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1 EM ALGORITHM

1 EM Algorithm
The latent (unobserved) nature of {{yng }} and {{zng }} requires the adoption of
the Expectation-Maximization (EM) algorithm. Specifically, the EM algorithm
summarizes into the following steps:

• E-Step Given the current estimates of the model parameters, i.e., (Θ(t),π(t)),
we calculate the expectation of the log-likelihood with respect to the latent
variables (Y ,Z), i.e.,

Q(t)(Θ,π) = E
(
`(Y ,Z; Θ,π)

∣∣∣X,Θ(t),π(t)
)

• M-step we find (Θ(t+1),π(t+1), δ(t+1)) which are the solution of the fol-
lowing maximization problem

max
{Θ,π,δ}

Q(t)(Θ,π) +

N∑
n=1

`(hn;πn, δ)− P (Σ−11 ,Σ−12 ).

with `(.) being the log-likelihood function. Given π, Q(t)(Θ,π) is in the form
of a penalized Gaussian log-likelihood in Θ and therefore its maximization can
be solved by the graphical lasso algorithm [5]. The conditional densities of
π and δ are not in closed form and therefore their update needs to be done
using numerical optimization. In order to save computational time, we adopt a
strategy where first an estimate of π and δ is derived by assuming independence
across genes.

1.1 Tumor-purity estimation
First, we will obtain stable estimates of π and δ by assuming independence
across different genes. Therefore, assume that (yn1 , · · · , ynG)

iid∼ N(µY , σY I) and
(zn1 , · · · , znG)

iid∼ N(µZ , σZI) with I being the G dimensional identity matrix.
Since by assumption

xng = πny
n
g + (1− πn)zng , g = 1, · · · , G, n = 1, · · · , N.

zng can be written as zng =
xng−πny

n
g

1−πn and the joint likelihood reduces to:

L
(
Y , {hn}Nn=1|X,Θ,π

)
=

N∏
n=1

G∏
g=1

 1
√
2πσY

e
− 1

2σY

(
yng−µY,g

)2 1
√
2πσZ

e
− 1

2σZ

(
xng−πnyng

1−πn
−µZ,g

)2
×

×
N∏
n=1

[
Γ(αn)Γ(βn)

Γ(δ)
hαn−1n (1− hn)βn−1

]
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1.1 Tumor-purity estimation 1 EM ALGORITHM

with αn = πnδ and βn = (1− πn)δ. After some algebra, the log-likelihood can
be written as

`(Y , {hn}Nn=1|X,Θ) =

G∑
g=1

[
−

1

2σY

N∑
n=1

(yng )
2 +

µY,g

σY

N∑
n=1

yng −
n

2
log σY −

n(µY,g)
2

2σY

]
+

G∑
g=1

[
− 1

2σZ

N∑
n=1

(zng )2 +
µZ,g
σZ

N∑
n=1

zng −
n

2
log σZ −

n(µZ,g)
2

2σZ

]
+

N∑
n=1

[Γ(αn) + Γ(βn)− Γ(δ) + (αn − 1) log hn + (βn − 1) log(1− hn)]

where µY,g and µZ,g are the gth element of vector µY and µZ , respectively.

1.1.1 E step

During the E Step, we calculate the expectation of the log-likelihood with re-
spect the latent variables (Y ,Z) given the observed variable X. In order to
find E(Z,Y )|X (`(Z,Y |X,Θ)) we need to derive the following quantities:

1. By independence, EY |X
(∑G

g=1

∑N
n=1 y

n
g

)
=
∑G
g=1

∑N
n=1EY |X

(
yng
)
.

Given that the observed variableX is a linear function of the latent Gaus-
sian variable Y the following holds

EY |X
(
yng
)

= µY,g + σX,Y σ
−1
X,n(xn,g − µX,n,g)

where µX,n,g = (πnµY,g + (1− πn)µZ,g), σX,n =
(
π2
nσY + (1− πn)2σZ

)
and σX,Y = Cov(X,Y ) = πnσY .

