Additional Table 1 Natural polyphenols effects in Alzheimer's disease (AD) and Parkinson's disease (PD): in vitro and in vivo studies cited in the paper.

Natural polyphenols	Research models	Doses and effects	References
Natural polyphenols effects in AD In vitro studies			
Myricetin, Morin, Quercetin, Kaempferol, (+)-catechin, (-	Polymerization & destabilization assays (fluorescent spectroscopic analysis)	EC_{50} : 0.1–1.0 μM	Ono et al. (2003)
)-epicatechin, Tannic acid		Dose-dependently inhibition of fibrillary β -amyloid (fA β) formation and extension from fresh β -amyloid (A β) ₁₋₁₀ and A β ₁₋₁₂ and dose-dependently destabilization of preformed fAbs.	Ono et al. (2004)
Resveratrol, Piceid, Resveratrol diglucoside, Piceatannol,	Polymerization assays (ultraviolet (UV)-visible measurements and electron	Resveratrol EC ₅₀ : 5.6 μ M; Piceid EC ₅₀ : 4.7 μ M	Riviere et al. (2007)
Astringin, Viniferin, Curcumin	microscopy)	Inhibition in $A\beta_{25.35}$ fibrils formation stronger with these two polyphenols	
Verbascoside & its esterified derivative	Metal-free and metal-induced aggregation in vitro (spectroscopy)	Concentration used: 50 μM	Korshavn et al. (2015)
		Interaction of compounds simultaneously with both $A\beta$ and metal ions. Modulation of the early steps in	
		aggregation of both metal-free A β and metal-A β . Ability of compounds to disaggregate Cu(II)–A β ₄₀	
		aggregates	V: (1 (2017)
Resveratrol, trans ε-viniferin	Aggregation and disaggregation assays (scanning electron microscopy)	Concentration used: 1 µM	Vion et al. (2017)
		Inhibition of $A\beta_{1-12}$ aggregation and induction of $A\beta_{1-42}$ disaggregation by these polyphenols with better efficiency for trans ϵ -viniferin	
Resveratrol, ϵ -viniferin glucoside	Aggregation assays (UV-visible measurements)	Concentrations used: 1, 5 and 10 μM	Richard et al. (2011)
	ε-viniferin glucoside/Aβ complex formation assay (ESI mass spectrometric analysis)	Inhibition of $A\beta_{25-35}$, $A\beta_{1-40}$ and $A\dot{\beta}_{1-42}$ fibril formation with better efficiency for ϵ -viniferin glucoside. Interaction between ϵ -viniferin glucoside and $A\beta_{1-40}$	
Rosmarinic acid	Docking stimulation	EC _{sg} : 20.3 μM	Taguchi et al. (2017)
	· ·	Directly interaction of rosmarinic acid with $A\beta_{1-12}$	
EGCG	Synthesis of peptide and in vitro study	Binding to phosphorylation site of tau and inhibition of its aggregation	Gueroux et al. (2017)
Cyanine dye family member (C11)	Disaggregation assay	Concentration used: 0.001 µM	Duff et al. (2010)
		Reduction of aggregated tau levels	
GSPE (grape seed-derives polyphenol extract)	Circular dichroism spectroscopy and electron microscopy	Potential interference with the assembly of tau peptides into neurotoxic aggregates	Wang et al. (2010)
GSPE	Study of the effect of GSPE exposure on the ultrastructure of paired helical	Induction of dose- and time-dependent alterations in the morphology of PHFs with partial	Ksiezak-Reding et al.
	filaments (PHFs) isolated from AD brain by transmission electron microscopy	disintegration of filaments.	(2012)
Rosmarinic acid	ThT binding fluorescence assay of tau protein	Concentration used: 10–100 μM	Cornejo et al. (2017)
		Prevention of β-sheet assembly by RA, by direct interaction with tau	, , , , , , , , , , , , , , , , , , , ,
In vivo studies			
Curcumin	Aged APPsweTg2576	Chronic curcumin (500 ppm) injection for 5 months	Yang et al. (2005)
	v v	Crossing the blood brain barrier by curcumin. Bounding to amyloid plaques. Reduction of amyloid levels and plaques formation	ū
Curcumin	APP(Swe)/PS1dE9	Daily tail vein injections [7.5 mg/kg/day in phosphate-buffered saline (PBS)] for 7 days	Garcia-Alloza et al. (2007)
		Crossing the blood brain barrier by curcumin. Labelling senile plaques. Reduction of existing amyloid	
		plaques. Partially restoration of distorted neurites	
Polyphenol-rich grape seed extract	APP(Swe)/PS1dE9	Feeding during 6 months between 3 and 9 months of age Decrease in A β deposition	Wang et al. (2009)
Diets including 0.5% phenolic compounds (Myricetin,	Old female APPsweTg2576	Feeding during 10 months from the age of 5 months	Hamaguchi et al.
nordihydroguaiaretic acid (NDGA) or rosmarinic acid)	•	Decrease in amyloid plaques	(2009)
Resveratrol	AD Tg19959 mice	Administration by food during 45 days	Karuppagounder et al.
		Decrease in plaque formation in a region specific manner	(2009)
GSPE	TMHT mouse model of AD	Oral administration (200 mg/kg/day)	Wang et al. (2010)
		Decrease in the development of AD type tau neuropathology	
EGCG	Old APPsweTg2576	Daily intraperitoneal injections (20 mg/kg) between 12 and 14 months	Rezai-Zadeh et al.
		Decrease in insoluble hyperphosphorylated tau in brain	(2005)
EGCG	Old APPsweTg2576	Oral treatment (50 mg/kg in drinking water) between 12 and 14 months	Rezai-Zadeh et al.
		Decrease in insoluble hyperphosphorylated tau in brain	(2008)

Additional Table 1 Continued.

