of
latent states across study participants.

3.1 Related HMM-based methods

We considered the following HMM-based methods21,20,22:

Category 1 Hierarchical Dirichlet process hidden Markov model (HDP-HMM);

Category 2 Hierarchical Dirichlet process autoregressive hidden Markov model (HDP-AR-HMM);

Category 3 Hierarchical Dirichlet process switching linear dynamical systems (HDP-SLDS);

Category 4 Bayesian switching factor analysis (BSFA).

HDP-HMM belongs to the family of nonparametric Bayesian models. Seen as the simplest
model, HDP-HMM captures temporal dependencies using HMM’s Markovian assumptions.
HDP-AR-HMM can be seen as a representative of another family of methods for modeling
temporal data which uses autoregressive (AR) process within the HMM framework. When
compared to the HDP-HMMs, HDP-AR-HMMs are more capable of capturing complex dynamical
processes in data due to the additional use of AR in their generative model. BSFA can be seen
as the simplest model which takes the advantage of latent space variables in the HMM
framework. HDP-SLDS belongs to the same family of methods to which BSDS belongs.
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HDP-SLDS is the most flexible model: It shares similarities with BSFA in the use of latent space
variables, and can be seen as the general form of HDP-AR-HMM where AR process is defined
on the latent space variables.

Categories 1-3 are based on Emily Fox toolbox, HDPHMM-HDPSLDS toolbox1. This toolbox
implements various HDP-based models21,20. Category 4, BSFA22, can be seen as a special
case of BSDS without autoregressive process2.

HDP-HMM/HDP-AR-HMM/HDP-SLDS supports time series analysis with various model families.
We considered the following model families in our analysis (see HDPHMM-HDPSLDS toolbox for
implementation details and refer to21,20 for theoretical discussion):

HDP-HMM

HDP-HMM.A Gaussian emissions with non-conjugate Normal-inverse Wishart observation
model type shown as N-IW prior.

HDP-HMM.B Gaussian emissions with conjugate Normal-inverse Wishart observation
model type, shown as NIW prior.

HDP-AR-HMM

HDP-AR-HMM.A AR order fixed, conjugate matrix-Normal inverse-Wishart observation
model type shown as MNIW prior.

HDP-AR-HMM.B Latent AR order with maximal order r with Normal prior together with
conjugate matrix-Normal inverse-Wishart Normal observation model type shown as
MNIW-N prior.

HDP-AR-HMM.C Latent AR order with maximal order r, Normal prior together with
non-conjugate Normal inverse-Wishart observation model type shown as N-IW-N prior.

HDP-AR-HMM.D Latent AR order with maximal order r, automatic relevance determination
observation model type shown as ARD prior.

HDP-SLDS

HDP-SLDS.A SLDS with conjugate matrix-Normal inverse-Wishart (MNIW) observation
model type, and inverse Wishart (IW) prior on noise.

HDP-SLDS.B SLDS with conjugate matrix-Normal inverse-Wishart (MNIW) observation
model type, and non-conjugate inverse Wishart Normal (IW-N) prior on noise.

HDP-SLDS.C SLDS with conjugate matrix-Normal inverse-Wishart (MNIW) observation
model type, and conjugate inverse Normal Wishart Normal (NIW) prior on noise.

HDP-SLDS.D SLDS with non-conjugate Normal inverse-Wishart Normal (N-IW-N)
observation model type, and inverse Wishart (IW) prior on noise.

HDP-SLDS.E SLDS with non-conjugate Normal inverse-Wishart Normal (N-IW-N)
observation model type, and non-conjugate inverse Wishart Normal (IW-N) prior on
noise.

1https://homes.cs.washington.edu/ ebfox/software/
2https://github.com/StanfordCosyne/BSFA
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3.2 Analysis of opto-fMRI data

We applied all methods to opto-fMRI dataset to validate their performance on a real dataset for
which the ground-truth is known to some extent. Only three of these methods could find more
than one state, namely HDP-HMM.A,B, BSFA (Supplementary Figure 10-12). Both
HDP-AR-HMM.A-D and HDP-SLD.A-E converged to only a single state.

HDP-HMM.A-B can be seen as a nonparametric variant of the HMM with Gaussian emission
probability distributions. The key difference between HDP-HMM.A and HDP-HMM.B is in their
choice of priors. While HDP-HMM.A uses non-conjugate prior model within a fully factorized prior
model, HDP-HMM.B uses a conjugate prior model to avoid the full factorization of the priors
which theoretically should help with the better recovery of states. Both methods capture temporal
correlations in data using Markovian assumptions within an HDP framework. HDP-HMM.A
converged to 4 states and HDP-HMM.B converged to 3 states. We also observed in our analysis
that while both methods are rather sensitive to the random initialization, HDP-HMM.A appears to
be slightly more sensitive in comparison to HDP-HMM.B.

BSFA is a state-space model which uses HMM to capture temporal dependencies as opposed to
BSDS which uses both HMM and AR process wrapped into a state-space generative model. As
shown in Supplementary Figure 12, the learning converges to several states (14 states) with no
clear pattern. HDP-AR-HMM.A-D use both HMM and AR process in their generative models. We
varied the AR order from 1 to 3. All methods consistently converged to a single state (results not
shown here). HDP-SLDS.A-E are closest to the BSDS in their generative form but they differ in
their inference. While BSDS uses variational inference, they use MCMC sampling. Furthermore,
BSDS is a Bayesian parametric model while HDP-SLDS.A-E are Bayesian non-parametric
models. In our analysis, we observed all cases converged to a single state.

3.3 Analysis of HCP WM data

As in the case of opto-fMRI data, HDP-AR-HMM and HDP-SLDS when applied to the WM
dataset, converged to a single state.

