
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

Taghia present interesting work evaluating “hidden” states in fMRI data. The paper seems technically 

rigorous and attempts to shed light on an issue that is coming to the forefront of systems 

neuroscience – network level time-resolved cognition. The findings match well with work I have been 

involved in or reviewed (most is not yet published), so I have confidence in their findings though it 

does raise the question of whether most approaches will in fact converge on the same answer. I was 

particularly impressed with the finding that the 2-back was characterized by a mixture, but the 

dominant state was still active for only a short time - which truly supports a non-static view of 

network activity.  

 

My first overall comment is that this should be two separate papers. A detailed description and 

validation of the approach (likely going to a more technical journal) and then its application to data to 

answer a neuroscience relevant question (for Nature Communications or the like). As it stands the 

paper and its extensive appendix are far too technical and lengthy and does not go into enough depth 

pressure testing the method or reaching the full capability of the method in explaining ongoing 

cognition. This would be my recommendation and would allow adding several suggestions below.  

 

Methods portion  

-This will need to be reviewed by someone with more experience with Bayesian switching models as I 

cannot say whether there are any technical deviations on current standard practice.   

 

-How does BSDS deal with noisy data, motion, etc.?  

 

-How do the state results compare to other common time varying approaches?  

 

-How do the timeseries/state weightings/probabilities compare to HMMs or other approaches that 

allow time dependent weighting (e.g., Vince Calhoun has a PCA approach I believe)  

 

Cognition portion  

-This needs to be carried out on the other HCP data. All the same figures don’t need to be shown, but 

high level final summary figures showing that the finding holds across different task types or doesn’t – 

both are interesting and informative. Further, could all task data be combined before running to get a 

comprehensive state number across tasks?  

 

-A natural question, especially given the cited field in the intro, is what this will detect in rest data. 

BSDS does not seem to require a fixed task structure (other than for interpretation) and seeing the 

number of states and visualizing the ones with highest probability would be greatly expand the reach 

of the paper.  

 

-Is there a relationship to any demographics and state expression during the task?  

 

-Ideally it would have been best to actually have some quantification of “hidden states” such as 

measures of arousal. Perhaps in a future experiment.  

 

Other comments  

Figure 1 needs to be made clearer for a less technically  oriented individual. I have some experience in 

the area and it took me too long to grasp figure 1 and 2 to understand what was going on.   

 



Figure 4a-c: consider changing the color bar. Either to a log scale or have 2 different bars for the 

diagonal and off diagonal.  

 

-R.Matthew Hutchison  

 

 

Reviewer #2 (Remarks to the Author):  

 

This paper proposes using a Bayesian switching dynamical systems algorithm to identify latent brain 

states and characterize their dynamic spatiotemporal properties. The authors apply the proposed 

method to data from the working memory task of the Human Connectome Projection. In their analysis 

they identify latent transient brain states and dynamic functional circuits and show that failure to 

engage these states in a timely manner is associated with poorer task performance. This is very 

interesting work, and the proposed algorithm looks as if it could potentially be of great use to the 

field. Below follow some specific comments.  

 

1. The authors should be commended for their use of test-retest data to assess the replicablity of the 

proposed approach. However, also making the code easily available would be beneficial.   

 

2. On page 3, the authors write: “Previous approaches for characterizing dynamic interactions in the 

human brain have not examined latent processes, ….” I don’t think this is technically true as, for 

example, Vidaurre et al. (2016) used Hidden Markov Models to analyze MEG data. In addition, there 

are also methods that allow for overlapping states (for example, Leonardi e t al. (2014) and Miller et 

al. (2016)) that seem to imply the presence of latent states. Please comment.  

 

3. On the same page, the authors write: “the application of extant approaches to cognitive task -based 

fMRI is particularly problematic because they assume that brain states are completely aligned with 

task onset and offset”. It isn’t immediately clear to this reviewer why the sliding window and 

clustering techniques the authors is referring to assume that brain states are aligned with task onset 

and offset. Please clarify.  

 

4. There are some inconsistencies in the notation used in Figure 1 compared to the rest of the paper. 

For example, y(t,s) is used instead of y_t^s.  

 

5. It appears from Figure 3a that state S3 occurs in fewer participants than the o ther states. When it 

does appear it seems to appear in place of S4. Could it be that they are actually the same state, but 

split due to between–subject variability?  

 

6. On page 12 the authors discuss reproducibility. It is probably worth mention that seve ral 

reproducibility studies dealing with dynamic connectivity have recently appeared (see, for example, 

Choe et al. 2017).  

 

7. In Figure 6 b & d it is difficult to compare the different states as they do not share the same 

support in the x-axis. Please comment. In addition, could you please clarify how the error bars are 

computed?  

 

8. The proposed algorithm shares similarities with methods previously used in other fields. For 

example, the work by Fox et al. cited in the paper. It would be useful to unders tand what parts of the 

model are due to the authors, as they claim in the abstract that their method is novel. Perhaps, they 

mean novel to neuroimaging. In any case this should be clarified.  



 

 

Reviewer #3 (Remarks to the Author):  

 

The manuscript presents an interesting approach for studying dynamical states in the brain 

(particularly neural transitions). The approach is first presented, then validated with simulation and 

optogenetic-FMRI data, before being evaluated with a relatively large task-fMRI dataset focused on 

working memory performance. The manuscript is generally well written (if a little hard to follow in 

places) and the methods seem sound. However, I feel that at present it is not clear whether this is a 

manuscript presenting an important new method or revealing hitherto unknown latent dynamic brain 

states. It is also not entirely clear how the optogenetic FMRI data relates to the human working 

memory FMRI data; how the core methodology relates to (and supercedes) other dynamic functional 

connectivity approaches, and whether the latent brain states identified are task-specific or constitute 

general neural systems. Therefore, I suggest the authors consider revising the manuscript as follows:   

 

1) The presentation of the BSDS algorithm could be much more general way to appeal to the broad 

audience of Nature Communications. This could involve a simple walk through of how it operates, 

what is meant by latent state etc and, importantly, a detailed explanation of why and how it is 

superior to other approaches.  

 

2) Relating to 1), the approach (especially with the simulations and optogenetic FMRI) should be 

compared to other approaches that have been used to study dynamic states in FMRI, including other 

HMM, temporal ICA or simpler functional connectivity approaches. This would allow the reader to 

properly evaluate the approach.  

 

3) The results from the simulations/optogenetic FMRI could feature more heavily in the results section. 

Similarly, there could be greater explanation of why those results validate the approach. Just finding 

results does not show that they are the optimal description of the brain.  

 

4) The analyses could be repeated with other tasks (e.g., from the HCP). This should be relatively 

easy and should make the results more convincing and general.  

 

5) More detail could be provided about the stability of results of the human FMRI from different 

starting assumptions; also were different parcellations/networks examined and if so how do they 

influence the results; how dependent are the results on preprocessing strategies such as temporal 

filtering and correction for noise.  
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Reviewer 1  

1.1 “Taghia present interesting work evaluating “hidden” states in fMRI data. The paper seems 
technically rigorous and attempts to shed light on an issue that is coming to the forefront of 
systems neuroscience – network level time-resolved cognition. The findings match well with 
work I have been involved in or reviewed (most is not yet published), so I have confidence in 
their findings though it does raise the question of whether most approaches will in fact converge 
on the same answer. I was particularly impressed with the finding that the 2-back was 
characterized by a mixture, but the dominant state was still active for only a short time - which 
truly supports a non-static view of network activity. 

My first overall comment is that this should be two separate papers. A detailed description and 
validation of the approach (likely going to a more technical journal) and then its application to 
data to answer a neuroscience relevant question (for Nature Communications or the like). As it 
stands the paper and its extensive appendix are far too technical and lengthy and does not go 
into enough depth pressure testing the method or reaching the full capability of the method in 
explaining ongoing cognition. This would be my recommendation and would allow adding 
several suggestions below.” 

Response: We are glad that the reviewer found our study to be technically rigorous and one that 
addresses an important issue at the forefront of human systems neuroscience. We appreciate 
the reviewer’s suggestion about splitting the manuscript into two papers, and have ourselves 
grappled with this issue. However, per the editor’s suggestion, we have kept the manuscript as 
one. To address the reviewer’s concern, and to keep our study focused on latent processes 
related to working memory, we have relegated most of the methodological and technical details 
of and additional analyses in the SI, but focused on the scientific questions surrounding latent 
brain states in the main text. The Supplementary Materials provide details of algorithm, testing, 
validation and experimental procedures.  

1.2 “How does BSDS deal with noisy data, motion, etc.?” 

Response: The generative model in BSDS assumes that noise component in the observed data 
as well as the latent space are Gaussian distributed with a diagonal covariance matrix. Of 
course, in practice, the exact form of noise is unknown. However, our simulations suggest that 
on simulated data, where data are generated from the generative model, BSDS can handle the 
additive noise well (roughly up to about -20dB). We conducted additional analysis (see below) to 
address this question (Figure R1). As with most fMRI studies, motion was regressed from the 
ROI time series in our analysis. If we see effect of movement on fMRI data as an overall bias 
which affects all regions in the brain equally, it can be safely captured in the BSDS model via 
the overall bias parameter (SI, Section 1.1). However, in practice, this assumption may not be 
true. Hence, our recommendation is to regress out the movement as a part of the preprocessing 
analysis using standard techniques, as was done in our analysis. We emphasize that the 
movement that affects all ROIs would not influence estimates of model parameters in the BSDS 
model. To address the reviewer question, we conducted additional analyses (see below). 

Noise: We examined the effect of noise on the performance of BSDS in relation to model 
complexity and estimation of covariance. We created synthetic data using the BSDS generative 
model with the following parameters: 400 data samples with data dimensionality of 10, three 
latent states embedded in an intrinsic 5-dimensional space, each latent state associated with a 
unique mean and covariance specified by a Gaussian distribution, and a random temporal 
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evolution of states. The noise variance in the data generation was varied with a factor of x0.1, 
x1, x10, x100, x1000 which corresponds to signal-to-noise ratios: 10 dB to -30 dB with a step 
size of 10dB. 

BSDS was initialized in a noninformative fashion. The initial number of states was set to 10. The 
intrinsic dimensionality within each state was set to one less than the actual data dimension 
(i.e., 9). To smooth out the effect of random initializations, the analysis was repeated 10 times. 