2. EY |X
(∑G

g=1

∑N
n=1(yng )2

)
=
∑G
g=1

∑N
n=1EY |X

(
(yng )2

)
. Given that

the observed variable X is a linear function of the latent Gaussian variable
Y the following holds

VY |X
(
(yng )2

)
= σY +σX,Y σ

−1
X σX,Y = σY−πnσY (πnσY +(1−πn)σZ)−1πnσY

with EY |X
(
(yng )2

)
= VY |X

(
(yng )2

)
+
(
EY |X

(
yng
))2

3. Derive EZ|X
(∑G

g=1

∑N
n=1 z

n
g

)
and EZ|X

(∑G
g=1

∑N
n=1(zng )2

)
similarly.
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1.2 Estimation of concentration matrices 1 EM ALGORITHM

1.1.2 M step

Implement the Expectation Conditional Maximization algorithm (ECM) [8].
Sample each parameter conditioning to others as follows:

1. For n ∈ {1, . . . , N},
derive π(t)

n maximizing `
(
Z,Y , {hn}Nn=1|{π∗n},µ

(t−1)
Y , σ

(t−1)
Y , σ

(t−1)
Z ,µ

(t−1)
Z

)
2. Derive µ(t)

Y maximizing `
(
Z,Y , {hn}Nn=1|µ∗Y , {π

(t)
n }, σ(t−1)

Y , σ
(t−1)
Z ,µ

(t−1)
Z

)
3. Derive σ(t)

Y maximizing `
(
Z,Y , {hn}Nn=1|σ∗Y ,µ

(t)
Y , {π(t)

n }, σ(t−1)
Z ,µ

(t−1)
Z

)
4. Derive µ(t)

Z maximizing `
(
Z,Y , {hn}Nn=1|µ∗Z , {π

(t)
n }, σ(t−1)

Z , σ
(t)
Y ,µ

(t)
Y

)
5. Derive σ(t)

Z maximizing `
(
Z,Y , {hn}Nn=1|σ∗Z ,µ

(t)
Z , {π(t)

n }, σ(t)
Y ,µ

(t)
Y

)
1.2 Estimation of concentration matrices
Here, we considered as fixed the tumor purity π and derive estimate of param-
eters in Θ. The log-likelihood can be written as:

`(Y ,Z|X,Θ,π) = −1

2
|ΣY | −

N∑
n=1

1

2
(Y n − µY )TΣ−1Y (Y n − µY )−

−1

2
|ΣZ | −

N∑
n=1

1

2
(Zn − µZ)TΣ−1Y (Zn − µZ)

with Y n = (yn1 , . . . , y
n
G)

T . After some algebra, we obtain:

`(Y ,Z, |X,Θ,π) = −1

2
log |Σ−1Y | −

N∑
n=1

1

2

[
(Y n − µY )

T
Σ−1Y (Y n − µY )

]
+

−1

2
log |Σ−1Z | −

N∑
n=1

1

2

[
(Zn − µZ)

T
Σ−1Z (Zn − µZ)

]
Given that, zng =

πny
n
g−x

n
g

1−πn , the log-likelihood can be written as:

`(Y ,Z, |X,Θ,π) = −1

2
log |Σ−1Y | −

N∑
n=1

1

2

[
(Y n − µY )

T
Σ−1Y (Y n − µY )

]
+

−1

2
log |Σ−1Z | −

N∑
n=1

1

2

[(
πnY

n −Xn

1− πn
− µZ

)T
Σ−1Z

(
πnY

n −Xn

1− πn
− µZ

)]
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1.2 Estimation of concentration matrices 1 EM ALGORITHM

1.2.1 E step

The expectation step needs to solve EY n|Xn

[
(Y n − a)TC(Y n − a)

]
. In par-

ticular, let Y n|Xn ∼ N (µY n|Xn ,ΣY n|Xn), then

EY n|Xn

[
(Y n − a)TC(Y n − a)

]
= tr

(
EY n|Xn

[
(Y n − a)TC(Y n − a)