HDP-HMM.A,B were initialized as in the case of validation dataset. Estimated temporal evolution
of states is shown in Supplementary Figures 13, 14. HDP-HMM.A in Session 1 and 2
converged to 10 and 9 states respectively. Similarly, HDP-HMM.B converged to 10 states in
Session 1 and 10 in Session 2. BSFA was initialized as in the case of validation dataset.
Estimated temporal evolution of states is shown in Supplementary Figure 15. BSFA in Session
1 and 2 converged to 15 and 16 states, respectively.

3.4 General considerations

Within the HMM framework, another family of methods for modeling temporal data uses
autoregressive (AR) process. In such models, each state of the HMM is assumed to be
generated from an AR process. In a more general form, switching linear dynamical models are
another important family of models for modeling timeseries. It should be noted that while prior
studies have used HMMs for estimation of brain states on the observed data, unlike the present
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study, they do not explicitly model latent processes underlying observed data. When compared to
standard HMM-based models21,23,24,22, crucially, BSDS applies HMM on the latent space
variables, and it is their combination that creates a switching dynamical system which then
generates the observed data. This is in contrast to previous approaches that have applied HMMs
directly to observed MEG24 and resting-state fMRI23,22. In comparison, each latent state of
BSDS is richer and has greater flexibility due to the autoregressive processes in the latent space
variables. Critically, the system only switches to a new state if the current state is not capable of
explaining the data. As the result, BSDS shows greater robustness to the abrupt noisy and local
changes in the data. Hence, BSDS typically requires fewer states to model the same data when
compared to standard HMM based methods. These ,features help in the robust identification of
brain states.

4 Performance of temporal clustering on n-back WM data

We conducted additional analysis using ICA in combination with temporal clustering, an
approach widely used to investigate dynamic functional connectivity25,26,27. Briefly, this approach
includes: (1) group-wise spatial ICA to identify components of interest, (2) extracting time series
of components of interest, (3) applying a sliding window on time series and estimate time-varying
covariance matrices, (4) clustering based on time-varying covariance matrix, and (5) determining
the optimal number of clusters.

We used ICA maps from an independent study19 because identifying the optimal number of
components in spatial ICA and matching ICA components between two task sessions is
non-trivial. Further, this approach also minimizes the impact of using individual spatial
parcellations when comparing different methods and data across two sessions. The ICA maps
here are the same as those used above to test the robustness of our findings with respect to ROI
selection (Supplementary Figure 5). The ICA masks included bilateral AI, bilateral DLPFC,
bilateral FEF, bilateral PPC, PCC, VMPFC and right DMPFC. We extracted time series from these
regions and estimated dynamic functional interactions using a temporal sliding window approach
with an exponentially decaying shape and a window length of 25 seconds (34 TRs) , which is
shorter than the length of blocks (27.5 seconds), and a sliding step of 0.72 seconds (1 TR). Within
each time window, we computed the z-transformed Pearson’s correlation between the time-series
taken pairwise. This resulted in a time-series of correlation matrices (T x C); here T is the number
of time windows and C is number of pairwise interactions among regions at each time point. We
then applied a group-wise k-mean clustering to the time-series of correlation matrices, with the
number of clusters (k) ranging from 2 to 10. Twenty-five different initializations were used to
reduce the chance of getting stuck in local minima. Clustering performance was estimated using
the silhouette method and the optimal number of clusters was determined based on maximal
silhouette across all the iterations28.

Clustering analyses revealed that the optimal number of clusters was 2 in both data sessions
(Supplementary Figure 16). Thus, despite the presence of three separate task conditions, only
two dynamic brain states could be identified using this approach (Supplementary Figure 17).
Further, we did not find any significant correlation between the occupancy rate of any latent brain
states in the 2-back task blocks and WM accuracy (p>0.6, Pearson’s correlation, Supplementary
Table 17).
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5 BSDS applied to HCP Relational Processing task

To demonstrate that BSDS can reliably estimate dynamic brain states in other cognitive domains,
we applied BSDS to the HCP Relational Processing task. As described in detail below, we found
that BSDS identifies brain states that are stable and replicable.

5.1 Data selection

The Human Connectome Project (HCP) Relational processing task fMRI data of 90 individuals
were selected based on the following criteria: (1) range of head motion in any translational and
rotational direction is less than 1 voxel; (2) average scan-to-scan head motion is less than 0.25
mm; (3) performance accuracy per session is greater than 50%; (4) criterion (1) – (3) must met in
both sessions separately; and (5) subjects are right handed.

5.2 Relational Processing task

The Relational Processing task was adapted from a previous study29. In this task, there were two
task conditions: a relational processing condition and a control matching condition, and stimuli
with 6 different shapes and 6 different textures. In the relational processing condition, two pairs of
stimuli were presented, with one pair at the top of the screen and the other pair at the bottom.
Participants were told that they should first decide what dimension differs across the top pair of
the stimuli (shape or texture) and then decide whether the stimuli at the bottom also differ along
the same dimension. In the control matching condition, two stimuli were shown at the top of the
screen and one at the bottom with a word in the middle of the screen (either shape or texture).
Participants were told to decide whether the bottom stimulus matched either of the top two stimuli
in that dimension. Each participant completed two runs of this task. Each run has three relational
processing blocks, three control matching blocks and three 16-second fixation blocks. Each task
block has 5 trials, lasting 18 seconds. Each stimulus was presented for 2800 ms, with a 400 ms ITI.

