

Fig. S1 Cultures stressed with antibiotics show slight growth defect. OD600 values over time of the triplicate of *M. marinum* cultures that were used as basis for RNA isolation. The standard deviation is indicated by the error bars. The control without antibiotic is marked - (black).

Fig. S2 The RNA sequencing results are highly reproducible. The reproducibility of the data for the triplicate of RNA samples is indicated for both A) *M. tuberculosis* and B) *M. marinum*. Correlation between the samples is indicated by the colored scale bar. A positive correlation is visualized by a dark blue color.

Fig. S3 The transcriptional responses for ciprofloxacin are reproducible. The reproducibility of the data for the triplicate samples for ciprofloxacin for both A) *M. tuberculosis* and B) *M. marinum*. A positive correlation is visualized by a blue color. A scale bar indicating the correlation values is placed next to the figure. Both control (CTRL) as well as ciprofloxacin (CIP) samples are included.

Fig. S4 *M. tuberculosis* does not show a specific stress fingerprint for each type of antibiotic. The stress fingerprint of *M. tuberculosis* visualized per antibiotic for selected GO terms. The type of gene product that a gene encodes determines the GO-term. The size of the dot indicates the p-value.

Fig. S5 Fluorescence responses of the ten stress reporter strains in *M. marinum*. Ten stress reporters were monitored over the course of three days. The mean fluorescence intensity (MFI) of the treated stress reporters was corrected by deducting the corresponding untreated stress reporter induction levels. Mean fluorescence intensity (mEos3.2 levels) is indicated on the Y-axis. The numbers indicate the gene number of the promoter used, the colors indicate the type of antibiotic: ciprofloxacin (red), ethambutol (blue), isoniazid (orange), streptomycin (green) and rifampicin (purple).

Fig. S6 Overview of the different phases of the time-lapse experiment of the CIP-rep strain. There is a clear induction of CIP-rep during the time-lapse experiment. The still images were obtained from supplemental movie 1. The panels shown indicate the stage of the time-lapse experiment. Over time there is a strong increase in mEos3.2 positivity.

Fig. S7 The CIP-rep is a functional stress reporter in RAW macrophages. Mean fluorescence intensities of stress reporters was analyzed in a RAW macrophage cell infection model over two days of infection. Bars represent 1 representative measurement of 30,000 cells per time point. (A) RAW cells infected with the CIP-rep strain tested with 1x MIC (1 μ g/ml) ciprofloxacin (CIP). (B) RAW cells infected with the STR-rep strain were treated with 1x MIC (2 μ g/ml) streptomycin (STR) (C) RAW cells infected with the INH-rep strain were treated with 1x MIC (1 μ g/ml) ethambutol (EMB) and 1x MIC (10 μ g/ml) isoniazid (INH) and (D) the previously published *iniBAC* reporter was used as a positive control for induction with EMB (15).

Fig. S8 The gating strategy for *MMAR_4645* and quantification of the *iniB* control. All cells were stained with a viability marker (on Y-axis in a.u.). (A) The left panel shows the gate used to select for the RAW macrophages that were included for analysis in the right panel. In this panel quadrants were drawn for the sample labeled *4645* untreated to distinguish cells by viability (Y-axis) and fluorescence (X-axis). In total, Q3 counted 6590 events. (B) The gating strategy for the *iniB* controls as well as plots that shows the fluorescence in induction comparing *iniB* untreated (Q3: 6121 events) to *iniB* + ethambutol (Q3: 9515 events) day 3 post infection and post treatment. A quantification of the data is also provided in the graph, clearly showing that *iniB* is induced over time upon treatment with both 0.5x MIC (0.5 μ g/ml) and 1x MIC EMB (1 μ g/ml). Error bars represent the s.d. Each bar represents three independent samples.