])
= EY n|Xn

[
tr((Y n − a)TC(Y n − a))

]
= EY n|Xn

[
tr((Y n − µY n|Xn)TC(Y n − µY n|Xn))

]
+EY n|Xn

[
tr((a− µY n|Xn)TC(a− µY n|Xn))

]
= EY n|Xn

[
tr(C(Y n − µY n|Xn)(Y n − µY n|Xn)T )

]
+(a−µY n|Xn)TC(a−

µY n|Xn) =

= tr(CΣY n|Xn) + (a− µY n|Xn)TC(a− µY n|Xn)

Then, the expected log-likelihood is equal to

EY |X [`(Y ,Z|X,Θ,π)] = −1

2
log |Σ−1Y |−

N∑
n=1

1

2

[(
µY n|Xn − µY

)T
Σ−1Y

(
µY n|Xn − µY

)]

−1

2

N∑
n=1

tr(Σ−1Y ΣY n|Xn) +N log |Σ−1Z | −
N∑
n=1

tr
(

π2
n

(1− πn)2
ΣY n|XnΣ−1Z

)

−
N∑
n=1

[
(1− πn)−2

(
Xn − πµY n|Xn − (1− πn)µZ

)T
Σ−1Z

(
Xn − πµY n|Xn − (1− πn)µZ

)]
where µY n|Xn = µ̂Y +ΣXY Σ−1X (Xn−µX) and ΣY n|Xn = Σ̂Y +ΣXY Σ−1X ΣXY

with ΣXY = Σ̂Y and (Σ̂Y , µ̂Y ) being the current estimate of (ΣY ,µY ).

1.2.2 M step

In this step we need to maximize the following penalized expected log-likelihood
function:

arg max
Θ

EY |X [`(Y ,Z, |X,Θ,π)]− λP (Σ−1Y ,Σ−1Z ) (1)

with Θ = (µY ,µZ ,ΣY ,ΣZ). In particular, the maximization process can be
summarized by the following steps:

1. The maximum likelihood estimate of µY is µ∗Y = 1
N

∑N
n=1 µY n|Xn .

2. The maximum likelihood estimate of ΣY can be found using function
glasso available in R Cran.

3. Similarly we can find the maximum likelihood estimates of µZ and ΣZ
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2 SYNTHETIC DATA

  

Figure S1: Histogram of tumor-purity for 896 TCGA breast cancer samples.
Tumor-purity was estimated using the algorithm ABSOLUTE which infers
tumor-purity based on copy number variation data.

2 Synthetic Data

2.1 Tumor purity estimation
2.1.1 Network topology

The total number of nodes was divided into 4 different disjoint sets. Then, for
each network, the network topology for each subset of nodes was randomly gen-
erated from a power law degree distribution. The two networks were not forced
to overlap in any way. This strategy resulted in tumor and normal networks
containing 996 each edges with only 19 edges shared across the two networks.
Specifically, edges were detected for values in the concentration matrix in abso-
lute value greater than 0.001.

2.1.2 TCGA breast cancer tumor purity

Fig. S1 shows the histogram of tumor purity for 896 TCGA breast cancer sam-
ples. Tumor-purity was estimated via ABSOLUTE [3], a well known algorithm
which infers tumor-purity from copy number variation data.

2.1.3 Tumor purity under model misspecification

For the synthetic data example in section 4.1, the true and estimated model
for the prior estimate of tumor purity hn were assumed to be the same. In
this section we show that good estimation performance can be obtained even in
the case of model misspecification. Specifically, hn was generated considering

S 7



2.2 Co-expression networks estimation 2 SYNTHETIC DATA
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Figure S2: Correlation between prior estimate and true purity (left plot) and
correlation between estimated and true purity (right plot) for different values
σ.

a logistic regression, i.e., logit(hn) = logit(πn) + εn with εn being normally
distributed with mean zero and variance σ. Given a network topology involving
1, 000 genes, for each value of σ ∈ {1, 2, 5}, ten independent data sets involving
200 observations each were generated. For each data set, tumor purity was
estimated modeling hn as hn ∼ Beta(αn, βn) with αn = πnδ and βn = (1 −
πn)δ. Fig. S2 shows the boxplot of correlation between the prior and the
estimated tumor purity with the true tumor-purity over different replicates. As
σ increases, the correlation between the prior estimate {hn} and the true purity
{πn} decreases. However, the estimated tumor purity remains highly correlated
with the true tumor-purity for any values of σ.