5.3 fMRI acquisition

For each individual, 232 frames were acquired in each session using multiband, gradient-echo
planar imaging with the following parameters: RT, 720 ms; echo time, 33.1 ms; flip angle, 52◦; field
of view, 280×180 mm; matrix, 140×90; and voxel dimensions, 2 mm isotropic.

5.4 fMRI preprocessing

Minimally preprocessed fMRI data for both sessions were obtained from the Human Connectome
Project. Spatial smoothing with a Gaussian kernel of 6mm FWHM was first applied to the
minimally preprocessed data to improve signal-to-noise ratio as well as anatomy correspondence
between individuals. High-pass temporal filtering (f>0.008 Hz) was applied to remove low
frequency signals related to scanner drift.
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5.5 General linear model and contrast of interest

A conventional general linear model (GLM) analysis was conducted in order to determine
relational-processing and matching related activation/deactivation peaks. Each block in each
session was modeled as one of the two vectors: relational or match. The onset and duration of
each vector were the onset and duration of the corresponding block. The contrast of interest was
relational versus match.

5.6 Region of interest (ROI) and time series

ROIs were determined on the contrast of interest: relational versus match, including bilateral
lateral occipital cortex (LOC), supramarginal gyrus (SMG), angular gyrus (AG), middle frontal
gyrus (MFG), frontal pole (FP), medial frontal pole (mFP), right anterior insula (AI) and
pre-supplementary motor area (preSMA) (Supplementary Figure 18). Each ROI was 6-mm
radius sphere centered at the corresponding peak voxel. Time series of the 1st eigenvalue was
extracted from each ROI. A multiple linear regression approach with 6 realignment parameters (3
translations and 3 rotations) was applied to time series to reduce head-motion-related artifacts
and resulting time series was further linearly detrended and normalized.

5.7 Matching BSDS states between sessions

We applied BSDS to probe latent brain dynamics associated with ROIs in two data sessions
separately. BSDS isolated five latent brain states in data Session 1 and four latent brain states in
data Session 2. To determine whether one brain state identified in one session match one brain
state identified in another session, we conducted cross-session brain state correlation analysis.
Each brain state was defined by a covariate matrix in the latent space, estimated from the set of
ROI activation timeseries in each session separately; and ROI timeseries can, in turn, be
represented as a timeseries of posterior probabilities of estimated brain states. If a brain state in
one session corresponds to a brain state in another session, then timeseries of posterior
probabilities of these two brain states in the same data session should be highly correlated.
Specifically, after obtaining four brain states in each session, we first computed posterior
probability timeseries of each brain state in the data session from which brain states are
estimated. An example is to compute posterior probability of State 11, estimated from Session 1
data. Next, we computed posterior probability timeseries of each brain state in the other data
session. An example is to compute posterior probability of State 12, estimated from Session 2
data. Then, we computed correlation posterior probability timeseries of brain states, which were
estimated from different sessions, in the same data session. For example, compute correlation
between the posterior probability of State 11 in Session 1 and the posterior probability of State 12
in Session 1. High correlation would suggest that State 11 matches State 12 as the two states
have highly similar posterior probability in the same data. Indeed, we found exclusive one-to-one
mapping between four out of the five latent brain states from the data Session 1 and the four
latent brain states from the data Session 2. The Pearson’s correlation coefficients between the
matched brain states across two sessions range from 0.65 to 0.94 (Supplementary Table 18). To
simplify the report and improve the readability, we relabeled the matched four brain states in the
two sessions to State 1, State 2, State 3 and State 4, and the fifth brain state in the data Session
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1 to State 5.

5.8 Fractional occupancy of task-dominant latent brain states during task

We compared temporal evolution of latent brain states (Supplementary Figure 19a) and block
structure of the experimental task (Supplementary Figure 19b). The latent brain states were
only partially aligned with onset and offset of the three experimental task conditions
(Supplementary Figures 19a, 19c). The relational, match and fixation conditions were each
dominated by distinct brain states S4, S3 and S1 respectively (Supplementary Figure 19d). The
brain state dominant (S4) during the relational task condition had an occupancy rate of
47.5±15.6% in Session 1 and 50.9±15.6% in Session 2. In both Sessions, the occurrence of the
dominant state (S4) during the relational task condition was significantly higher than the
occurrence of other non-dominant states (all p-values <0.001, two-tailed t-test). The mean
lifetime of the dominant state (S4) in the relational condition was 7±2.6 seconds in Session 1 and
7.4±2.7 seconds in Session 2, significantly longer than the mean lifetime of the other
non-dominant brain states (all p-values <0.001, two-tailed t-test), but much shorter than the 18
seconds task block (Supplementary Figure 19e). Thus, the relational condition is characterized
by a mixture of brain states, with the dominant state active for only a relatively short interval. A
similar pattern was observed for the states that were dominant in the match and fixation
conditions (Supplementary Figures 19d, 19e). These results demonstrate that the relational
processing task is characterized by latent task-induced states whose fractional occupancy is
relatively short compared to the task blocks.
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Supplementary Figures