Table S1 All primers used in this study

Primer name	Sequence 5' > 3'	Amplicon (bp)			
Mmar_2352FW	TGGCGGCCGCTCTAGAGGCGCCGAGAACTCGAAC				
Mmar_2352RV	GTGATTCCTCGGATCCACCGCCGAACCAGAATGC	1377			
Mmar_2308FW	TGGCGGCCGCTCTAGAAGCACCAGCGCCAGC	432			
Mmar_2308RV	GTGATTCCTCGGATCCGGTCAGCCAAGTTACCTGCAAC				
Mmar_4645FW	TGGCGGCCGCTCTAGACCGAGGGGAACAAAAGGCA	1032			
Mmar_4645RV	GTGATTCCTCGGATCCGAAAGTCTCCTTGCTGTTGGTTTCC	1052			
Mmar_4658FW	TGGCGGCCGCTCTAGAGGCTGTCACCATCCCCAC	282			
Mmar_4658RV	GTGATTCCTCGGATCCGCCGACACGGTGCCT				
Mmar_2389FW	TGGCGGCCGCTCTAGAGCGCTGCGCCCTCCA	382			
Mmar_2389RV	GTGATTCCTCGGATCCTCCGCGCACGATCCATCC				
Mmar_1988FW	TGGCGGCCGCTCTAGAGTGACCGCCGCGCGTG	282			
Mmar_1988RV	GTGATTCCTCGGATCCCAGATCAGGTTACGTGCCGC				
Mmar_3740FW	TGGCGGCCGCTCTAGAGGCCGTGTGCGTACACAC	4C 282			
Mmar_3740RV	GTGATTCCTCGGATCCGGGCTCCGACTCTGGCAC				
Mmar_2946FW	TGGCGGCCGCTCTAGAGTCAGCTGCTGCAGCCT	332			
Mmar_2946RV	GTGATTCCTCGGATCCAATCCCTGCTCCTCAGTTCG				
Mmar_1178FW	TGGCGGCCGCTCTAGAGCCGTCGCTGCGGCGG	222			
Mmar_1178RV	GTGATTCCTCGGATCCGCTTGCTCCCATCGGATTTGG	332			
Mmar_5163FW	TGGCGGCCGCTCTAGAACCGCCAACTCCAGCG	282			
Mmar_5163RV	GTGATTCCTCGGATCCGGCTTCGAATCAACACCAGGTC				
Mmar_1007FW	TGGCGGCCGCTCTAGAAACCGGCGATCGCGAC				
Mmar_1007RV	GTGATTCCTCGGATCCAAGTTTCACTGTACTCTGAAACCTTAGTAGATTT	TT 202			
Mmar_4413FW	TGGCGGCCGCTCTAGAGCCCGCCGTTGCCTCA	532			
Mmar_4413RV	GTGATTCCTCGGATCCGCTGGCACCGCCTTTG				

^a Primer sequences used for cloning of reporter constructs

^b The promoter specific sequence is italicized

Gene	Induced in Mmar by	Max fold induction	H37Rv	Induced in Mtb by	Gene product
	(antibiotic):	compared to NT	orthologue	(antibiotic):	name
MMAR_0614*	EMB4+24 INH4+24	91 328.55	Rv0341	EMB4+24 INH4+24	IniB
MMAR_1007	INH24	2	Rv0678	INH4+24	MmpR5
MMAR_1988	STR4+24 RIF4+24	10.33 4.85	Rv2725c	All antibiotics 4+24	HflX
MMAR_2308	RIF4+24	19.15	-	-	MMAR_2308
MMAR_2352	RIF4+24	8.51	Rv1517	-	MMAR_2352
MMAR_2389	INH4+24	5.97	Rv1592c	-	MMAR_2389
MMAR_2946	STR4+24	11.55	-	-	MMAR_2946
MMAR_3740	STR4+24	39.12	Rv2416c	All antibiotics 4+24	Eis
MMAR_4413	EMB4+24 INH4+24	2 5.46	Rv1057	EMB4 INH4+24	MMAR_4413
MMAR_4645	CIP4+24	47.83	Rv0887c	-	MMAR_4645
MMAR_4658	CIP4+24	93.7	-	-	MMAR_4658

Table S2 List of *M. marinum* stress reporter constructs

^a Selected genes for stress reporter construction.

^b Indicated are the MMAR gene numbers, the H37Rv orthologue (if present), the antibiotic and time point that was found to upregulate the gene in *M. marinum*.

^c The fold inductions were calculated by dividing the transcript levels of the antibiotic induced sample to the untreated samples.

^d * indicates a previously constructed reporter (1).