Figure R1 shows the estimated number of states (top panel) and error in estimation of the 
covariance matrix averaged across all states and runs (bottom panel).  
Note that in most cases, BSDS is able to correctly identify the exact number of states and the 
estimated covariance matrix agrees well with the true covariance matrix. When the noise 
variance however dramatically increases, BSDS underestimates the number of states resulting 
in poor estimation of the covariance matrices. 

Movement: We conducted several analyses to address the reviewer’s question. We reran the 
entire analysis using 12 head motion parameters regression instead of 6 parameters and 
compared the two results. With 12 head motion parameters regression, we replicated our main 
findings including (1) there are mixture of latent brain states in each single task block, (2) there 
are dominant latent brain state in each task condition, (3) BSDS identifies the transition latent 
brain state that mostly occurs during transition phase, and (4) occupancy rates, mean lifetimes 
and posterior probability of latent brain states can predict task performance. In summary, we 
replicated our findings using different motion regression procedures. Details of analysis and 
results are described in our response to comment #3.6 as well as in the revised Supplementary 
Material.

Figure R1. Effect of measurement noise on the performance of BSDS. (top panel) The 
estimated number of states. (bottom panel) Pearson correlation between estimated covariance 
matrices and true covariance matrices averaged across all states and runs.  
Synthetic data were generated using the BSDS generative model. The measurement noise 
variance was varied with a factor of x0.1, x1, x10, x100, x1000 (~SNRs: 10dB to -30dB). The 
experiment for each condition was repeated for 10 independent runs with random seed. At each 
run, data is generated on fly. BSDS was initialized fully noninformative with 10 states.  

1.3 “How do the state results compare to other common time varying approaches?” 
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Response:  
We examined the performance of a broad class of HMM based methods and applied them to 
opto-fMRI and n-back working memory fMRI task data. HMM models can be categorized based 
on their inference into (i) maximum-likelihood and (ii) Bayesian models. In its standard form, the 
ML-based HMM model has limited application in practice, as the number of states has to be 
known in advance. The Bayesian models may be broadly categorized into parametric Bayesian 
models and nonparametric Bayesian models. Bayesian inference in either forms provides a 
structured way of handling model complexity, and with sufficient amount of data, they can 
automatically prune away states with little influence. Another family of methods for modeling 
temporal data uses autoregressive (AR) process within the HMM framework. In such models, 
each state of the HMM is assumed to be generated from an AR process. In a more general 
form, switching linear dynamical models are another important family of models for modeling 
timeseries. It should be noted that while prior studies have used HMMs for estimation of brain 
states on the observed data, unlike the present study, they do not explicitly model latent 
processes underlying observed data. When compared to standard HMM-based models 1, 2, 3, 4,
crucially, BSDS applies HMM on the latent space variables, and it is their combination that 
creates a switching dynamical system which then generates the observed data. This is in direct 
contrast to previous approaches that have applied HMMs directly to observed MEG 4  and 
resting-state fMRI 2, 3 . In comparison, each latent state of BSDS is richer and has greater 
flexibility due to the autoregressive process on the latent space variables. Conceptually, the 
system only switches to a new state if the current state is not capable of explaining data. As the 
result, BSDS shows greater robustness to the abrupt and local changes in data which may not 
be a part of group pattern of interest. Hence, BSDS often requires fewer states to model the 
same data when compared to standard HMM based methods. This feature, comparatively, 
helps in robust identification of states which represent the group effects and ultimately better 
interpretability of the results.  

In the following, we consider multiple other HMM-based methods and the results obtained by 
applying them to opt-fMRI and n-back working memory data are described below.  

Briefly, our analysis of these methods revealed they are unable to properly handle the model 
complexity by either overestimating uncertainties resulting in over-pruning of the latent states 
and converging to a single state, or underestimating uncertainties resulting in multiple states 
(>10) with little resemblance to the task. The latter case arises when models have limited 
flexibility and are strongly constrained by the Markovian assumptions as the only mechanism for 
capturing complex dynamical processes hidden in the data. Such models cannot deal with 
abrupt changes in data which may not be relevant to group patterns of interest. The former case 
arises in models where each state has extensive degree of flexibility with many parameters to 
be learnt from data. Although theoretically appealing, in practice, it is difficult to robustly learn all 
these parameters from noisy data and hence the model behaves too conservatively and can 
reliably estimate only one state. 

In comparison, BSDS takes advantage of the strengths of each while minimizing the 
weaknesses. Similar to the nonparametric Bayesian switching linear dynamical systems 5, it is 
rich in flexibility. It benefits from both Markovian assumptions and the autoregressive processes 
in its latent space. However, its flexibility is constrained by using a parametric model with fewer 
parameters to estimate from the data. On the other hand, it is flexible enough to not react too 
quickly to every local change in data, allowing it to estimate an optimal and parsimonious set of 
latent states across study participants. 
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As requested by the reviewer, we have considered several HMM based methods and applied 
them on the opto-fMRI and WM datasets. Motivated by our earlier discussion, we considered 
the following HMM-based methods: 

Category 1: Hierarchical Dirichlet process hidden Markov model (HDP-HMM); 
Category 2: Hierarchical Dirichlet process autoregressive hidden Markov model (HDP-AR-
HMM); 
Category 3: Hierarchical Dirichlet process switching linear dynamical systems (HDP-SLDS); 
Category 4: Bayesian switching factor analysis (BSFA). 

The above methods cover a broad family of approaches. We then considered various model 
alternatives in each category. Results and experiment procedure are described in detail below 
and are included in the Supplementary Results (Section 4). 

In summary, on opto-fMRI and WM datasets, both HDP-AR-HMM and HDP-SLDS converged to 
a single state. BSFA on opto-fMRI resulted in multiple states (14 states) with no clear patterns 
(Figure R4). When BSFA was applied to WM dataset, it converged to 15 and 16 states in 
Session 1 and 2, respectively (Figure R7). HDP-HMM performed well on opto-fMRI (Figures
R2-3) but resulted in multiple states, more than 10 states, with noisy patterns when applied to 
WM dataset (Figure R5-6).

Performance of HMM-based methods on opto-fMRI and WM datasets 
The following summarizes methods and results of HMM-based methods analyses on opt-fMRI 
and WM datasets.  

Methods 
We considered the following methods 1, 3, 5

• Category 1: Hierarchical Dirichlet process hidden Markov model (HDP-HMM); 
• Category 2: Hierarchical Dirichlet process autoregressive hidden Markov model (HDP-AR-

HMM); 
• Category 3: Hierarchical Dirichlet process switching linear dynamical systems (HDP-SLDS); 
• Category 4: Bayesian switching factor analysis (BSFA). 

Categories 1-3 are taken from Emily Fox toolbox, HDPHMM_HDPSLDS_toolbox 
(https://homes.cs.washington.edu/~ebfox/software/). This toolbox implements various HDP-
based models 1, 5 . 
Category 4, BSFA 3 , can be seen as a special case of BSDS without autoregressive process. 
BSFA toolbox (https://github.com/StanfordCosyne/BSFA).
HDP-HMM/HDP-AR-HMM/HDP-SLDS supports time series analysis with various model 
families. We considered the following model families in our analysis (see 
HDPHMM_HDPSLDS_toolbox for implementation details and refer to 1, 5  for theoretical 
discussion): 

HDP-HMM 
 (case1) HDP-HMM.A: Gaussian emissions with non-conjugate Normal-inverse Wishart 
observation model type shown as N-IW prior.
 (case2) HDP-HMM.B: Gaussian emissions with conjugate Normal-inverse Wishart 
observation model type, shown as NIW prior. 

HDP-AR-HMM 
 (case3) HDP-AR-HMM.A: Autoregressive (AR) order fixed, conjugate matrix-Normal 



6

inverse-Wishart observation model type shown as MNIW prior.
(case4) HDP-AR-HMM.B: Latent AR order with maximal order r with Normal prior 

together with conjugate matrix-Normal inverse-Wishart Normal observation model type shown 
as MNIW-N prior.

(case5) HDP-AR-HMM.C: Latent AR order with maximal order r with Normal prior 
together with non-conjugate Normal inverse-Wishart observation model type shown as N-IW-N 
prior.

(case6) HDP-AR-HMM.D: Latent AR order with maximal order r with automatic relevance 
determination observation model type shown as ARD prior.

HDP-SLDS 
 (case7) HDP-SLDS.A: SLDS with conjugate matrix-Normal inverse-Wishart (MNIW) 
observation model type, and inverse Wishart (IW) prior on noise. 

(case8) HDP-SLDS.B: SLDS with conjugate matrix-Normal inverse-Wishart (MNIW) 
observation model type, and non-conjugate inverse Wishart Normal (IW-N) prior on noise. 

(case9) HDP-SLDS.C: SLDS with conjugate matrix-Normal inverse-Wishart (MNIW) 
observation model type, and conjugate inverse Normal Wishart Normal (NIW) prior on noise. 

(case10) HDP-SLDS.D: SLDS with non-conjugate Normal inverse-Wishart Normal (N-IW-
N) observation model type, and inverse Wishart (IW) prior on noise. 

(case11) HDP-SLDS.E: SLDS with non-conjugate Normal inverse-Wishart Normal (N-IW-
N) observation model type, and non-conjugate inverse Wishart Normal (IW-N) prior on noise. 

Method Initializations 
Initialization of HDP-HMM/HDP-AR-HMM/HDP-SLDS is fully noninformative as described in 
HDPHMM_HDPSLDS_toolbox. The required number of states is automatically handled within a 
nonparametric Bayesian learning using MCMC sampling. Initialization of BSFA is fully 
noninformative based on the default values 3 . Maximum number of states is set to 20 
throughout the analysis. The required number of states is automatically handled within a 
parametric Bayesian learning using variational inference.  

Analysis on Opto-fMRI Dataset 
We applied all methods to opto-fMRI dataset to validate their performance on a real dataset for 
which the ground-truth is known to some extent. From all methods, only three methods could 
find more than one states, namely HDP-HMM.A,B, BSFA (Figure R2-R4). Both HDP-AR-
HMM.A-D and HDP-SLD.A-E converged to only a single state.  