Supplementary Figure 1: Directed acyclic graph representing the Bayesian switching dynamic
systems (BSDS) model. yst is the observed variable, zst is the latent state variable, and xskt is the
latent source factor (latent space variable) associated to the k-th latent state variable at time t for
subject s. (left) Allowed dependencies among observations, latent state variables and latent
space variables. Given latent state and latent space variables, observations are conditionally
independent. Latent states are connected to each other using a first-order Markov chain. Within
a given state, latent space variables follow a dynamical process by an autoregressive model
(R=1). (right) Generative model at time t and for subject s at a given latent state k, zskt=1
(indicated with a red box). π and A are HMM parameters indicating the initial state probability
distribution and the state transition probability distribution. µk is the overall bias in the data, Ψk is
the noise covariance matrix at state k, ukp is the p-th column of the factor loading matrix and at
the k-th state, and νkp is the prior on the variance of the ukp, known as ARD prior which controls
the dimensionality of the latent subspace. ~V k indicates the autoregressive coefficients at the k-th
state. Σk and mk are the covariance and the mean in the latent space. Black boxes indicate
replications.
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Supplementary Figure 2: Time-varying posterior probabilities of latent brain states predicts
2-back, 0-back and fixation task conditions. A linear SVM classifier was trained and performance
of the classifier was tested within and between sessions. Permutation testing was used to
evaluate statistical significance of cross-validation accuracies. We found significant prediction
accuracy in (a) within-session cross-validation and (b) between-session cross-validation. ∗,
p=0.01; ∗∗, p=0.002. Gray dash line indicates the chance level.
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Supplementary Figure 3: Posterior probability of latent brain states in (a) 2-back and (b) 0-back
task blocks. Time-varying posterior probabilities of each latent brain state were averaged across
2-back or 0-back task blocks in each participant. Each task block lasted about 28 seconds. Solid
lines indicate averaged time-varying posterior probability across participants and shaded areas
represent standard errors.
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Supplementary Figure 4: Functional network measures of DMPFC in latent brain states. (a)
DMPFC has higher node degree in ST than other latent brain states in both sessions. (b)
DMPFC has higher betweenness centrality in ST than SL and SF in both sessions. ∗, p<0.05; ∗∗∗,
p<0.001, two-tailed t-test. Error bar stands for standard deviation.
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Supplementary Figure 5: BSDS applied to the n-back WM task data from the Human
Connectome Project. Functional clusters from ICA components (Saliency network, Executive
Control network and default mode network) were used based on19. ROIs in the analysis included
bilateral anterior insula (AI), dorsolateral prefrontal cortex (DLPFC), frontal eye field (FEF),
posterior parietal cortex (PPC), posterior cingulate cortex (PCC), ventromedial prefrontal cortex
(VMPFC) and dorsomedial prefrontal cortex (DMPFC).
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Supplementary Figure 6: BSDS applied on data of ROIs shown in Figure S5 revealed latent
brain states during WM, their dynamic properties and replication across Sessions 1 and 2. (a)
Temporal evolution of the four latent brain states identified in each of the 122 participants. (b)
Corresponding task waveforms of the three task conditions in the n-back WM task – 0-back,
2-back and fixation blocks – are shown in the same layout. (c) Time-varying posterior probability
of each latent brain state across participants. (d) Occupancy rates of latent brain states for the
three states which dominate the 0-back, 2-back, and fixation task blocks, SL, SH and SF
respectively. (e) Mean lifetimes of latent brain states for the three states which dominate the
0-back, 2-back and fixation task blocks, SL, SH and SF respectively (p-values <0.001, two-tailed
t-test). (f) BSDS revealed a novel transition state ST, which occurs more frequently right after the
onset of experimental task blocks than other latent states in both sessions (p-values <0.05,
two-tailed t-test) but not to SG in Session 1. Note that SL, SH, ST, SF and SG were named by
their task dominancy in panel c-f, which correspond to S1, S2, S3, S4 and S5 in panel a. Color
code mapping in panels a, c, d, e and f: dark blue – SL, cyan – SH, yellow – ST, red – SF, purple
– SG. Color code mapping in panel b: dark blue – 0-back, cyan – 2-back, red – fixation.
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Supplementary Figure 7: Occupancy rate and mean lifetimes of latent brain states from BSDS
applied on data from ROIs shown in Supplementary Figure 5 predict WM performance:
replication across Sessions 1 and 2. (a) A multiple linear regression model was trained using
occupancy rates of latent brain states in the 2-back task to predict WM accuracy. A significant
association was observed and predicted accuracies were correlated with observed accuracy in
both sessions: (Session 1: r=0.29, p<0.002; Session 2: r=0.26, p<0.005, Pearson’s correlation).
(b) Occupancy rate of the latent brain state SH which dominates the 2-back WM task condition
was correlated with WM task accuracy in both sessions (Session 1: r=0.31, p<0.001; Session 2:
r=0.25, p<0.005, Pearson’s correlation). No such relations were found for any of the other latent
states. (c) A multiple linear regression model was trained using mean lifetimes of latent brain
states in the 2-back task to predict WM accuracy. Here again, a significant association was found
and the predicted accuracy was correlated with observed accuracy in both sessions (Session 1:
r=0.22, p<0.05; Session 2: r=0.24, p<0.01, Pearson’s correlation). (d) Mean lifetime of the
latent brain state SH which dominates the 2-back WM task condition was correlated with WM
task accuracy in Session 2 (r=0.20, p<0.05, Pearson’s correlation) but marginally in Session 2
(p=0.06, Pearson’s correlation). Shaded area represents 95% confidence interval. Color code
mapping in panels b and d: dark blue – SL, cyan – SH, yellow – ST, red – SF, purple – SG.
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Supplementary Figure 8: BSDS applied on data using 12 motion parameters regression
revealed latent brain states during WM, their dynamic properties and replication across Sessions
1 and 2. (a) Temporal evolution of the four latent brain states identified in each of the 122
participants. (b) Corresponding task waveforms of the three task conditions in the n-back WM
task – 0-back, 2-back and fixation blocks – are shown in the same layout. (c) Time-varying
posterior probability of each latent brain state across participants. (d) Occupancy rates of latent
brain states for the three states which dominate the 0-back, 2-back, and fixation task blocks, SL,
SH and SF respectively. (e) Mean lifetimes of latent brain states for the three states which
dominate the 0-back, 2-back and fixation task blocks, SL, SH and SF respectively (p-values
<0.001, Pearson’s correlation). (f) BSDS revealed a novel transition state ST, which occurs more
frequently right after the onset of experimental task blocks than other latent states in both
sessions (p-values <0.05, Pearson’s correlation) except that it is marginally significant compared
to SH in Session 1 (p=0.07, Pearson’s correlation). Note that SL, SH, ST, SF and SG were
named by their task dominancy in panel c-f, which correspond to S1, S2, S3, S4 and S5 in panel
a. Color code mapping in panels a, c, d, e and f: dark blue – SL, cyan – SH, yellow – ST, red –
SF, purple – SG. Color code mapping in panel b: dark blue – 0-back, cyan – 2-back, red –
fixation.