2.2 Co-expression networks estimation
Given the network topology, we simulated 10 replicates from a Gaussian graph-
ical model with covariance matrices constructed using the technique presented
in section 7.1.1 of Danaher et al (2014) [4].

2.2.1 Network topology

Independent networks. The total number of nodes was divided into 4 different
disjoint sets. Then, for each network, the network topology for each subset of
nodes was randomly generated from a power law distribution. The two networks
were not forced to overlap in any way. This strategy resulted in the networks
shown in Fig. S3(a) containing 996 edges each with only 19 edges shared across
the two networks. Specifically, edges were detected for values in the concen-
tration matrix in absolute value greater than 0.001. The same strategy was
adopted in order to generate networks involving 500 nodes. In particular, the
tumor and normal networks containing 500 nodes involved 496 edges each with
20 edges shared across the two networks.

S 8



2.3 Choice of penalty parameters 2 SYNTHETIC DATA

Partially overlapping networks. We divided 1, 000 nodes into 4 different disjoint
sets. Then, for tumor-network, the network topology for each subset was ran-
domly generated from a power law distribution. For normal-network, two of the
components were randomly generated from the power law distribution; while
the remaining two components were set equal to two components in tumor-
network. Fig. S3(b) shows the topology of the two networks. Tumor-network
and Normal-network involved the same number of edges equal to 996 with 514
edges being shared across the two networks.

2.3 Choice of penalty parameters
For the penalty parameters of TSNet (i.e., ρy and ρz), we considered equally
spaced values ranging from 0.18 and 0.33. Then, TSNet model was implemented
considering any possible pairwise combination of the two parameters. For the
penalty parameter of mixNet, i.e. ρ, we considered equally spaced values ranging
from 0.1 to 0.5.

2.4 Star topology
In this section, we evaluate the performance of TSNet and mixNet considering
a different type of network topology, i.e., the star topology. Specifically, we
consider networks involving 1, 000 nodes which were obtained as the union of
four sub-networks involving equally sized disjoint set of genes. Specifically, each
sub-network was randomly sampled from the star distribution (the topology of
the generated networks is shown in Fig. S4(a)). Based on this topology, we
simulated 10 data replicates containing N = 200 observations each. Fig. S4(b)
shows the average of ROC curves over different replicates for both mixNet and
TSNet models. For any false positive rate, TSNet results in higher true positive
edges than mixNet.

2.5 Networks estimated via BIC
For TSNet, the penalty parameter was chosen to minimize the BIC defined
as BIC(ρy, ρz) = −2` + (Eρy (Σy) + Eρz (Σz)) log(N) with Eρy (Σy) being the
number of elements different from zero in the inverse covariance matrix under
penalty parameter ρy and ` being the log-likelihood function. Similarly, mixNet
was implemented for different values of the penalty parameters with the best
penalty parameter chosen to minimize BIC(ρ) = −2`+ Eρ(Σx) log(N).

2.6 Comparison with DeMix
In this section, TSNet was compared to a two-step approach where, first, mixed
data is deconvoluted into tumor and non-tumor components and, then, networks
for both components are estimated using the standard Graphical lasso. In order
to deconvolve gene expression from infiltrated tumor tissue, we utilized DeMix

S 9



2.6 Comparison with DeMix 2 SYNTHETIC DATA

  

(a) Independently generated Tumor and Normal Networks from the Power Law Distribution

Edges Specific to Tumor-Network (977)Edges Specific to Tumor-Network (977)

Edges Specific to Normal-Network (977)Edges Specific to Normal-Network (977)

Shared Edges (19)Shared Edges (19)

