Biomarker discovery by integrated joint non-negative matrix factorization and pathway signature analyses

Naoya Fujita^{1, 2}, Shinji Mizuarai², Katsuhiko Murakami¹, and Kenta Nakai^{1,*}

¹Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan ²Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan

*Corresponding author Phone: +81-3-5449-5131 E-mail: knakai@ims.u-tokyo.ac.jp

Supplementary Figures 1-6

Fig. S1

Fig. S1a

Fig. S1d

(a) Relationship between missing and noise parameters and consistency of predefined clusters on *W*. The regression model is $y_W = 1.01 - 0.01a \cdot 0.00b \cdot 0.01c \cdot 0.01m$ (b) Relationship between missing and noise parameters *m*, *a* and consistency of predefined clusters on H_1 . The regression model is $y_{H1} = 1.01 - 0.04a + 0.00b + 0.00c \cdot 0.02m$ (c) Relationship between missing and noise parameters *m*, *b* and consistency of predefined clusters on H_2 . The regression model is $y_{H2} = 1.01 - 0.00a + 0.03b \cdot 0.01c \cdot 0.02m$ (d) Relationship between missing and noise parameters *m*, *c* and consistency of predefined clusters on H_3 . The regression model is $y_{H3} = 1.11 - 0.03a \cdot 0.02b \cdot 0.98c \cdot 0.12m$

Fig. S2

Fig. S2a

Fig. S2| Convergence of JNMF objective function

(a) Each gray and black line shows trajectory of the JNMF residuals, computed with the objective function. **(b)** The trajectory of best result reached to the smallest objective function value among the 10 trials.

Fig. S3

Fig. S3| Consensus matrix of the cancer cell line encyclopedia data

This consensus matrix shows reproducibility of JNMF output W in ten replicate trials. Both axes show cell lines in a cluster order. Blue components shows perfect grouping as in a cluster and white shows these cells are assigned in different clusters. Cophenetic correlation coefficient = 0.91.

IPA_MITF_melanoma_module12

© 2000-2017 QIAGEN. All rights reserved.

Fig. S4| MITF target genes in a co-module (#12)

Upstream analysis in the Ingenuity Pathway Analysis tool detected 47 genes out of 354 genes in a module (#12) as MITF downstream genes. Solid arrows mean that expression levels of these 47 mRNAs are reported as directly regulated by the transcription factor MITF.

© 2000-2018 QIAGEN. All rights reserved.

Fig. S5| Protein-protein interaction networks in a co-module (#12)

Protein-protein interaction analysis in the Ingenuity Pathway Analysis tool detected a sub-network of melanoma-related transcription factors, MITF, PAX3, SOX8, SOX10, POU3F2, FOXD3, and LEF1, out of 354 genes in a module (#12). Edges are based on the evidence of protein-protein interactions between nodes from literature.

Fig. S5

Fig. S6| MITF activation status as the additional biomarker for BRAFi

The illustration describes activation of the BRAF/MITF axis might be a more appropriate biomarker for predicting the efficacy of a BRAF inhibitor than BRAF mutation alone.