31



Supplementary Figure 9: Occupancy rate and mean lifetimes of latent brain states from BSDS
with 12 motion regression predict WM performance: replication across Sessions 1 and 2. (a) A
multiple linear regression model was trained using occupancy rates of latent brain states in the
2-back task to predict WM accuracy. A significant association was observed and predicted
accuracies were correlated with observed accuracy in both sessions: (Session 1: r=0.29,
p<0.002; Session 2: r=0.31, p<0.001, Pearson’s correlation). (b) Occupancy rate of the latent
brain state SH which dominates the 2-back WM task condition was correlated with WM task
accuracy in both sessions (Session 1: r=0.33, p<0.001; Session 2: r=0.27, p<0.005, Pearson’s
correlation). No such relations were found for any of the other latent states. (c) A multiple linear
regression model was trained using mean lifetimes of latent brain states in the 2-back task to
predict WM accuracy. Here again, a significant association was found and the predicted accuracy
was correlated with observed accuracy in both sessions (Session 1: r=0.25, p<0.01; Session 2:
r=0.24, p<0.01, Pearson’s correlation). (d) Mean lifetime of the latent brain state SH which
dominates the 2-back WM task condition was correlated with WM task accuracy in Session 1
(Session 1: r=0.23, p=0.01, Pearson’s correlation) but not in Session 2. Shaded area represents
95% confidence interval. Color code mapping in b and d: dark blue – SL, cyan – SH, yellow – ST,
red – SF, purple – SG.
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Supplementary Figure 10: HDP-HMM.A on opto-fMRI dataset. (top) ROI timeseries from the
first subject, (middle) stimulation design which is the same for all three subjects, (bottom)
estimated temporal evolution of states for each subject. HDP-HMM.A converged to three states.
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Supplementary Figure 11: HDP-HMM.B on opto-fMRI dataset. (top) timeseries, (middle)
stimulation design which is the same for all three subjects, (bottom) estimated temporal evolution
of states for each subject. HDP-HMM.B converged to three states.
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Supplementary Figure 12: BSFA on opto-fMRI dataset. (top) ROI timeseries from the first
subject, (middle) stimulation design which is the same for all three subjects, (bottom) estimated
temporal evolution of states for each subject. BSFA was initialized with 20 states and it converged
to 14 states.
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Supplementary Figure 13: HDP-HMM.A on WM dataset. (top) ROI timeseries from the first
subject, (middle) stimulation design for all subjects, (bottom) estimated temporal evolution of
states for each subject. HDP-HMM.A converged to 10 states in Session 1 and to 9 states in
Session 2. Note that there is no one-to-one correspondence between color codes across
sessions and task designs.
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Supplementary Figure 14: HDP-HMM.B on WM dataset. (top) ROI timeseries from the first
subject, (middle) stimulation design for all subjects, (bottom) estimated temporal evolution of
states for each subject. HDP-HMM.B converged to 10 states in Session 1 and to 10 states in
Session 2. Note that there is no one-to-one correspondence between color codes across
sessions and task designs.
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Supplementary Figure 15: BSFA on WM dataset. (top) ROI timeseries from the first subject,
(middle) stimulation design for all subjects, (bottom) estimated temporal evolution of states for
each subject. BSFA converged to 15 states in Session 1 and to 16 states in Session 2. Note that
there is no one-to-one correspondence between color codes across sessions and task designs.
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Supplementary Figure 16: The optimal number of temporal clusters was determined using the
maximal silhouette obtained across multiple iterations. In both data sessions (n-back task), the
maximal silhouette value was 2. Silhouette is a measure for validating clustering, which evaluates
how similar a data point is to its own cluster compared to other clusters. Each color represents a
k-mean clustering performance with a random initialization (the number of clusters ranges from 2
to 10).

Supplementary Figure 17: Two temporal states were identified in each data session using the
temporal clustering approach (HCP n-back task).
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Supplementary Figure 18: BSDS applied to the Relational Processing task data from the
Human Connectome Project. (a) Brain regions activated (warm colors) and deactivated (cool
colors) during the relational processing, compared to the control matching, condition. (b) Regions
of interest (ROIs) were determined using activation and deactivation peaks from (a). ROIs
activated during relational processing and control matching tasks: 1, left lateral occipital cortex
(lLOC); 2, right lateral occipital cortex (lLOC); 3, left supramarginal gyrus (lSMG); 4, right
supramarginal gyrus (rSMG); 5, left angular gyrus (lAG); 6, right angular gyrus (rAG); 7, left
middle frontal gyrus (lMFG); 8 right middle frontal gyrus (rMFG); 9, left frontal pole (lFP); 10, right
frontal pole (rFP); 11, medial frontal pole (mFP); 12 right anterior insula (rAI); and 13,
pre-supplementary motor area (preSMA).
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Supplementary Figure 19: Latent brain states during a Relational Processing task, their
dynamic properties and replication across Sessions 1 and 2. (a) Temporal evolution of the latent
brain states identified in each of the 90 participants. (b) Corresponding task waveforms of the
three task conditions in the relational processing task – relational, match and fixation blocks – are
shown in the same layout. (c) Time-varying posterior probability of each latent brain state across
participants. (d) Occupancy rates of latent brain states for the three states which dominate the
relational, match, and fixation task blocks, S4, S3 and S1 respectively. (e) Mean lifetimes of latent
brain states for the three states which dominate the relational, match and fixation task blocks, S4,
S3 and S1 respectively (p-values <0.001, two-tailed t-test). (f) Probability of transition time given
a latent brain state. Color code mapping in panels a, c, d, e and f: dark blue – S1, cyan – S2,
yellow – S3, red – S4, purple – S5. Color code mapping in panel b: dark blue – control match,
red – relational processing, cyan – fixation.
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Supplementary Tables