HDP-HMM.A-B can be seen as a nonparametric variant of the HMM with Gaussian emission 
probability distributions. The key difference between HDP-HMM.A and HDP-HMM.B is in their 
choice of priors. While HDP-HMM.A uses non-conjugate prior model within a fully factorized 
prior model, HDP-HMM.B uses a conjugate prior model to avoid the full factorization of the 
priors which theoretically should help with the better recovery of states. Both methods capture 
temporal correlations in data using Markovian assumptions within an HDP framework. HDP-
HMM.A converged to 4 states and HDP-HMM.B converged to 3 states. We also observed in our 
analysis that while both methods are rather sensitive to the random initialization, HDP-HMM.A
appears to be slightly more sensitive in comparison to HDP-HMM.B.  

BSFA is a state-space model which uses HMM to capture temporal dependencies as opposed 
to BSDS which uses both HMM and AR process wrapped into a state-space generative model. 
As shown in Figure R4, the learning converges to several states (14 states) with no clear 
pattern.
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HDP-AR-HMM.A-D use both HMM and AR process in their generative models. We varied the 
AR order from 1 to 3. All methods consistently converged to a single state. Results are not 
shown here. 

HDP-SLDS.A-E are closest to the BSDS in their generative form but they differ in their 
inference. While BSDS uses variational inference, they use MCMC sampling. Furthermore, 
BSDS is a Bayesian parametric model while HDP-SLDS.A-E are Bayesian non-parametric 
models. In our analysis, we observed all cases converged to a single state. Results are not 
shown here.

Analysis on HCP Working Memory Dataset 
As in the case of opto-fMRI data, HDP-AR-HMM and HDP-SLDS when applied to the WM 
dataset, converged to a single state. On a side note, we also found HDP-SLDS to be 
uncomfortably slow for group analysis.

In the following, we direct our attention to HDP-HMM.A and HDP-HMM.B which performed well 
on the opto-fMRI dataset. We also report the results obtained using BSFA. 

HDP-HMM.A,B was initialized as in the case of validation dataset. Estimated temporal evolution 
of states is shown in Figures R5, 6. HDP-HMM.A in Session 1 and 2 converged to 10 and 9 
states respectively. Similarly, HDP-HMM.B converged to 10 states in Session 1 and 10 in 
Session 2. 

BSFA was initialized as in the case of validation dataset. Estimated temporal evolution of states 
is shown in Figure R7. BSFA in Session 1 and 2 converged to 15 and 16 states, respectively. 
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Figure R2. HDP-HMM.A on opto-fMRI dataset. (top) ROI timeseries from the first subject, 
(middle) stimulation design which is the same for all three subjects, (bottom) estimated temporal 
evolution of states for each subject. HDP-HMM.A converged to three states.  
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Figure R3. HDP-HMM.B on opto-fMRI dataset. (top) timeseries, (middle) stimulation design 
which is the same for all three subjects, (bottom) estimated temporal evolution of states for each 
subject. HDP-HMM.B converged to three states. 
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Figure R4. BSFA on opto-fMRI dataset. (top) ROI timeseries from the first subject, (middle) 
stimulation design which is the same for all three subjects, (bottom) estimated temporal 
evolution of states for each subject. BSFA was initialized with 20 states and it converged to 14 
states.
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Figure R5. HDP-HMM.A on WM dataset. (top) ROI timeseries from the first subject, (middle) 
stimulation design for all subjects, (bottom) estimated temporal evolution of states for each 
subject. HDP-HMM.A converged to 10 states in Session 1 and to 9 states in Session 2. Note 
that there is no one-to-one correspondence between color codes across sessions and task 
designs. 
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Figure R6. HDP-HMM.B on WM dataset. (top) ROI timeseries from the first subject, (middle) 
stimulation design for all subjects, (bottom) estimated temporal evolution of states for each 
subject. HDP-HMM.B converged to 10 states in Session 1 and to 10 states in Session 2. Note 
that there is no one-to-one correspondence between color codes across sessions and task 
designs.
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Figure R7. BSFA on WM dataset. (top) ROI timeseries from the first subject, (middle) 
stimulation design for all subjects, (bottom) estimated temporal evolution of states for each 
subject. BSFA converged to 15 states in Session 1 and to 16 states in Session 2. Note that 
there is no one-to-one correspondence between color codes across sessions and task designs. 
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1.4 “How do the timeseries/state weightings/probabilities compare to HMMs or other 
approaches that allow time dependent weighting (e.g., Vince Calhoun has a PCA approach I 
believe)” 

Response: Please note that the latent component of BSDS uses an HMM model (see also 
Reply 1.3 for additional clarification). It is not straightforward to directly compare BSDS with 
temporal ICA and PCA models in our study because these models, e.g., Calhoun’s PCA model, 
do not provide information about the state transition probabilities, temporal evolution of states, 
occupancy rate, mean lifetime etc., measures that are crucial in our analysis of latent states 
underlying working memory. For comparison of BSDS with other HMM models, please refer to 
our response to the comment 1.3.

1.5 “This needs to be carried out on the other HCP data. All the same figures don’t need to be 
shown, but high level final summary figures showing that the finding holds across different task 
types or doesn’t – both are interesting and informative. Further, could all task data be combined 
before running to get a comprehensive state number across tasks?” 

Response: We thank the reviewer for this suggestion. In the main text, we have focused on 
dynamic brain mechanisms underlying working memory using BSDS. Our methods can be 
applied to any dataset but the ROIs and hypotheses to be tested will vary form study to study. 
As such, there is no restriction on whether task or rest data can be studied using BSDS.  As 
requested by the reviewer we have applied BSDS on another HCP dataset: the Relational 
Processing task and found that BSDS identifies dynamic brain states that are stable and 
replicable. First, BSDS identified multiple latent brain states in single task blocks and thus 
demonstrate mixture of latent brain states is a common dynamic feature in cognitive tasks, not 
limited to n-back working memory task. Second, we found that latent brain states were not 
equiprobably distributed across different task conditions. For example, state S3 was dominant 
and had longest mean lifetime in the Match condition while state S4 was dominant and had 
longest mean lifetime in the Relational condition. Crucially, these states were only partially 
aligned with onset and offset of the experimental task conditions, and were replicated across 
sessions. We provide further details of our analysis and results below, and include them in the 
Supplementary Materials. 

Finally, while it is methodologically possible (albeit computationally expensive) to combine 
different task data and examine brain states across different tasks but interpretation would be 
problematic as latent brain states are dependent on the choice of regions of interest which vary 
considerably across cognitive tasks. 

Data selection 
The Human Connectome Project (HCP) Relational processing task fMRI data of 90 individuals 
were selected based on the following criteria: (1) range of head motion in any translational and 
rotational direction is less than 1 voxel; (2) average scan-to-scan head motion is less than 0.25 
mm; (3) performance accuracy per session is greater than 50%; (4) criterion (1) – (3) must met 
in both sessions separately; and (5) subjects are right handed.  

Relational Processing task 
The Relational Processing task was adapted from a previous study 6. In this task, there were 
two task conditions: a relational processing condition and a control matching condition, and 
stimuli with 6 different shapes and 6 different textures. In the relational processing condition, two 
pairs of stimuli were presented, with one pair at the top of the screen and the other pair at the 
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bottom. Participants were told that they should first decide what dimension differs across the top 
pair of the stimuli (shape or texture) and then decide whether the stimuli at the bottom also differ 
along the same dimension. In the control matching condition, two stimuli were shown at the top 
of the screen and one at the bottom with a word in the middle of the screen (either “shape” or 
“texture”). Participants were told to decide whether the bottom stimulus matched either of the 
top two stimuli in that dimension. Each participant completed two runs of this task. Each run has 
3 relational processing blocks, 3 control matching blocks and 3 16 seconds fixation blocks. Each 
task block has 5 trials, lasting 18 seconds. Each stimulus was presented for 2800 ms, with a 
400 ms ITI. 

fMRI acquisition 
For each individual, 232 frames were acquired in each session using multiband, gradient-echo 
planar imaging with the following parameters: RT, 720 ms; echo time, 33.1 ms; flip angle, 52°; 
field of view, 280 × 180 mm; matrix, 140 × 90; and voxel dimensions, 2 mm isotropic.  

fMRI preprocessing
Minimally preprocessed fMRI data for both sessions were obtained from the Human 
Connectome Project 7. Spatial smoothing with a Gaussian kernel of 6mm FWHM was first 
applied to the minimally preprocessed data to improve signal-to-noise ratio as well as anatomy 
correspondence between individuals. High-pass temporal filtering (f>0.008Hz) was applied to 
remove low frequency signals related to scanner drift. 

General linear model and contrast of interest 
A conventional general linear model (GLM) analysis was conducted in order to determine 
relational-processing and matching related activation/deactivation peaks. Each block in each 
session was modeled as one of the two vectors: relational or match. The onset and duration of 
each vector were the onset and duration of the corresponding block. The contrast of interest 
was relational versus match.  