(b) Partially overlapping Tumor and Normal Networks  from the Power Law Distribution

Edges Specific to Tumor-Network (482)Edges Specific to Tumor-Network (482)

Edges Specific to Normal-Network (482)Edges Specific to Normal-Network (482)

Shared Edges (514)Shared Edges (514)

Figure S3: (a) Independently generated tumor and normal networks. For each net-
work, 1, 000 nodes were divided into 4 equally sized non-overlapping sets. Then, for
each subset of nodes, a network topology was generated from the star topology. The
two networks were independently generated without forcing any overlapping structure.
(b) Partially overlapping tumor and normal networks. For each network, 1, 000 nodes
were divided into 4 equally sized non-overlapping sets. For the tumor network, a topo-
logical structure was generated from a power law distribution for each of the sets of
nodes. For the normal network, two of the components were randomly generated from
the power law distribution; while the remaining two components were set equal to two
of the components in tumor-network.
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2.6 Comparison with DeMix 2 SYNTHETIC DATA

  

(a) Star Topology

Edges Specific to Tumor-Network (1054)Edges Specific to Tumor-Network (1054)

Edges Specific to Normal-Network (1036)Edges Specific to Normal-Network (1036)

Shared Edges (8)Shared Edges (8)

MixNet

TSNet

Normal

Tumor

(a) ROC Curves

Figure S4: (a) Networks generated from the Star topology. For each network, 1, 000
nodes were divided into 4 equally sized non-overlapping sets. Then, for each subset
of nodes. The two networks were independently generated without forcing any over-
lapping structure. (b) Average of ROC over different replicates for mixNet (blue) and
TSNet model (red).

[1] – a well known algorithm for the deconvolution of mixed expression data.
DeMix models gene expression of gene g and sample n as

xng = πny
n
g + (1− πn)zng

with yng ∼ log2N(µy, σy) and zng ∼ log2N(µz, σz) with log2N being the log2
Gaussian distribution.

Data generation For this synthetic data scenario, we simulated data from the
following model

xng = πny
n
g + (1− πn)zng

with (zn1 , . . . , z
n
p ) ∼ log2N(µZ ,ΣZ) and (yn1 , . . . , y

n
p ) ∼ log2N(µY ,ΣY ). In

particular, 10 different replicates involving 200 samples each were simulated. In
order to deconvolve mixed data into tumor and non-tumor components, DeMix
requires some samples with tumor purity equal to zero (i.e., samples from non
tumor tissue). For this reason, we set the tumor-purity of a subset of samples
equal to zero. In order to assess how an increasing fraction of non-tumor sam-
ples might affect the results, we generated data with two different fraction of
normal samples, i.e., 10% and 25% of the total number of samples. For the re-
maining samples, tumor purity was sampled either from a Uniform distribution
defined on the interval [0, 1] or a Beta distribution with mean 0.05 and standard
deviation 0.04 to mimic the tumor-purity in TCGA Breast cancer (Fig. S1).
Specifically, we consider three simulation scenarios. In the first simulation sce-
nario, the number of samples with tumor purity equal to zero was 25% and the
tumor purity of the remaining samples was randomly generated from a uniform
distribution. For the second synthetic data scenario, we still considered 25% of
samples with tumor purity equal to zero, but we generated the tumor purity
for the other samples from the Beta distribution. In the final synthetic data
scenario, the number of "normal" samples was reduced to 10% and the tumor

S 11



2.7 Computational time 2 SYNTHETIC DATA

purity of other samples was generated from the Beta distribution. Following [1],
in all three synthetic data scenarios, mean parameters µZ and µY were simu-
lated as follows. A subset of genes (i.e., 25%) was considered to be differentially
expressed (DE) between tumor and non-tumor components. For each gene g,
the tumor component mean µgY was sampled from a N(7, 2), while the non-
tumor component mean was set equal to µgZ = µgY + βgZ , with β

g
Z ∼ N(6, 1.5)

for DE genes and βgZ ∼ N(0, 0.2) for non-DE genes. The covariance matrices ΣZ
and ΣY were randomly generated from a power law distribution. Specifically,
we considered networks involving 500 nodes which were obtained as the union of
four sub-networks involving different set of genes, with each sub-network being
randomly generated from the power law degree distribution.