Supplemental data file 1

MMAR_1007

MMAR_2946

GTCAGCTGCTGCAGCCTCTCCGGCTTGGCGCGCGCGAAGCCCCTTCAAGCGCCTGCCCAGACGCA CGGCGTCACGGGTGCTCAGACCGTCGAGACGGCTGCGCAGCTGCGCAACGGACAGATCGGCCA CTCCGGTCAGGATAGGCGGTGCCGCGTTGCCCCTCGATAGCGCGGTCCGCGGATCTGACCGGGC ACCGAAAATACGTTGCCAGCTACCTGATTTGGAGCCATCATGCTAAGGGCTTGCAGCCGGGCCT TGGCGAGAGCCGGCGCTTGGGCTGACGAACTGAGGAGCAGGGATT<mark>GTG</mark>

MMAR_4645

CCGAGGGGAACAAAAGGCAGCAAGAAGGCACTGCCAGTGACGACCGTTGCAGCGACGTTCTGTC GTGAGTGAACTGATCTTGCCAGCCGGATAGCGCACCAGAAACGCGATCAAAATGTCCATAAGCA TTGCAAGACAGCACTTATCACTTATTCGCAGCCATCCCGAGTTAGTGCAGTTCAAGGTTTTTCCG CTGCTGCCCAATGCCTTTCGAATTAGACAATCGGTGAGCGATGCCATCAGCATCCTCGTTTCGCC CAGGCTTCTGACTTCGGCGCATTTTCGGGTCATCCTATGCACCAACATATCTCGTACATAACGAA CCTGAACACCAGTCGCTTTCACCCTCTCGGACAACATTCGCATCCGACGCCGGAGCCCGAACAC CAAAGCGACACCAGTCCGCGATCGTGGATGTTCGGCCACCAAGTGTTGACATATCGCCAGGAAG TGCTAACGGAGCGCAATCCCCTCGCAAATCGCGTCAAAATCAGCGTGTTTCGTGACGGAATAGT ACCCGTGTCGCGATCCAATCGTATTCGCGCCGATGCCGAAAAGTGCTCTCGCAGAGATGAAATC GTAGTCAACGGCGCCGTGTCTAGCGCTTTGGCGTCCACCAGGTCACTTGACGATCACTCGCCCA GCCAGCAACCGGGGGGCGAACCAGGGGGGGGGGGAACCGAGGCGAACCGGGCGACGGCGACGGC CACCGCCCGTCGGCTCATCCGCGCCTCATCCGCGCCTGTCTGCGCCTGATCTGCGCCTGATCTG CGCCTGATCCAAGAGTCCCGCACAGGCGACCAGCGCCCGTCCGGCCACAGGCCACCGGGGCTTG TCGGTGCCCCGCGGTTAAATGACGAACGCAGCGATGAGTTTGTGTCGCGGC<mark>TTGGGTCAGTACC</mark> GGTGAGCCCATTCGGGAAACCAACAGCAAG<mark>GAGACT</mark>TTC</mark>ATG

Sequence of cloned promoter regions Putative -10 (in *Mtb* TANNNT) <mark>5' UTR</mark> ATG - Methionine Start Codon

For *MMAR_1007* and *MMAR_4645*, regions were based on data available for *M. tuberculosis* orthologues *rv0678*

and rv0887c respectively from Cortes et al. (2). For MMAR_2946 these sequences are unknown. MMAR_1007 does

not have an SD sequence (2).

Supplemental movie 1: CIP-rep is strongly induced in response to ciprofloxacin treatment Supplemental movie 2: *iniBAC* is strongly induced in response to isoniazid treatment

Supplemental references

1. Boot M, Sparrius M, Jim KK, Commandeur S, Speer A, van de Weerd R, Bitter W. 2016. *iniBAC* induction is vitamin B12- and MutAB-dependent in *Mycobacterium marinum*. J Biol Chem, **291:**19800–19812. <u>https://doi.org/10.1074/jbc.M116.724088</u>

2 Cortes T, Schubert OT, Rose G, Arnvig KB, Comas I, Aebersold R, Young DB. Genomewide mapping of transcriptional start sites defines an extensive leaderless transcriptome in *Mycobacterium tuberculosis*. Cell Rep, **5**:1121-1131. https://doi.org/10.1016/j.celrep.2013.10.031