Region of interest (ROI) and time series 
ROIs were determined on the contrast of interest: relational versus match, including bilateral 
lateral occipital cortex (LOC), supramarginal gyrus (SMG), angular gyrus (AG), middle frontal 
gyrus (MFG), frontal pole (FP), medial frontal pole (mFP), right anterior insula (AI) and pre-
supplementary motor area (preSMA) (Figure R8). Each ROI was 6-mm radius sphere centered 
at the corresponding peak voxel. Time series of the 1st eigenvalue was extracted from each 
ROI. A multiple linear regression approach with 6 realignment parameters (3 translations and 3 
rotations) was applied to time series to reduce head-motion-related artifacts and resulting time 
series was further linearly detrended and normalized.  
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Figure R8. BSDS applied to the Relational Processing task data from the Human Connectome 
Project. (a) Brain regions activated (warm colors) and deactivated (cool colors) during the 
relational processing, compared to the control matching, condition. (b) Regions of interest 
(ROIs) were determined using activation and deactivation peaks from (a). ROIs activated during 
relational processing and control matching tasks: 1, left lateral occipital cortex (lLOC); 2, right 
lateral occipital cortex (lLOC); 3, left supramarginal gyrus (lSMG); 4, right supramarginal gyrus 
(rSMG); 5, left angular gyrus (lAG); 6, right angular gyrus (rAG); 7, left middle frontal gyrus 
(lMFG); 8 right middle frontal gyrus (rMFG); 9, left frontal pole (lFP); 10, right frontal pole (rFP); 
11, medial frontal pole (mFP); 12 right anterior insula (rAI); and 13, pre-supplementary motor 
area (preSMA). 
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Matching BSDS states between sessions  
We applied BSDS to probe latent brain dynamics associated with ROIs in two data sessions 
separately. BSDS isolated five latent brain states in data session 1 and four latent brain states 
in data session 2. To determine whether one brain state identified in one session match one 
brain state identified in another session, we conducted cross-session brain state correlation 
analysis. Each brain state was defined by a covariate matrix in the latent space, estimated from 
the set of ROI activation timeseries in each session separately; and ROI timeseries can, in turn, 
be represented as a timeseries of posterior probabilities of estimated brain states. If a brain 
state in one session corresponds to a brain state in another session, then timeseries of posterior 
probabilities of these two brain states in the same data session should be highly correlated. 
Specifically, after obtaining four brain states in each session, we first computed posterior 
probability timeseries of each brain state in the data session from which brain states are 
estimated. An example is to compute posterior probability of “State 11”, estimated from Session 
1 data. Next, we computed posterior probability timeseries of each brain state in the other data 
session. An example is to compute posterior probability of “State 12”, estimated from Session 2 
data. Then, we computed correlation posterior probability timeseries of brain states, which were 
estimated from different sessions, in the same data session. For example, compute correlation 
between the posterior probability of “State 11” in Session 1 and the posterior probability of “State 
12” in Session 1.  High correlation would suggest that “State 11” matches “State 12” as the two 
states have highly similar posterior probability in the same data. Indeed, we found exclusive 
one-to-one mapping between four out of the five latent brain states from the data session 1 and 
the four latent brain states from the data session 2. The Pearson’s correlation coefficients 
between the matched brain states across two sessions range from 0.83 to 0.98 (Table R1). To 
simplify the report and improve the readability, we relabeled the matched four brain states in the 
two sessions to “State 1”, “State 2”, “State 3” and “State 4”, and the fifth brain state in the data 
session 1 to “State 5”.
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Table R1. Correlation of posterior probabilities of latent brain states from training and test 
sessions. 

    Session 2 test state 
    3 8 10 14 

Session 1 
training state 

2 -0.24 0.65 -0.13 -0.27 
6 0.06 0.46 -0.1 -0.4 
8 -0.27 -0.24 0.81 -0.23

12 0.74 -0.39 -0.19 -0.17 
15 -0.37 -0.35 -0.28 0.93

    Session 1 test state 
    2 6 8 12 15 

Session 2 
training state 

3 -0.26 0.07 -0.26 0.75 -0.38
8 0.67 0.42 -0.22 -0.4 -0.36 

10 -0.13 -0.09 0.81 -0.17 -0.29 
14 -0.28 -0.39 -0.22 -0.19 0.94

Matched latent state Session 1 Session 2
1 2 8 
2 8 10 
3 12 3 
4 15 14 

6
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Fractional occupancy of task-dominant latent brain states during task  
We compared temporal evolution of latent brain states (Figure R9a) and block structure of the 
experimental task (Figure R9b). The latent brain states were only partially aligned with onset 
and offset of the three experimental task conditions (Figure R9a, c). The relational, match and 
fixation conditions were each dominated by distinct brain states S4, S3 and S1 respectively 
(Figure R9d).  The brain state dominant (S4) during the relational task condition had an 
occupancy rate of 47.5±15.6% in session 1 and 50.9±15.6% in session 2. In both Sessions, the 
occurrence of the dominant state (S4) during the relational task condition was significantly 
higher than the occurrence of other non-dominant states (all ps<0.001). The mean lifetime of 
the dominant state (S4) in the relational condition was 7±2.6 seconds in session 1 and 7.4±2.7 
seconds in session 2, significantly longer than the mean lifetime of the other non-dominant brain 
states (all ps<0.001), but much shorter than the 18 seconds task block (Figure R9e). Thus, the 
relational condition is characterized by a mixture of brain states, with the dominant state active 
for only a relatively short interval. A similar pattern was observed for the states that were 
dominant in the match and fixation conditions (Figure R9d, e). These results demonstrate that 
the relational processing task is characterized by latent task-induced states whose fractional 
occupancy is relatively short compared to the task blocks. 
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Figure R9. Latent brain states during relational processing task, their dynamic properties and 
replication across Sessions 1 and 2. (a) Temporal evolution of the latent brain states identified 
in each of the 90 participants. (b) Corresponding task waveforms of the three task conditions in 
the relational processing task – relational, match and fixation blocks – are shown in the same 
layout. (c) Time-varying posterior probability of each latent brain state across participants. (d)
Occupancy rates of latent brain states for the three states which dominate the relational, match, 
and fixation task blocks, S4, S3 and S1 respectively. (e) Mean lifetimes of latent brain states for 
the three states which dominate the relational, match and fixation task blocks, S4, S3 and S1 
respectively (ps < 0.001). (f) Probability of transition time given a latent brain state.  
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1.6 “A natural question, especially given the cited field in the intro, is what this will detect in rest 
data. BSDS does not seem to require a fixed task structure (other than for interpretation) and 
seeing the number of states and visualizing the ones with highest probability would be greatly 
expand the reach of the paper.” 

Response: The reviewer is right that BSDS does not require a fixed task structure. One could 
apply BSDS on block task-fMRI (as we have done here with the HCP working memory data), 
fast event-related task-fMRI, or resting-state fMRI data. However, the focus of our study here 
was to understand dynamic brain states and circuits underlying human working memory using 
this novel method. Because interpretation of rest data is more challenging, we have preferred to 
apply methods to another task (Relational data, please see our response to comment #1.5).   

1.7 “Is there a relationship to any demographics and state expression during the task?” 

Response: To address the reviewer’s question, we conducted multiple linear regression to 
predict working memory performance (accuracy) in the 2-back task using posterior probability of 
the state SH in the 2-back task, age and gender. As shown in Table R2 below, posterior 
probability of the state SH remained the most robust predictor of working memory performance 
in the 2-back task. Gender had significant effect in Session 2 data but the effect was not 
replicated in Session 1.  
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Table R2. Multiple linear regression revealed that the posterior probability of the 
state SH was the most robust predictor of working memory performance in the 2-
back task. 
  Beta t value p value 
Session1       
posterior probability of state SH in 2-back 0.24 4.31 < 0.001 
Age 0.002 0.95 0.35 
Gender 0.03 1.8 0.07 
Ethnicity -0.02 -1.06 0.29 

        
Session 2     
posterior probability of state SH in 2-back 0.27 4.05 < 0.001 
Age -0.001 -0.7 0.48 
Gender 0.04 2.3 0.02 

Ethnicity -0.03 -1.25 0.2 
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1.8 “Ideally it would have been best to actually have some quantification of “hidden states” such 
as measures of arousal. Perhaps in a future experiment.” 

Response: We agree. This is a great suggestion, it would be definitely interesting to examine 
the relationship between hidden states and arousal. Unfortunately, we don’t have arousal data 
for the current data.  

1.9 “Figure 1 needs to be made clearer for a less technically oriented individual. I have some 
experience in the area and it took me too long to grasp figure 1 and 2 to understand what was 
going on.” 

Response: We have now provided general description of BSDS methods and algorithm details 
in the Introduction, which can help understand Figure 1 & 2. 

1.10 “Figure 4a-c: consider changing the color bar. Either to a log scale or have 2 different bars 
for the diagonal and off diagonal.” 

Response: To make the figure clear, we have now written the actual values into the figure.  

Reviewer 2 

2.1 “This paper proposes using a Bayesian switching dynamical systems algorithm to identify 
latent brain states and characterize their dynamic spatiotemporal properties. The authors apply 
the proposed method to data from the working memory task of the Human Connectome 
Projection. In their analysis they identify latent transient brain states and dynamic functional 
circuits and show that failure to engage these states in a timely manner is associated with 
poorer task performance. This is very interesting work, and the proposed algorithm looks as if it 
could potentially be of great use to the field. Below follow some specific comments.” 

Response: We are glad that the reviewer found our work to be interesting. We hope our method 
will be useful to the field and we will share our code on our lab website and through github. 

2.2 “The authors should be commended for their use of test-retest data to assess the replicablity 
of the proposed approach.” 

Response: We thank the reviewer for the positive feedback. 

2.3 “However, also making the code easily available would be beneficial.” 

Response: We will share our code through our lab website and github. 

2.4 “On page 3, the authors write: “Previous approaches for characterizing dynamic interactions 
in the human brain have not examined latent processes, ….” I don’t think this is technically true 
as, for example, Vidaurre et al. (2016) used Hidden Markov Models to analyze MEG data. In 
addition, there are also methods that allow for overlapping states (for example, Leonardi et al. 
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(2014) and Miller et al. (2016)) that seem to imply the presence of latent states. Please 
comment.” 

Response: We have now acknowledged the use of HMM models in MEG and EEG studies, as 
well as resting-state fMRI data. It should be noted that while these studies use HMMs for 
estimation of brain states on the observed data, unlike the present study, they do not explicitly 
model latent processes underlying observed data.  

2.5. “On the same page, the authors write: “the application of extant approaches to cognitive 
task-based fMRI is particularly problematic because they assume that brain states are 
completely aligned with task onset and offset”. It isn’t immediately clear to 
this reviewer why the sliding window and clustering techniques the authors is referring to 
assume that brain states are aligned with task onset and offset. Please clarify.” 

Response: The reviewer is correct that the sliding window can recover states that may or may 
not be aligned with task onset and offset. We were not referring to sliding window on this issue: 
we were referring to conventional GLM method which is commonly used to identify brain activity 
and connectivity pattern associated with specific task condition/blocks. But we agree that this 
sentence is confusing and we have removed it from the revised manuscript.  

2.6 “There are some inconsistencies in the notation used in Figure 1 compared to the rest of the 
paper. For example, y(t,s) is used instead of y_t^s.” 

Response: We have now revised the figure. 

2.7 “It appears from Figure 3a that state S3 occurs in fewer participants than the other states. 
When it does appear it seems to appear in place of S4. Could it be that they are actually the 
same state, but split due to between–subject variability?” 

Response: We appreciate the reviewer’s observation. To address reviewer’s concern, we took a 
closer look to temporal evolution of latent brain states in each subject in each session. We 
confirmed that each latent state occurred in each subject in each session; however, the 
occupancy rate of the state S3 is less than others. In addition, we have shown that SH (S1) 
does not directly switch to SF (S4) without passing SL (S2) or ST (S3). If ST (S3) and SF (S4) 
were the same state, we would not have observed such constraints on switching paths. 