Implementation Using DeMix, we deconvoluted {xng } into gene expression of
tumor cells and non-tumor cells, i.e., {yng } and {zng }. Then, the deconvoluted
matrices were log2 transformed and the standard graphical lasso was imple-
mented in order to estimate co-expression networks of the two components. On
the other hand, TSNet was directly implemented on mixed data {xng } after ap-
plying genewise standardization (zero mean and unit variance).

Results Fig. S5(a) shows the performance of DeMix and TSNet in recover-
ing the true level of tumor-purity. Specifically, for both methods, we show the
correlation between true tumor purity and estimated tumor purity over different
replicates. As shown, TSNet outperforms DeMix for all simulation scenarios.
Fig. S5(b) shows the mean of ROC over different replicates in estimating tu-
mor and non-tumor networks based on both Demix and TSNet algorithms. As
shown, as the number of non-tumor samples increases from 10% to 25% of the
total number of samples, both algorithms can estimate non-tumor networks
more accurately. However, despite the data was generated from a mixture of
log2 Gaussian distributions to favor DeMix model, TSNet outperformed the
competitor in estimating both non-tumor and tumor specific networks on all
synthetic data scenarios.

2.7 Computational time
Table S1 shows the computational time of TSNet necessary to estimate tu-
mor purity and co-expression networks for different synthetic data examples
presented in section 4. Computational time was computed based on an IBM
machine with 12 Intel Ivy Bridge (3.5 GHz) cores and 64GB of memory. For
tumor purity, Table S1 shows the mean of computational time across 10 differ-
ent replicates. As shown, the computational time for tumor purity estimation is
particularly low for any simulation scenario. For network estimation, we imple-
mented TSNet for different penalty parameters and, then, computed the mean of
computational time across different choices of penalty parameters. Then, Table
S1 shows the mean across 10 different replicates of those averaged computa-
tional times. Although the increased sample size does not affect computational
time, an increasing network dimension substantially affects the computational
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(a) Tumor Purity Estimation(a) Tumor Purity Estimation

(b) Network Estimation(b) Network Estimation

25% Non-Tumor Samples
Purity from Uniform

25% Non-Tumor Samples
Purity from Beta 

10% Non-Tumor Samples
Purity from Beta 

Demix
TSNet
Normal
Tumor

Figure S5: Comparison between DeMix and TSNet (a) Estimation of tumor purity.
Correlation between estimated tumor purity and true value over different replicates
for different simulation scenarios and different methods (i.e., DeMix and TSNet). (b)
Average of ROC over different replicates for different simulation scenarios and different
methods.

S 13



3 REAL DATA

n p Purity Network
200 500 30 613
200 1, 000 39 4, 662
400 1, 000 61 4,012

Table S1: Computational time in seconds for tumor-purity and network estima-
tion for different synthetic data examples. For each data scenario, we show the
mean of computational time over 10 different replicates. Computational time
was computed using an IBM node with 12 Intel Ivy Bridge (3.5 GHz) cores and
64GB of memory.

time of the network inference.

3 Real Data

3.1 ABSOLUTE’s purity as prior
In this section, we show that similar results were obtained considering tumor-
purity from ABSOLUTE [3] as prior. Fig. S6 shows the Pearson’s correlation of
tumor purities from TSNet, ABSOLUTE [3] and ESTIMATE [10]. This results
are very similar to the ones presented in section 4.1, and, therefore, different
choices of priors resulted in similar tumor-purity estimates.

3.2 Choice of penalty parameters
For TSNet model, we considered a grid of values for the two penalty parameters
(ρy, ρz) ranging from 0.01 to 1. Then, TSNet model was implemented consid-
ering any possible pairwise combination of the two parameters. For mixNet
model, we considered values for the penalty parameter ρ ranging from 0.01 to
1. For both TSNet and mixNet, about 600 models have been estimated using
different penalty parameters.