Supplementary Table 1: Table of Notations.

Observed Variables
S , number of subjects, s=1,...,S

T , number of measurements, t=1,...,T

D , number of regions of interest (ROIs), d=1,...,D

ystd , scalar observed variable at the d-th ROI in time t for subject s
ys
t =(yst1,...,y

s
1D)
> , D-dimensional observation vector at time t, subject s

Y s={ys
1,...,y

s
T } , sequence of T measurements

Y ={Y s |s=1,...,S} , sequence of T measurements from S subjects
Latent State Variables

K , number of latent state variables, k=1,...,K

zskt , the k-th latent state variable in time t for subject s
zst =(zs1t,...,z

s
Kt)
> , 1–of–K discrete vector of latent state variables in time t for sub-

ject s
Zs={zs1,...,zsT } , sequence of T latent state variables

Z={Zs |s=1,...,S} , sequence of T latent state variables from S subjects
Latent Space Variables

P , number of latent space variables, p=1,...,P

xspkt , the p-th latent space variable in time t for subject s at the k-th
latent state

xs
kt=(xs1kt,...,x

s
Pkt)

> , P -dimensional vector of latent space variables in time t for sub-
ject s

Xs
k={xs

k1,...,x
s
kT } , sequence of T latent space variables

X={Xs |s=1,...,S} , sequence of T latent state variables from S subjects
HMM Variables

θHMM={π,A} , set of HMM parameters
π , initial state probability distribution
A , state transition probability distribution
Os

t , emission probability distribution in time t for subject s
Factor Analysis Variables

θFA={µ,U ,Ψ} , set of factor analysis parameters
µ , overall bias vector
U , linear transformation matrix
Ψ , noise covariance matrix

Autoregressive Process Variables
θAR={~V ,Σ,m} , set of autoregressive process parameters

~V , autoregressive coefficients vector
Σ , noise covariance matrix
m , noise mean vector
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Supplementary Table 2: Algorithmic summary of BSDS using noninformative initialization.

Algorithm 1 Bayesian Switching Dynamical Systems
step 0
Set the number of states, K (the initial value of K is usually set to a large value, and during learning
those states with small contributions will get weights close to zero);
Set the intrinsic dimensionality of the latent subspace, P , (in general P is set to be smaller than data
dimension, P<D, however, in a fully noninformative initialization, one can simply set p=D−1).
step 1: initialization

• set the prior distribution parameters using § 1.2;

• initialize 〈zst 〉q(zs
t )

(e.g., using K-means algorithm, with Euclidean distance as the similarity mea-
sure, initialized using K clusters).

repeat
step 2: optimization of the model parameters

• optimize q(θFA
k ),∀k=1,...,K using § 1.4.2;

• optimize q(θAR
k ),∀k=1,...,K using § 1.4.3.

• optimize q(θHMM
k ),∀k=1,...,K using § 1.4.1.

step 3: optimization sufficient statistics of the latent variables

• optimize sufficient statistics of the latent space variables using § 1.6.1;

• optimize sufficient statistics of the latent state variables using § 1.6.2.

step 4: optimization of the posterior hyperparameters

• update posterior hyperparameters using § 1.5.

step 5: check for convergence

• evaluate the convergence by monitoring the lower bound value at each iteration given by Eq. (8)
and terminate the optimization if the change in the lower bound values in the current iteration
and the previous iteration is smaller than a small threshold (e.g., 10−3) or we have reached the
maximum number of allowed iterations.

until convergence
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Supplementary Table 3: Subject-level learning using BSDS.

Algorithm 2 Subject-level analysis using informative priors computed from group-level analysis
step 0
Set the number of states, K, and the intrinsic dimensionality of the latent subspace, P , from the given
group-model computed using Algorithm 1.
step 1: initialization

• set the prior distribution parameters using § 1.2;

• initialize 〈zst 〉q(zs
t )

using 〈zskt〉q(zs
kt)
,∀k, from the group-level analysis.

repeat
step 2: optimization of the model parameters

• optimize {q(θFA
k )}s,∀k=1,...,K using § 1.4.2;

• optimize {q(θAR
k )}s,∀k=1,...,K using § 1.4.3.

• optimize {q(θHMM
k )}s,∀k=1,...,K using § 1.4.1.

step 3: optimization sufficient statistics of the latent variables

• optimize sufficient statistics of the latent space variables using § 1.6.1;

step 4: optimization of the posterior hyperparameters

• update posterior hyperparameters using § 1.5.

step 5: check for convergence

• evaluate the convergence by monitoring the lower bound value at each iteration given by Eq. (8)
and terminate the optimization if the change in the lower bound values in the current iteration
and the previous iteration is smaller than a small threshold (e.g., 10−3) or we have reached the
maximum number of allowed iterations.

until convergence
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Supplementary Table 4: Correlation of posterior probabilities of latent brain states from training
and test sessions.
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Supplementary Table 4. Correlation of posterior probabilities of latent brain states from training 
and test sessions. 