2.8 “On page 12 the authors discuss reproducibility. It is probably worth mention that several 
reproducibility studies dealing with dynamic connectivity have recently appeared (see, for 
example, Choe et al. 2017).” 

Response: We thank the reviewer for bringing this study to our attention. We have now cited it 
in the revised manuscript. 

2.9. “In Figure 6 b & d it is difficult to compare the different states as they do not share the same 
support in the x-axis. Please comment. In addition, could you please clarify how the error bars 
are computed?” 
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Response: In Figure 6b, the x-axis is occupancy rate of latent brain state (unit is %), whereas, in 
Figure 6d, the x-axis is mean lifetime of latent brain states (unit is second). So they are different 
measures in different scales. Error bar indicates 95% confidence interval for the regression 
estimate, computed using a bootstrap procedure from seaborn.lmplot 
(https://seaborn.pydata.org/generated/seaborn.lmplot.html). This should help readers to get a 
better sense of estimation: Where there are few data points the estimated confidence interval is 
wider reflecting the lack of data.  

2.10. “The proposed algorithm shares similarities with methods previously used in other fields. 
For example, the work by Fox et al. cited in the paper. It would be useful to understand what 
parts of the model are due to the authors, as they claim in the abstract that their method is 
novel. Perhaps, they mean novel to neuroimaging. In any case this should be clarified.” 

Response: We agree with the reviewer that the switching linear dynamical systems (SLDS) 
models have been around. Although BSDS shares a similar generative model with SLDS, it 
differs in its inference. While the work of Fox et al. is a nonparametric Bayesian model, BSDS is 
a parametric Bayesian model. The Bayesian inference in Fox’s SLDS model is based on 
Markov chain Monte Carlo (MCMC) sampling. While BSDS is based on variational inference 
which provides a deterministic solution. We have now clarified this in Supplementary Results 
(Section 4).  

We have compared BSDS model with the SLDS model of Fox et al. on opto-fMRI dataset and 
the WM dataset (see our response to comment #1.3). We considered various model alternatives 
of SLDS. For details, please refer to our response to the reviewer’s comment 1.3. Overall, we 
found that the SLDS model results to be not insightful as they converged to a single state both 
on opto-fMRI and WM datasets (see details in Supplementary Results - Section 4). 

Reviewer 3

3.1 “The manuscript presents an interesting approach for studying dynamical states in the brain 
(particularly neural transitions). The approach is first presented, then validated with simulation 
and optogenetic-FMRI data, before being evaluated with a relatively large task-fMRI dataset 
focused on working memory performance. The manuscript is generally well written (if a little 
hard to follow in places) and the methods seem sound. However, I feel that at present it is not 
clear whether this is a manuscript presenting an important new method or revealing hitherto 
unknown latent dynamic brain states. It is also not entirely clear how the optogenetic FMRI data 
relates to the human working memory FMRI data; how the core methodology relates to (and 
supercedes) other dynamic functional connectivity approaches, and whether the latent brain 
states identified are task-specific or constitute general neural systems. Therefore, I suggest the 
authors consider revising the manuscript as follows.” 

Response: We are glad that the reviewer found our study to be interesting and sound, and 
thank the reviewer for the suggestion. Below, we address changes made in response to the 
reviewer suggestions, noting that the focus of our study was the multisession HCP working 
memory data and brain states and circuits associated with fronto-parietal cortex regions 
involved in this task. The optogenetic fMRI and simulations were used to validate and provide 
insights into how BSDS works, which we hope will be useful to the readers.  



26

3.2 “The presentation of the BSDS algorithm could be much more general way to appeal to the 
broad audience of Nature Communications. This could involve a simple walk through of how it 
operates, what is meant by latent state etc and, importantly, a detailed explanation of why and 
how it is superior to other approaches” 

Response: We thank the reviewer for this suggestion and have modified the manuscript 
accordingly. 

3.3 “Relating to 1), the approach (especially with the simulations and optogenetic FMRI) should 
be compared to other approaches that have been used to study dynamic states in FMRI, 
including other HMM, temporal ICA or simpler functional connectivity approaches. This would 
allow the reader to properly evaluate the approach.” 

Response: It is not straightforward to directly compare BSDS with temporal ICA and PCA 
models in our study because these models, e.g., Calhoun’s PCA model, do not provide 
information about the state transition probabilities, temporal evolution of states, occupancy rate, 
mean lifetime, etc, measures that are crucial in our analysis of latent states underlying working 
memory. For comparison of BSDS with other HMM models, please refer to our response to 
reviewers’ comments #1.3, 1.4, where we have applied other HMM-based models to opto-fMRI 
and WM datasets.

3.4 “The results from the simulations/optogenetic FMRI could feature more heavily in the results 
section. Similarly, there could be greater explanation of why those results validate the approach. 
Just finding results does not show that they are the optimal description of the brain.” 

Response: We have now included more details in Results section. The goal of the simulations 
was to show that our algorithm can recover relevant latent space structure when such structure 
is known. In the case of optogenetic fMRI, where the ground-truth is not known, it is reasonable 
to expect that there is a transient state between ON and OFF stimulation. This is indeed what 
we found and it illustrates a useful feature of BSDS that we were able to investigate in the 
context of dynamics brains states underlying the transition from low to high working memory 
load in humans. Ultimately, the validation of the approach may lie in our replication of findings, 
and the importance influence of latent brain states on behavior.    

3.5 “The analyses could be repeated with other tasks (e.g., from the HCP). This should be 
relatively easy and should make the results more convincing and general.” 

Response: We thank the reviewer for this suggestion. We have now applied the BSDS to 
another HCP task fMRI data – the Relational Processing task. Please find details in our 
response to the comment #1.5 and in the revised Supplementary Material. 

3.6 “More detail could be provided about the stability of results of the human FMRI from different 
starting assumptions; also were different parcellations/networks examined and if so how do they 
influence the results; how dependent are the results on preprocessing strategies such as 
temporal filtering and correction for noise.” 
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Response:  

Response to different starting assumptions: 

First, random initializations were used in BSDS framework. Explicitly, prior distributions were 
initialized all noninformative. Number of states were set to a large value as BSDS uses 
automatic model selection to prune away states with little influence. The dimensionality of the 
latent space was set to one less than the number of ROIs, which corresponds to the fully 
noninformative initialization of these variables. Because BSDS were estimated on two data 
sessions separately, they had different initializations. Second, we further tested whether 
changing maximum number of latent states would have an impact on our main findings. In the 
original analysis, the maximum number of states was set 10. In the additional data analyses 
suggested by the reviewer, which was used to address parcellation/network and motion 
correction issues, the maximum number of states was set 15. As reported below, the main 
findings were replicated using different starting parameters.  

Response to different parcellations/networks: 

Our main analysis focused on fronto-parietal ROIs based on peaks of task-related activation 
and deactivation. To examine the robustness of our findings with respect to ROI selection, we 
conducted a complete set of parallel supplemental analyses using functional clusters from 
previously published brain networks derived using ICA on resting-state fMRI 8. Networks of 
interest included the salience network (SN), central executive network (CEN), default mode 
network (DMN) and dorsal attention network (DAN), from which we chose the following fronto-
parietal regions: bilateral AI, bilateral DLPFC, bilateral FEF, bilateral PPC, PCC, VMPFC and 
right DMPFC (Figure R10). All other processing steps were identical to the previous analysis. 
As described in detail below, all major findings were replicated with this more general resting-
state network-derived choice of ROIs.
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Figure R10. BSDS applied to the n-back working memory task data from the Human 
Connectome Project. Functional clusters from ICA components (Saliency network, Executive 
Control network and default mode network) were used as ROIs in the analysis, including 
bilateral anterior insula (AI), dorsolateral prefrontal cortex (DLPFC), frontal eye field (FEF), 
posterior parietal cortex (PPC), posterior cingulate cortex (PCC), ventromedial prefrontal cortex 
(VMPFC) and dorsomedial prefrontal cortex (DMPFC). 
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Matching BSDS states between sessions  
We applied BSDS to probe latent brain dynamics associated with ROIs in two data sessions 
separately. BSDS isolated five latent brain states in session 1 and session 2. To determine 
whether one brain state identified in one session match one brain state identified in another 
session, we conducted cross-session brain state correlation analysis. Using the same state 
matching algorithm applied in the main analysis (see Material and Methods for details), we 
found exclusive one-to-one mapping of the five latent brain states between two sessions. The 
Pearson’s correlation coefficients between the matched brain states across two sessions range 
from 0.56 to 0.87 (Table R3).



30

Table R3. Correlation of posterior probabilities of latent brain states from training and test 
sessions (the n-back working memory task with functional clusters of ICA components as ROIs). 

    Session 2 test state 
    5 9 11 12 14 

Session 1 
training state 

5 0.02 -0.27 -0.26 -0.42 0.82
9 -0.39 0.87 -0.11 0.08 -0.29 

10 -0.20 0.01 0.58 -0.16 -0.10 
12 0.19 -0.23 0.37 -0.15 -0.15 
14 0.24 -0.28 -0.27 0.56 -0.39

    Session 1 test state 

Session 2 
training state 

  5 9 10 12 14 
5 0.06 -0.39 -0.20 0.15 0.27 
9 -0.29 0.87 0.01 -0.24 -0.28 

11 -0.28 -0.12 0.57 0.39 -0.27 
12 -0.41 0.07 -0.16 -0.11 0.56
14 0.82 -0.29 -0.11 -0.17 -0.37 

Matched latent 
state

Session
1 Session 2 

1 14 12 
2 5 14 
3 10 11 
4 9 9 
5 12 5 
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Fractional occupancy of task-dominant latent brain states during working memory task  
The 2-back, 0-back and fixation conditions were each dominated by distinct brain states 
designated SH (high-load state), SL (low-load state), and SF (fixation state) respectively (Figure
R11). The brain state SH during the 2-back working memory task had an occupancy rate of 
47.1±6.6% in session 1 and 36±11.5% in session 2 (Figure R11d). In both Sessions, the 
occurrence of the SH during the 2-back task condition was significantly higher than the 
occurrence of other non-dominant states (all ps<0.001) except the 5th State in Session 2. 
Although the 5th State had high occupancy rate in 2-back working memory task in Session 2, it 
also had high occupancy rate in 0-back working memory task but low occupancy rate in rest. 
Therefore, the 5th State did not have uniquely significant contribution to the 2-back task. So this 
state is designated SG (general-control state). The mean lifetime of the state SH in the 2-back 
condition was 13±5 seconds in session 1 and 9±4 seconds in session 2, significantly longer 
than the mean lifetime of the other brain states (all ps<0.001), but much shorter than the 27.5 
seconds task block (Figure R11e). Thus, the 2-back condition is characterized by a mixture of 
brain states, with the dominant state active for only a relatively short interval. A similar pattern 
was observed for the states that were dominant in the 0-back and fixation conditions (Figure
R11d, e). These results demonstrate that the working memory task is characterized by latent 
task-induced states whose fractional occupancy is relatively short compared to the task blocks.      