3.3 Networks estimated via BIC
TSNet Model: Different penalty parameters resulted in different network dimen-
sions. For TSNet networks, the best model was selected via Bayesian Informa-
tion Criteria (BIC). Specifically, for TSNet, the penalty parameter was chosen to
minimize the BIC defined as BIC(ρy, ρz) = −2`+ (Eρy (Σy) +Eρz (Σz)) log(N)
withN being the number of observations, Eρy (Σy) being the number of elements
different from zero in the inverse covariance matrix under penalty parameter ρy
and ρz and ` the log-likelihood. In particular, an element of the concentration
matrix was considered different from zero when greater than 0.001 in absolute
value. Following this strategy, we selected the best penalty parameter and we de-
rived the two networks TSNet-tumor and TSNet-normal. In particular,TSNet-
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Figure S6: Pearson’s correlation of tumor purity from TSNet, ABSOLUTE
[3] and ESTIMATE [10] with methylation-based estimates of the fraction of
leukocytes in tumor tissue.

tumor and TSNet-normal networks contained 2, 625 and 290 edges, respectively.

mixNet Model: Similarly, the best model was selected also for mixNet. mixNet
was implemented for different values of the penalty parameters with the best
penalty parameter chosen to minimize BIC(ρ) = −2`+Eρ(Σx) log(N), with N
being the number of observations, ρ being the penalty parameter, Eρ(Σx) the
number of edges obtained using penalty parameter ρ and ` the log-likelihood
of the data. In particular, the number of edges was calculated by counting
the number of elements in the estimated concentration matrix different from
zero (i.e., greater than 0.001 in absolute value). The network selected via BIC
involved 9, 983 edges.

3.4 Consensus networks
As mentioned in section 3.2, models selected via BIC resulted in networks of
difficult comparison given their dramatic difference in the number of edges.
Therefore, the following technique was adopted to derive consensus networks.
For each network type (i.e., TSNet-normal, TSNet-tumor and mixNet), a con-
sensus network was derived based on a series of inferred network models of
different dimension ranging from 500 to 3,500 edges (obtained by varying the
penalty parameters). Specifically, take TSNet-tumor as an example, we divided
the interval [500, 3500] into six equally sized intervals of dimension 500, i.e.,
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3.5 KL Statistics for pathway enrichment of hub-structure 3 REAL DATA

[τ, τ +500) with τ ∈ {500, 1000, 1500, 2000, 2500, 3000}. Then, for each interval,
we considered TSNet-tumor models whose sizes were contained in this interval
and, among those networks, we selected the network with the least complexity
(the smallest number of nodes). Following this strategy, we derived six different
networks, one for each interval. We then derived the final network as the union
of edges which were contained in at least 80% of the six networks. Following
this strategy, we obtained the final TSNet-tumor, TSNet-normal and mixNet
networks which contained 707, 793, and 993 edges, respectively.

3.5 KL Statistics for pathway enrichment of hub-structure
A weighted version of the Kolmogorov-Smirnov statistics [9] was utilized in
order to assess if hub-genes in a given network were enriched of a particular
pathway. For a given network containing E edges, we first ordered genes in
decreasing order of connecting edges, i.e., {g1, . . . , gG}. Then, for each pathway
M containing nM genes, we computed the following statistics

KL(i) =

 ∑
j:(gj∈M)&(j≤i)

wj
SM
−

∑
j:(gj 6∈M)&(j≤i)

1

G− nM


with SM =

∑
j:(gj∈M) wj , with wj being the number of connecting edges of

gene gj . Then, for each pathway, we derived a score S(M) which was defined
as the maximum deviation from zero of {KL(i)}Gi=1. In order to test the signif-
icance of the enrichment and adjust for multiple comparison, we implemented
the permutation based technique illustrated in [9] which is summarized in the
following steps:

1. Derive S(M) for each pathway M

2. For each permutation ω. Randomly sample a network with E edges, order
the genes based on the new network topology and derive S(M,ω) for each
pathway M . This step was repeated for n(ω) = 20, 000 permutations.