    Session 2 test state 

  
3 7 8 9 

Session 1  1 0.96 -0.17 -0.36 -0.49 

training state 2 -0.45 -0.21 -0.44 0.98 

 3 0.25 0.83 -0.11 -0.17 

 8 0.38 0.16 0.96 -0.43 
            
    Session 1 test state 

  
1 2 3 8 

Session 2  3 0.96 -0.44 -0.24 -0.37 

training state 7 -0.17 -0.23 0.84 -0.15 

 8 -0.36 -0.45 -0.14 0.96 
		 9 -0.48 0.98 -0.17 -0.44 

      Matched 
latent state Session 1 Session 2 

   1 1 3 
   2 2 9 
   3 3 7 
   4 8 8 
    

  

Supplementary Table 5: Occupancy rate (%) of latent brain states.
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Supplementary Table 5. Occupancy rate (%) of latent brain states. 

Latent 
brain state 

Session 1 Session 2 

mean(std) mean(std) 
1 37(6) 37(6) 
2 30(6) 30(5) 
3 10(5) 10(4) 
4 23(4) 23(4) 
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Supplementary Table 6: Counts of state switching paths between states SH and SF in each
condition across pooled participants and blocks.
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Supplementary Table 6. Counts of state switching paths between states SH and SF in each 
condition across pooled participants and blocks. 

 Path Session 1 Session 2 

  0-back 2-back fixation   0-back 2-back fixation 
SH to SF             
SH-SL-SF 231 64 56 233 82 87 
SH-ST-SF 28 11 37 20 6 36 
SH-SL-ST-SF 15 5 4 7 2 1 
SH-ST-SL-SF 15 2 3 12 2 2 
SH-SL-ST-SL-SF 7 1     3   
SH-ST-SL-ST-SF 1   1 1   1 
SH-SL-ST-SL-ST-SF 2     1     
SH-ST-SL-ST-SL-SF 1           
              
SF to SH             
SF-SL-SH 94 171 35 106 110 42 
SF-ST-SH 9 24 7 13 29 11 
SF-SL-ST-SH 2 3 2 2 2 2 
SF-ST-SL-SH 3 7 1 8 6   
SF-SL-ST-SL-SH   3 1 1 1   
SF-ST-SL-ST-SH         1   
 

 

 

 

  Supplementary Table 7: Cross-validation accuracy and significance for prediction of brain states
using logistic regression classifier trained on connectivity features common between Sessions 1
and 2.
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Supplementary Table 7. Cross-validation accuracy and significance for prediction of brain 
states using logistic regression classifier trained on connectivity features common between 
Sessions 1 and 2. 
 
 States 
classified Session 1 Session 2 

  accuracy p-value accuracy p-value 
SL vs SH 74.20% 0.002 77.90% 0.002 
SL vs ST 96.70% 0.002 97.50% 0.002 
SL vs SF 91.40% 0.002 90.60% 0.002 
SH vs ST 95.90% 0.002 93.90% 0.002 
SH vs SF 84.00% 0.002 80.00% 0.002 
ST vs SF 88.90% 0.002 91.00% 0.002 
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Supplementary Table 8: Correlation between occupancy rates of latent brain states in the
2-back task and WM accuracy.
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Supplementary Table 8. Correlation between occupancy rates of latent brain states in the 2-
back task and WM accuracy. 
 

Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.32 0.001 -0.16 0.07 
SH 0.39 0.001 0.31 0.001 
ST -0.18 0.04 -0.11 0.22 
SF -0.19 0.03 -0.37 0.001 

 
  

Supplementary Table 9: Correlation between mean lifetimes of latent brain states in the 2-back
task and WM accuracy.
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Supplementary Table 9. Correlation between mean lifetimes of latent brain states in the 2-back 
task and WM accuracy. 
 

 Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.2 0.03 -0.15 0.11 
SH 0.37 0.001 0.27 0.003 
ST -0.15 0.1 -0.07 0.47 
SF -0.15 0.11 -0.37 0.001 

 

  
Supplementary Table 10: Multiple linear regression revealed that the posterior probability of the
state SH was the most robust predictor of WM performance in the 2-back task.
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Supplementary Table 10. Multiple linear regression revealed that the posterior probability of 
the state SH was the most robust predictor of WM performance in the 2-back task. 

  Beta t value p value 
Session 1       

posterior probability of 
state SH in 2-back 

0.24 4.31 < 0.001 

Age 0.002 0.95 0.35 

Gender 0.03 1.8 0.07 
Ethnicity -0.02 -1.06 0.29 

        
Session 2     

 posterior probability of 
state SH in 2-back 

0.27 4.05 < 0.001 

Age -0.001 -0.7 0.48 
Gender 0.04 2.3 0.02 

Ethnicity -0.03 -1.25 0.2 
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Supplementary Table 11: Spearman correlation between occupancy rates of latent brain states
in the 2-back task and WM accuracy.
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Supplementary Table 11. Spearman correlation between occupancy rates of latent brain states 
in the 2-back task and WM accuracy. 
 

Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.27 0.003 -0.13 0.13 
SH 0.32 0.001 0.29 0.001 
ST -0.19 0.04 -0.12 0.19 
SF -0.15 0.09 -0.42 0.001 

 
  

Supplementary Table 12: Spearman correlation between mean lifetimes of latent brain states in
the 2-back task and WM accuracy.
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Supplementary Table 12. Spearman correlation between mean lifetimes of latent brain states 
in the 2-back task and WM accuracy. 
 

Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.2 0.03 -0.09 0.31 
SH 0.35 0.001 0.26 0.004 
ST -0.2 0.03 -0.06 0.51 
SF -0.11 0.22 -0.42 0.001 

 
  

Supplementary Table 13: Correlation between occupancy rates of latent brain states in the
2-back task and WM drift rates.
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Supplementary Table 13. Correlation between occupancy rates of latent brain states in the 2-
back task and WM drift rates. 
 

 Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.24 0.009 -0.15 0.1 
SH 0.35 0.001 0.28 0.002 
ST -0.22 0.01 -0.1 0.29 
SF -0.23 0.01 -0.34 0.001 

 
  

Supplementary Table 14: Correlation between mean lifetimes of latent brain states in the 2-back
task and WM drift rates.
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Supplementary Table 14. Correlation between mean lifetimes of latent brain states in the 2-
back task and WM drift rates. 

 Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.12 0.2 -0.14 0.12 
SH 0.32 0.001 0.26 0.003 
ST -0.2 0.03 -0.04 0.63 
SF -0.18 0.05 -0.34 0.001 
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Supplementary Table 15: Correlation of posterior probabilities of latent brain states from training
and test sessions (Supplementary Results: BSDS WM analysis using functional clusters of ICA
components as ROIs).
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Supplementary Table 15. Correlation of posterior probabilities of latent brain states from 
training and test sessions (Supplementary Results: BSDS WManalysis using functional 
clusters of ICA components as ROIs). 

 
    Session 2 test state 

    5 9 11 12 14 

Session 1 
training state 

5 0.02 -0.27 -0.26 -0.42 0.82 
9 -0.39 0.87 -0.11 0.08 -0.29 

10 -0.20 0.01 0.58 -0.16 -0.10 

12 0.19 -0.23 0.37 -0.15 -0.15 

14 0.24 -0.28 -0.27 0.56 -0.39 
    Session 1 test state 

Session 2 
training state 

  5 9 10 12 14 
5 0.06 -0.39 -0.20 0.15 0.27 
9 -0.29 0.87 0.01 -0.24 -0.28 

11 -0.28 -0.12 0.57 0.39 -0.27 
12 -0.41 0.07 -0.16 -0.11 0.56 

14 0.82 -0.29 -0.11 -0.17 -0.37 
 

Matched latent 
state 

Session 
1 Session 2 

1 14 12 
2 5 14 
3 10 11 
4 9 9 
5 12 5 
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Supplementary Table 16: Correlation of posterior probabilities of latent brain states from training
and test sessions (Supplementary Results: BSDS analysis with data regressed out 12 head
motion parameters).
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Supplementary Table 16. Correlation of posterior probabilities of latent brain states from 
training and test sessions (Supplementary Results: BSDS analysis with data regressed out 12 
head motion parameters). 
 

    Session 2 test state 

    1 4 7 11 13 

Session 1 
training state 

1 -0.16 -0.18 -0.26 -0.42 0.97 
2 -0.45 -0.11 -0.05 0.94 -0.39 
3 -0.33 -0.09 0.97 -0.20 -0.22 

11 -0.19 0.93 -0.08 -0.18 -0.13 

13 0.94 -0.19 -0.37 -0.27 -0.31 
 

    Session 1 test state 

Session 2 
training state 

  1 2 3 11 13 
1 -0.16 -0.44 -0.33 -0.20 0.94 
4 -0.19 -0.11 -0.09 0.93 -0.19 

7 -0.26 -0.06 0.97 -0.09 -0.37 

11 -0.42 0.94 -0.19 -0.17 -0.25 

13 0.97 -0.38 -0.22 -0.14 -0.31 
 

Matched latent 
state Session 1 Session 2 

1 2 11 
2 1 13 
3 11 4 
4 3 7 

5 13 1 
 

 

  
Supplementary Table 17: Correlation between occupancy rates of latent brain states in the
2-back task and WM accuracy, using the temporal clustering approach (Supplementary
Results: temporal clustering analysis).
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Supplementary Table 17. Correlation between occupancy rates of latent brain states in the 2-
back task and WM accuracy, using the temporal clustering approach (Supplementary Results: 
temporal clustering analysis). 

Latent 
state  Session 1 Session 2 

  r p r p 
S1 0.02 0.87 0.04 0.65 
S2 -0.02 0.87 -0.04 0.65 
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Supplementary Table 18: Correlation of posterior probabilities of latent brain states from training
and test sessions (Supplementary Results: BSDS analysis on data from the HCP Relational
Processing task).
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Supplementary Table 18. Correlation of posterior probabilities of latent brain states from 
training and test sessions (Supplementary Results: BSDS analysis on data from the HCP 
Relational Processing task). 
 
    Session 2 test state 

    3 8 10 14 

Session 1 
training state 

2 -0.24 0.65 -0.13 -0.27 
6 0.06 0.46 -0.1 -0.4 
8 -0.27 -0.24 0.81 -0.23 

12 0.74 -0.39 -0.19 -0.17 

15 -0.37 -0.35 -0.28 0.93 
 
 
 
    Session 1 test state 

    2 6 8 12 15 

Session 2 
training state 

3 -0.26 0.07 -0.26 0.75 -0.38 
8 0.67 0.42 -0.22 -0.4 -0.36 

10 -0.13 -0.09 0.81 -0.17 -0.29 
14 -0.28 -0.39 -0.22 -0.19 0.94 

 
Matched latent state Session 1 Session 2 

1 2 8 
2 8 10 
3 12 3 
4 15 14 

  6   
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