Identification of a novel transition state  

In addition to SH, SL, SF and SG, BSDS uncovered a “transition” state (ST in Figure R11). The 
occupancy rate and mean lifetime of this state during the 2-back, 0-back and fixation conditions 
was comparably lower than the other states. However, ST was more likely to occur during 
transition after the onset of new task blocks (27±19% in session 1 and 41±13% in session 2, 
Figure R11f), significantly higher than other latent states in both sessions (ps<0.05) but not to 
SG in session 1. These results demonstrate that cognitive tasks with multiple conditions are 
characterized not only by latent task-induced states but also by transition states.    
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Figure R11. BSDS applied on data of a different set of ROIs revealed latent brain states during 
working memory, their dynamic properties and replication across Sessions 1 and 2. (a)
Temporal evolution of the four latent brain states identified in each of the 122 participants. (b)
Corresponding task waveforms of the three task conditions in the n-back working memory task 
– 0-back, 2-back and fixation blocks – are shown in the same layout. (c) Time-varying posterior 
probability of each latent brain state across participants. (d) Occupancy rates of latent brain 
states for the three states which dominate the 0-back, 2-back, and fixation task blocks, SL, SH 
and SF respectively. (e) Mean lifetimes of latent brain states for the three states which dominate 
the 0-back, 2-back and fixation task blocks, SL, SH and SF respectively (ps < 0.001). (f) BSDS 
revealed a novel transition state ST, which occurs more frequently right after the onset of 
experimental task blocks than other latent states in both sessions (ps<0.05) but not to SG in 
session 1. Note that SL, SH, ST, SF and SG were named by their task dominancy in panel c-f,
which correspond to S1, S2, S3, S4 and S5 in panel a.
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Latent brain states predict working memory performance  

To probe the relation between latent brain states and task performance, we took advantage of a 
key feature of BSDS, which provides estimates of moment-by-moment changes in brain states 
and connectivity. We examined whether time-varying brain state changes could predict working 
memory performance. Specifically, we trained a multiple linear regression model to fit estimated 
the 2-back accuracy using occupancy rates of brain states in the 2-back condition, applied the 
model on unseen data to predict accuracy, and evaluated model performance by comparing 
estimated accuracy and observed value across all the subjects. This analysis revealed a 
significant relation between predicted and actual accuracy (all ps<0.005, Figure R12a). Notably, 
each of these results was replicated in both Sessions 1 and 2, highlighting the robustness of our 
brain-behavior findings.  

We then tested the hypothesis that the occupancy rate of individual brain states in the 2-back 
condition is associated with performance in the 2-back block. We found that working memory 
task accuracy was positively correlated with the occupancy rate of the dominant state, SH, in 
the 2-back working memory task condition (all ps<0.01, Figure R12b). Thus, the dominant state 
SH is a behaviorally optimal brain state for 2-back working performance – the more time spent 
in this brain state the better working memory task performance, with more deviations leading to 
poorer performance.

Next, we investigated the mean lifetime, another key feature of temporal evolution of latent brain 
states, in relation to working memory performance using the same analytic procedures 
described above. We found that the mean lifetimes of the latent brain states in the 2-back 
condition predicted working memory task accuracy (all ps<0.05, Figure R12c). Thus, 
maintenance of optimal hidden brain states results in better working memory task performance. 
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Figure R12. Occupancy rate and mean lifetimes of latent brain states from BSDS applied on 
data of a different set of ROIs predict working memory performance: replication across Sessions 
1 and 2. (a) A multiple linear regression model was trained using occupancy rates of latent brain 
states in the 2-back task to predict working memory accuracy.  A significant association was 
observed and predicted accuracies were correlated with observed accuracy in both sessions: 
(Session 1: r = 0.29, p < 0.002; Session 2: r = 0.26, p < 0.005). (b) Occupancy rate of the latent 
brain state SH which dominates the 2-back working memory task condition was correlated with 
working memory task accuracy in both sessions (Session 1: r = 0.31, p < 0.001; Session 2: r = 
0.25, p < 0.005). No such relations were found for any of the other latent states. (c) A multiple 
linear regression model was trained using mean lifetimes of latent brain states in the 2-back 
task to predict working memory accuracy. Here again, a significant association was found and 
the predicted accuracy was correlated with observed accuracy in both sessions (Session 1: r = 
0.22, p < 0.05; Session 2: r = 0.24, p < 0.01). (d) Mean lifetime of the latent brain state 
SH which dominates the 2-back working memory task condition was correlated with working 
memory task accuracy in session 2 (r = 0.20, p < 0.05) but marginally in Session 2 (p = 0.06).



35

In sum, we replicated our main findings using a different head motion regression procedure: 1. 
BSDS uncovered multiple latent states in single task blocks; 2. BSDS identified task-dominated 
latent states; 3, BSDS identified transition latent state; and 4, Occupancy rates, posterior 
probabilities, and mean lifetimes of latent brain states in 2-back working memory task can 
predict individual performance in 2-back task. We included details of these analysis and results 
in the Supplementary Material in revision. 

Response to temporal filtering: 

We applied high-pass temporal filtering (f>0.008Hz) to remove low frequency signals related to 
scanner drift, which is a standard practice in analyzing task fMRI data. Temporal filtering with 
other frequency bands may be used to other data with specific task design, but testing filtering 
different bandpass frequency is beyond the scope of this study. 

Response to correction for noise: 

To address the reviewer’s question on noise correction, we conducted additional analysis by 
regressing out 12 motion parameters, including 6 standard parameters (3 translational and 3 
rotational movement) and derivatives of these 6 standard parameters, and then repeated the 
same BSDS analysis using 11 ROIs defined by 2-back vs 0-back contrast. As described in 
detail below, all major findings were replicated with this choice of movement parameters.      

Matching BSDS states between sessions  
We applied BSDS to probe latent brain dynamics associated with ROIs in two data sessions 
separately. BSDS isolated five latent brain states in session 1 and session 2. To determine 
whether one brain state identified in one session match one brain state identified in another 
session, we conducted cross-session brain state correlation analysis. Using the same state 
matching algorithm applied in the main analysis (see Material and Methods for details), we 
found exclusive one-to-one mapping of the five latent brain states between two sessions. The 
Pearson’s correlation coefficients between the matched brain states across two sessions range 
from 0.94 to 0.97 (Table R4).
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Table R4. Correlation of posterior probabilities of latent brain states from training and test 
sessions (the 12 head motion regression analysis). 

    Session 2 test state 
    1 4 7 11 13 

Session 1 
training state 

1 -0.16 -0.18 -0.26 -0.42 0.97
2 -0.45 -0.11 -0.05 0.94 -0.39
3 -0.33 -0.09 0.97 -0.20 -0.22 

11 -0.19 0.93 -0.08 -0.18 -0.13 
13 0.94 -0.19 -0.37 -0.27 -0.31 

    Session 1 test state 

Session 2 
training state 

  1 2 3 11 13 
1 -0.16 -0.44 -0.33 -0.20 0.94
4 -0.19 -0.11 -0.09 0.93 -0.19
7 -0.26 -0.06 0.97 -0.09 -0.37 

11 -0.42 0.94 -0.19 -0.17 -0.25 
13 0.97 -0.38 -0.22 -0.14 -0.31 

Matched latent 
state Session 1 Session 2 

1 2 11 
2 1 13 
3 11 4 
4 3 7 
5 13 1
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Fractional occupancy of task-dominant latent brain states during working memory task  

The 2-back, 0-back and fixation conditions were each dominated by distinct brain states 
designated SH (high-load state), SL (low-load state), and SF (fixation state) respectively (Figure
R13). The brain state SH during the 2-back working memory task had an occupancy rate of 
37.6±12.2% in session 1 and 34.7±11.5% in session 2 (Figure R13d). In both Sessions, the 
occurrence of the SH during the 2-back task condition was significantly higher than the 
occurrence of other non-dominant states (all ps<0.001) except the 5th State. Although the 5th

State had high occupancy rate in 2-back working memory task too, it also had high occupancy 
rate in 0-back working memory task but low occupancy rate in rest. Therefore, the 5th State did 
not have uniquely significant contribution to the 2-back task. So this state is designated SG 
(general-control state). The mean lifetime of the state SH in the 2-back condition was 10±4 
seconds in session 1 and 8±7 seconds in session 2, significantly longer than the mean lifetime 
of the other brain states (all ps<0.001), but much shorter than the 27.5 seconds task block 
(Figure R13e). Thus, the 2-back condition is characterized by a mixture of brain states, with the 
dominant state active for only a relatively short interval. A similar pattern was observed for the 
states that were dominant in the 0-back and fixation conditions (Figure R13d, R13e). These 
results demonstrate that the working memory task is characterized by latent task-induced states 
whose fractional occupancy is relatively short compared to the task blocks.    