Research models	Doses and effects	References
Formation and destabilization of preformed α -synuclein (α -syn) fibrils assays	EC_{so} : 0.012–18.820 μM	Ono and Yamada
(fluorescence spectroscopy with thoflavin S and electron microscopy)	Anti fibrillogenic and fibril-destabilizing activity	(2006)
α-syn filament formation assay	IC_{50} : 2.5–9.8 μ M	Masuda et al. (2006)
	Strong inhibition of α-syn filament formation	
α-syn aggregation assay	Concentration used: 50 µM	Meng et al. (2010)
	Inhibition of the aggregation of α-syn by stabilizing non-pathogenic protein conformation	
α-syn filament formation assay	Concentration used: 10–50 μM	Caruana et al. (2011)
·	Determination of key molecular scaffolds most effective in inhibiting oligomer formation by α-syn and	
	disaggregating pre-formed oligomers	
Evaluation of protective role against membrane perturbation	Concentration used: 20 µM	Caruana et al. (2012)
	Strong protection against membrane perturbation induced by aggregated WT and mutant α-syn	
Study of aggregation inhibition mechanism		Meng et al. (2009)
, 60 0	· ·	0 , ,
Study of aggregation inhibition mechanism (circular discroism and fourier		Hong et al. (2008)
, 66 6	·	(3000)
, -		Ahsan et al. (2015)
, 50 0	·	, ,
1 .,	derivatives	
Binding and cytotoxicity assays	Concentration used: 100 µM	Ehrnhoefer et al.
· , , ,	Binding of EGCG to the natively undfolded polypeptides, forming complexes and decreasing their cytotoxicity	(2008)
Binding and cytotoxicity assays	Concentrations used: 0.2–6.0 µM	Lorenzen et al. (2014)
0 , , ,	Binding of EGCG to the oligomeric state of α-syn, destabilization of it and decreasing its cytotoxicity	
Cytotoxicity assays	Concentrations used: 10, 30, 50 and 70 µM	Yang et al. (2017)
	Facilitation of the conversion of "active" oligomers into fibrils	
Oligomers formation assay	<u>g</u>	Liu et al. (2014)
,	Inhibition of fibrils of a-syn formation and reduction of formation of oligomers rate by binding to soluble and non-toxic oligomers and stabilization of their structure	, ,
α-syn fibrils formation and destabilization of preformed filaments assays,	Concentrations used: 100 and 200 μM	Temsamani et al.
toxicity assay in cellular model	Inhibition of α -syn fibrils formation and destabilization of preformed filaments. Protection of PC12	(2016)
α-svn assay, toxicity assay in cellular model	• , ,	Albani et al. (2009)
a of a assay, contactly assay in contact model	· · · · · · · · · · · · · · · · · · ·	1 Houri et al. (2005)
a-syn-expressing PC12 cell lines		Wu et al. (2011)
	· ·	
Synphilin-1 aggregation assay in a cellular model (SHSY-5Y cells)		Pal et al. (2011)
	· ·	
	(fluorescence spectroscopy with thoflavin S and electron microscopy) α-syn filament formation assay α-syn aggregation assay α-syn filament formation assay Evaluation of protective role against membrane perturbation Study of aggregation inhibition mechanism Study of aggregation inhibition mechanism (circular discroism and fourier transform infra red analysis) α-syn aggregation and neurotoxicity assays (Biophysical, imaging techniques, dot blot and cell based assays) Binding and cytotoxicity assays Cytotoxicity assays Oligomers formation assay α-syn fibrils formation and destabilization of preformed filaments assays, toxicity assay in cellular model α-syn assay, toxicity assay in cellular model α-syn-expressing PC12 cell lines Pharmacological induction of autophagy by resveratrol	(fluorescence spectroscopy with thoflavin S and electron microscopy) a-syn filament formation assay a-syn aggregation assay a-syn aggregation assay a-syn filament formation assay Concentration used: 50 µM Determination of a-syn by stabilizing non-pathogenic protein conformation Concentration used: 10 ± 50 µM Determination of key molecular scaffolds most effective in inhibiting oligomer formation by a-syn and disaggregating per formed oligomers Concentration used: 20 µM Strong protection against membrane perturbation Study of aggregation inhibition mechanism Concentration used: 50 µM Formation of Schiffbase Concentration used: 50 µM Formation of Schiffbase Concentration used: 100 µM Binding and eyototoxicity assays (Biophysical, imaging techniques, dot bot and cell based assays) Binding and cytotoxicity assays Binding and cytotoxicity assays Binding and cytotoxicity assays Concentration used: 100 µM Binding of EGCG to the natively undfolded polypeptides, forming complexes and decreasing their cytotoxicity Cytotoxicity assays Concentrations used: 0.2-6.0 µM Binding of EGCG to the natively undfolded polypeptides, forming complexes and decreasing their cytotoxicity assays Concentrations used: 100, 30, 30 and 70 µM Facilitation of the conversion of "active" oligomers into fibrils Concentration and elevation of formation of oligomers rate by binding to soluble and non-toxic oligomers and stabilization of performed filaments assays, toxicity assay in cellular model a-syn assay, toxicity assay in cellular model Concentration used: 50 µM Protection of SK-N-Bi from the toxicity arising grom aggregation-prone protein a-syn(A30P) Concentration used: 50 µM Protection of SK-N-Bi from the toxicity arising grom aggregation-prone protein a-syn(A30P) Concentration used: 60 µM Protection of a-syn filaments assays, toxicity assay in cellula

 EC_{50} : Concentration for 50% of maximal effect; EGCG: epigallocatechin 3-gallate.