Identification of a novel transition state  

In addition to SH, SL, SF and SG, BSDS uncovered a “transition” state (ST in Figure R13). The 
occupancy rate and mean lifetime of this state during the 2-back, 0-back and fixation conditions 
was comparably lower than the other states. However, ST was more likely to occur during 
transition after the onset of new task blocks (30±20% in session 1 and 33±17% in session 2, 
Figure R13), significantly higher than other latent states in both sessions (ps<0.05) except that 
it is marginally significant compared to SH in session 1 (p=0.07). These results demonstrate that 
cognitive tasks with multiple conditions are characterized not only by latent task-induced states 
but also by transition states.    
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Figure R13. BSDS applied on data using 12 motion parameters regression revealed latent brain 
states during working memory, their dynamic properties and replication across Sessions 1 and 
2. (a) Temporal evolution of the four latent brain states identified in each of the 122 participants. 
(b) Corresponding task waveforms of the three task conditions in the n-back working memory 
task – 0-back, 2-back and fixation blocks – are shown in the same layout. (c) Time-varying 
posterior probability of each latent brain state across participants. (d) Occupancy rates of latent 
brain states for the three states which dominate the 0-back, 2-back, and fixation task blocks, SL, 
SH and SF respectively. (e) Mean lifetimes of latent brain states for the three states which 
dominate the 0-back, 2-back and fixation task blocks, SL, SH and SF respectively (ps < 0.001).
(f) BSDS revealed a novel transition state ST, which occurs more frequently right after the onset 
of experimental task blocks than other latent states in both sessions (ps<0.05) except that it is 
marginally significant compared to SH in session 1 (p=0.07). Note that SL, SH, ST, SF and SG 
were named by their task dominancy in panel c-f, which correspond to S1, S2, S3, S4 and S5 in 
panel a.
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Latent brain states predict working memory performance  

To probe the relation between latent brain states and task performance, we took advantage of a 
key feature of BSDS, which provides estimates of moment-by-moment changes in brain states 
and connectivity. We examined whether time-varying brain state changes could predict working 
memory performance. Specifically, we trained a multiple linear regression model to fit estimated 
the 2-back accuracy using occupancy rates of brain states in the 2-back condition, applied the 
model on unseen data to predict accuracy, and evaluated model performance by comparing 
estimated accuracy and observed value across all the subjects. This analysis revealed a 
significant relation between predicted and actual accuracy (all ps<0.01, Figure R14a). Notably, 
each of these results was replicated in both Sessions 1 and 2, highlighting the robustness of our 
brain-behavior findings.  

We then tested the hypothesis that the occupancy rate of individual brain states in the 2-back 
condition is associated with performance in the 2-back block. We found that working memory 
task accuracy was positively correlated with the occupancy rate of the dominant state, SH, in 
the 2-back working memory task condition (all ps<0.005, Figure R14b). Conversely, the 
occupancy rate of non-dominant brain states during the 2-back task was associated with poorer 
performance. Thus, the dominant state SH is a behaviorally optimal brain state for 2-back 
working performance – the more time spent in this brain state the better working memory task 
performance, with more deviations leading to poorer performance.  

Next, we investigated the mean lifetime, another key feature of temporal evolution of latent brain 
states, in relation to working memory performance using the same analytic procedures 
described above. We found that the mean lifetimes of the latent brain states in the 2-back 
condition predicted working memory task accuracy (all ps<0.01, Figure R14c). Thus, 
maintenance of optimal hidden brain states results in better working memory task performance. 
In sum, we replicated our main findings using a different head motion regression procedure: 1. 
BSDS uncovered multiple latent states in single task blocks; 2. BSDS identified task-dominated 
latent states; 3, BSDS identified transition latent state; and 4, Occupancy rates, posterior 
probabilities, and mean lifetimes of latent brain states in 2-back working memory task can 
predict individual performance in 2-back task. We included details of these analysis and results 
in the Supplementary Material in revision. 
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Figure R14. Occupancy rate and mean lifetimes of latent brain states from BSDS with 12 
motion regression predict working memory performance: replication across Sessions 1 and 2. 
(a) A multiple linear regression model was trained using occupancy rates of latent brain states in 
the 2-back task to predict working memory accuracy.  A significant association was observed 
and predicted accuracies were correlated with observed accuracy in both sessions: (Session 1: 
r = 0.29, p < 0.002; Session 2: r = 0.31, p < 0.001). (b) Occupancy rate of the latent brain state 
SH which dominates the 2-back working memory task condition was correlated with working 
memory task accuracy in both sessions (Session 1: r = 0.33, p < 0.001; Session 2: r = 0.27, p <
0.005). No such relations were found for any of the other latent states. (c) A multiple linear 
regression model was trained using mean lifetimes of latent brain states in the 2-back task to 
predict working memory accuracy. Here again, a significant association was found and the 
predicted accuracy was correlated with observed accuracy in both sessions (Session 1: r = 
0.25, p < 0.01; Session 2: r = 0.24, p < 0.01). (d) Mean lifetime of the latent brain state 
SH which dominates the 2-back working memory task condition was correlated with working 
memory task accuracy in session 1 (Session 1: r = 0.23, p = 0.01) but not in Session 2.   



41

Reference 

1. Fox E, Sudderth E, Jordan M, Willsky A. An HDP-HMM for Systems with State 
Persistence. In: Proceedings of the 25th international conference on Machine Learning
(ed^(eds) (2008). 

2. Ryali S, et al. Temporal Dynamics and Developmental Maturation of Salience, Default 
and Central-Executive Network Interactions Revealed by Variational Bayes Hidden 
Markov Modeling. PLoS computational biology 12, e1005138 (2016). 

3. Taghia J, Ryali S, Chen T, Supekar K, Cai W, Menon V. Bayesian switching factor 
analysis for estimating time-varying functional connectivity in fMRI. NeuroImage 155,
271-290 (2017). 

4. Vidaurre D, Quinn AJ, Baker AP, Dupret D, Tejero-Cantero A, Woolrich MW. Spectrally 
resolved fast transient brain states in electrophysiological data. NeuroImage 126, 81-95 
(2016).

5. Fox E, Sudderth E, Jordan M, Willsky A. Nonparametric Bayesian learning of switching 
dynamical systems. Advances in Neural Information Processing Systems 21, 457-464 
(2009).

6. Smith R, Keramatian K, Christoff K. Localizing the rostrolateral prefrontal cortex at the 
individual level. NeuroImage 36, 1387-1396 (2007). 

7. Glasser MF, et al. The minimal preprocessing pipelines for the Human Connectome 
Project. NeuroImage 80, 105-124 (2013). 

8. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD. Decoding subject-driven 
cognitive states with whole-brain connectivity patterns. Cerebral cortex 22, 158-165 
(2012).



Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

The authors have done a remarkable job addressing my concerns and providing additional analysis to 

bolster their findings. As I indicated in my initial review, the work is very exciting and I hope the 

method and findings shape how functional brain dynamics are considered. It would have been ideal to 

see the method used on resting-state data as well, but given the extensive length and figure numbers, 

perhaps this is best saved for future work. So while still remaining technically challenging (the new 

description and figures are excellent) I support the manuscript's publication in its current form.  

 

R.Matthew Hutchison  

 

 

Reviewer #2 (Remarks to the Author):  

 

The authors’ did a very thorough job in addressing the comments on the previous version of their 

manuscript. I have a few outstanding questions that need to be addressed.  

 

1.I am confused by Eq. (2) in the Supplemental Material. It appears there is a \Sigma_k missing (i.e. 

the variance of the normal distribution should be U_ \Sigma_k U_k’ + \Phi_k). This is important as in 

standard linear dynamical systems this relationship leads to a degeneracy between \Sigma_k and U_k. 

For these reasons one typically assumes that (i) \Sigma_k is diagonal, and (ii) restricts either 

\Sigma_k to be identity or the columns of U_k to be unit vectors; see for example Roweis and 

Ghahramani 1999. It may be the case that the authors’ are assuming \Sigma_k is identity here, in 

which case Eq. (2) would seem to be correct. However, I don’t think this is the case. Please comment.   

 

2. I think I was unclear in how I asked a question last time, so I will try again. In Figure 7B it is 

difficult to compare the different states as they don’t share the same support in the x -axis (i.e. ST 

only takes small values and SH large values). The same comment holds for Figure 7D. In addition, 

using regression when the explanatory and response variables are both proportions does not seem 

appropriate, particularly as many of the values fall around 0.0 and 1.0.  

 

3. The legend for Figure 1 still uses y(t,s) instead of y_t^s  

 

References:  

 

Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural 

computation, 11(2), 305-345.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors appear to have done a good job in responding to my and the other reviewers' comments 

in general; however, I couldn't see a marked up version of the revised manuscript, and couldn't 

assess the changes in the new version (I apologize if I have just missed these).   

Assuming the revised ms is as the authors say, I still have a few remaining comments: 1) what 

circumstances would the proposed technique fail in or is it just better in all circumstances than 

ICA/PCA/recurrent neural networks/ other HMM approaches and for all data? I don't think I know of 

any approach that is optimal for every situation; 2) Although ICA/PCA are not directly comparable in 

all ways, they can be compared to some important aspects of the current analyses e.g., in relationship 



to predicting WM performance etc; and stability across individuals etc; 3) Did the authors also 

consider how well recurrent neural networks (like LTSM) could handle similar data and develop 

complex descriptions of transitions etc?  
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Reviewer 1 
 
1.1 “The authors have done a remarkable job addressing my concerns and providing 
additional analysis to bolster their findings. As I indicated in my initial review, the work is very 
exciting and I hope the method and findings shape how functional brain dynamics are 
considered. It would have been ideal to see the method used on resting-state data as well, but 
given the extensive length and figure numbers, perhaps this is best saved for future work. So 
while still remaining technically challenging (the new description and figures are excellent) I 
support the manuscript's publication in its current form. “ 
 
Response: We thank the reviewer for the positive feedback and for recommending our 
manuscript for publication in NCOMM.  
 
 
Reviewer 2 
 
2.1 “I am confused by Eq. (2) in the Supplemental Material. It appears there is a \Sigma_k 
missing (i.e. the variance of the normal distribution should be U_ \Sigma_k U_k’ + \Phi_k). This 
is important as in standard linear dynamical systems this relationship leads to a degeneracy 
between \Sigma_k and U_k. For these reasons one typically assumes that (i) \Sigma_k is 
diagonal, and (ii) restricts either \Sigma_k to be identity or the columns of U_k to be unit vectors; 
see for example Roweis and Ghahramani 1999. It may be the case that the authors’ are 
assuming \Sigma_k is identity here, in which case Eq. (2) would seem to be correct. However, I 
don’t think this is the case. Please comment.” 
 
Response: We agree with the reviewer. First, we would like to confirm that \Sigma_k has been 
considered implicitly as identity matrix in Eq.2 to avoid possible identifiability/degeneracy 
problems, as pointed out correctly by the reviewer. Thus, Eq.2 is correct as it stands. For 
reasons explained below, we found that it might be less confusing to express Eq.2 without 
explicitly including \Sigma_k in the expression, which means effect of \Sigma_k on the 
observation level is modeled by an identity matrix. 
 
Role of \Sigma_k:  
\Sigma_k includes information about the noise variance in the latent space variables. We still 
need to formally compute its posterior distribution as shown in Eq. 19, in order to robustly 
estimate parameters involved in the expression of the dynamical process on the latent space 
variables. However, on the observation level, the effect of Sigma_k remains throughout as 
identity to avoid degeneracy (this explains why Eq.2 was expressed without Sigma_k). This 
approach was shown in our work more effective than, in our opinion, rather strong heuristic 
approach of forcing Sigma_k as identity matrix throughout both the observation and latent space 
level, which we found results in poor estimation of the sufficient statistics of the latent space 
variables. 
 
2.2 “I think I was unclear in how I asked a question last time, so I will try again. In Figure 7B it is 
difficult to compare the different states as they don’t share the same support in the x-axis (i.e. 
ST only takes small values and SH large values). The same comment holds for Figure 7D. In 
addition, using regression when the explanatory and response variables are both proportions 
does not seem appropriate, particularly as many of the values fall around 0.0 and 1.0.” 
 
Response: We are sorry that we misunderstood the original comment. The reason we plotted all 
the state data in the same figure is to provide readers an overview of the distribution of all the 
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latent states’ occupancy rates and mean lifetimes against task performance during the 2-back 
task. We could plot separate figures for each state but we thought it would not be as insightful 
as the overlapped version. We would therefore prefer to keep the current figure format. 
 
To address the reviewer’s 2nd point, we applied Spearman’s correlation on the brain-behavior 
correlation analyses. We found similar results: occupancy rate of SH during the 2-back task is 
significantly and positively correlated with accuracy of the 2-back task in both task sessions 
(ps<0.001) and mean lifetime of SH during the 2-back task is significantly and positively 
correlated with accuracy of the 2-back task in both task sessions (ps<0.005), whereas 
occupancy rates and mean lifetimes of other non-dominate states during the 2-back task are 
negatively correlated with accuracy of the 2-back task in both task sessions (see Tables R1 & 
R2). These results are now included in the Supplementary Materials section of the revised 
manuscript.  
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Table R1. Spearman correlation between 
occupancy rates of latent brain states in the 2-
back task and working memory accuracy. 
 
Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.27 0.003 -0.13 0.13 
SH 0.32 0.001 0.29 0.001 
ST -0.19 0.04 -0.12 0.19 
SF -0.15 0.09 -0.42 0.001 
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Table R2. Spearman correlation between mean 
lifetimes of latent brain states in the 2-back task 
and working memory accuracy. 
 
 Latent 
state  Session 1 Session 2 

  r p r p 
SL -0.2 0.03 -0.09 0.31 
SH 0.35 0.001 0.26 0.004 
ST -0.2 0.03 -0.06 0.51 
SF -0.11 0.22 -0.42 0.001 
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2.3 “The legend for Figure 1 still uses y(t,s) instead of y_t^s” 
 
Response: We have now corrected this, please see revised Fig.1. 
 
 
Reviewer 3 
 
3.1 “The authors appear to have done a good job in responding to my and the other reviewers' 
comments in general; however, I couldn't see a marked up version of the revised manuscript, 
and couldn't assess the changes in the new version (I apologize if I have just missed these).” 
 
Response: We are sorry that the changes were not highlighted. We have now highlighted all the 
sections where extensive changes that have been made since the original submission.  
  
 
3.2 “Assuming the revised ms is as the authors say, I still have a few remaining comments: 1) 
what circumstances would the proposed technique fail in or is it just better in all circumstances 
than ICA/PCA/recurrent neural networks/ other HMM approaches and for all data? I don't think I 
know of any approach that is optimal for every situation” 
 
Response: We agree with the reviewer that no approach is likely to be optimal for every 
situation. Below we briefly mention two situations which could cause difficulties for the proposed 
method. It should be noted that, other HMM models would be faced with these same issues 
 
Scalability: handling large number of ROIs 
In our analysis, we considered a fully noninformative initialization of the BSDS. Specifically, we 
considered that the number of latent space variables, shown by P, to be one less than the 
number of ROIs, shown as D, that is we set P=D-1. For time series of length ~300, we found 
that as long as the number of ROIs is D<20, the model can be safely initialized fully 
noninformatively, and that the model is able to handle the given complexity as expected. 
However, in dealing with large number of ROIs, a fully noninformative initialization might be 
problematic, firstly, due to the computational complexity and secondly due to limited amount of 
data BSDS may fail to discard all the excess variations in data which may result in difficulties in 
robust estimation of all parameters and latent variables. In dealing with such scenarios, one 
might consider semi-informative initialization of the model by bounding the dimensionality of the 
latent space variables to use a certain percentile of variations in the observations (e.g., 90% of 
variations in data). In this way, optimal number of latent space variables for each latent state 
can still be determined automatically from data but they are now bounded. 
 
Handling abrupt changes in fast-transient even-related data 
BSDS is a generative model assumes an autoregressive process on the latent space variables 
that imposes smoothness characteristics which can at times be problematic in handling fast-
transient even-related data where there are locally sudden changes which happen infrequently. 
In such cases, although theoretically the HMM should be able to capture those sudden 
changes, due to the automatic relevance determination (ARD prior) embedded in our Bayesian 
inference, the states corresponding to those events may undesirably merge into other states. 
This is because few samples are associated to those sudden events, and consequently their 
respective states get regulated heavily due to the small evidence from data. However, we 
believe that these issues maybe more problematic for EEG/MEG than fMRI, given the inherent 
smoothness of the latter.  
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3.3 “Although ICA/PCA are not directly comparable in all ways, they can be compared to some 
important aspects of the current analyses e.g., in relationship to predicting WM performance etc; 
and stability across individuals etc” 
 
Response: To address the reviewer’s comment, we conducted additional analysis using ICA in 
combination with temporal clustering, an approach widely used to investigate dynamic functional 
connectivity using fMRI 1, 2, 3. Briefly, this approach includes: (1) group-wise spatial ICA to 
identify components of interest, (2) extracting time series of components of interest, (3) applying 
sliding window on time series and estimating time-varying covariance matrices, (4) clustering 
based on time-varying covariance matrix, and (5) determining the optimal number of clusters.  
 
Because identifying the optimal number of components in spatial ICA and matching ICA 
components between two task sessions is non-trivial, instead of running group-wise ICA per 
task sessions, we used ICA map from an independent study 4. Recall that the same ICA map 
was used to test the robustness of our findings and it replicated key results based task defined 
ROIs (Figure S5 in SI). This minimized the impact of different spatial parcellations when 
comparing different methods and data across two sessions. The ICA masks included bilateral 
AI, bilateral DLPFC, bilateral FEF, bilateral PPC, PCC, VMPFC and right DMPFC ROIs. We 
extracted time series from these regions and estimated dynamic functional interactions using a 
temporal sliding window approach with an exponentially decaying shape and a window length of 
25 seconds (34 TRs), which is shorter than the length of blocks (27.5 seconds), and a sliding 
step of 0.72 seconds (1 TR). Within each time window, we computed the z-transformed 
Pearson’s correlation between the time-series taken pairwise. This resulted in a time-series of 
correlation matrices (T x C); here T is the number of time windows and C is number of pairwise 
interactions among regions at each time point. We then applied a group-wise k-mean clustering 
to the time-series of correlation matrices, with the number of clusters (k) ranging from 2 to 10. 
Twenty-five different initializations were used to reduce the chance of getting stuck in local 
minima. Clustering performance was estimated using the silhouette method and the optimal 
number of clusters was determined based on maximal silhouette across all the iterations 5. 
 
Clustering analyses revealed that, based on Silhouette value, the optimal number of clusters 
was 2 in both data sessions. Thus, despite the presence of three separate task conditions, only 
two dynamic brain states could be identified using this approach (Figure R1 & R2). Further, we 
did not find any significant correlation between the occupancy rate of any latent brain states in 
the 2-back task blocks and accuracy of the 2-back task (p > 0.6; Table R3). 
 
We have included these additional analyses in the Supplementary Materials of the revised 
manuscript. 
  



7 
 

 
Figure R1. The optimal number of temporal clusters was determined using the maximal 
silhouette obtained across multiple iterations. In both data sessions, the maximal silhouette 
value was 2. Silhouette is a measure for validating clustering, which evaluates how similar a 
data point is to its own cluster compared to other clusters. Each color represents a k-mean 
clustering performance with a random initialization (the number of clusters ranges from 2 to 10). 
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Figure R2. Two temporal states identified using temporal clustering approach in each data 
session. 
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Table R3. Correlation between occupancy rates of 
latent brain states in the 2-back task and working 
memory accuracy (temporal clustering approach). 

Latent state  Session 1 Session 2 
  r p r p 

S1 0.02 0.87 0.04 0.65 
S2 -0.02 0.87 -0.04 0.65 
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3.4 “Did the authors also consider how well recurrent neural networks (like LTSM) could handle 
similar data and develop complex descriptions of transitions etc?” 
 
Response: This is an interesting suggestion. We plan to test such recurrent neural networks in 
our future studies.    
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REVIEWERS' COMMENTS:  

 

Reviewer #2 (Remarks to the Author):  

 

I am in general satisfied with the authors’ response to my previous comments. However, I 

believe the authors should add the paragraph found below the line “Role of \Sigma_k:“ on 

page 1 of their response to the supplemental material. This will help guide readers in 

understanding the model assumptions regarding \Sigma_k. In the current version I see no 

discussion of this issue in the manuscript.  

 

 

Reviewer #3 (Remarks to the Author):  

 

The authors have done an excellent job of responding to my queries and I support 

publication of the manuscript.  



Reviewer 2 
 
I am in general satisfied with the authors’ response to my previous comments. However, I 
believe the authors should add the paragraph found below the line “Role of \Sigma_k:“ on page 
1 of their response to the supplemental material. This will help guide readers in understanding 
the model assumptions regarding \Sigma_k. In the current version I see no discussion of this 
issue in the manuscript. 

Response: We thank the reviewer for the positive feedback. We have now included our 
responses regarding “Role of \Sigma_k:“ in the Supplemental Material. 
 

Reviewer #3 
 
The authors have done an excellent job of responding to my queries and I support publication of 
the manuscript. 

Response: We thank the reviewer for recommending our manuscript for publication in NCOMM. 
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