3. Adjust for the different gene set size by normalizing the score S(M) and
S(M,ω) by dividing them by the mean of S(M,ω) over different ω which
results in the normalized scores S∗(M) and S∗(M,ω).

4. Compute the FDR for each threshold fj as follows

fdr(fj) =

∑
M

∑
ω 1S∗(M,ω)>fj/n(ω)∑
M 1S∗(M)>fj

where 1A is the indicator function equal to one if A is satisfied and to zero
otherwise.
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3.6 Enrichment of network topology
Following the strategy illustrated by Zhu et al, (2008) [11], we carried out an
enrichment analysis based on the topological structure of each network, i.e.,
TSNet-tumor, TSNet-normal and mixNet. For the analysis, we considered
MSigDB Canonical [7] and Hallmark [6] pathways. In particular, we focused
on 442 pathways containing at least 5 of the genes considered in the network
analysis. For each network, we carried out a fisher exact test to assess whether
the network was enriched of a particular category. Specifically, given a pathway
and a network topology, we considered the first order neighborhood of the genes
contained in the pathway. From the resulting set of connected nodes, we iden-
tified the independent sub-network with the highest number of nodes. Then,
considering this sub-network, we carried out a fisher exact test to test whether
the pathway of interest was enriched. Based on this test, for each network, we
derived p-values for the 442 pathways which were then adjusted for multiple
comparison using a Benjamini-adjustment [2].

3.7 Robustness of the method to experimental noise
In order to assess how results might be affected by different levels of experi-
mental noise, we carried out a new simulation experiment in which the ovarian
expression data was perturbed by adding different levels of white noises. Specif-
ically, a (p× n) matrix of white noises was generated by sampling each element
independently from a Gaussian distribution with mean zero and standard devi-
ation σ which was then added to the original data matrix. For this experiment,
two different levels of noises corresponding to different values of σ (i.e., 0.1 and
0.4) were considered. For simplicity, these two levels of noises will be referred
to as Level 1 and Level 2, respectively. Fig. S7(a) shows the comparison be-
tween tumor purity estimation based on original and perturbed data for different
levels of noise. As shown, the tumor purity estimates from perturbed data is
very consistent with that based on the original data with a correlation higher
than 0.99 for any level of noise. Then, TSNet was implemented to estimate co-
expression networks for the tumor and non-tumor components. For simplicity,
we will refer to the network based on original and perturbed data as original
network and noisy network, respectively. For sake of comparison, we consider a
given network dimension (i.e., 500 nodes) and we compare the edges and hub-
gene structure of the original and noisy networks. In particular, as hub-gene,
we consider any network node with more than 10 connecting edges. Table S2
shows the number of edges overlapping between original and noisy networks. As
shown, the number of overlapping edges is particularly high for the non-tumor
network (78% overlapping edges) for Level 1 noise. Although the tumor network
experiences a lower overlap between network edges, it has an high percentage
of overlapping hub-genes (94% overlapping hubs) no matter the level of noise.
This high overlap shows the ability of TSNet to robustly identify hub-genes in
the network. Fig. S7(b) shows the scatterplot of the degree of the hub-genes in
the original network based on both original and noisy networks. As shown, the
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Edges Hub-genes
Noise SD Non-Tumor Tumor Non-Tumor Tumor

0.10 0.78 0.51 0.69 0.94
0.40 0.52 0.60 0.53 0.94

Table S2: Comparison between network based on original and perturbed ovarian
cancer data for different levels of noise based on overlapping edges and hub-gene
structure. For each network type (i.e., tumor and non-tumor), the network
with 500 nodes is selected. Based on these networks, the table shows (1) the
percentage of edges overlapping between original and noisy network and (2) the
percentage of hubs genes (i.e., nodes with more than 10 connecting edges) in
the original network which are hubs in the noisy network as well.

tumor network is very consistent in the degree distribution of the hub-genes for
different levels of noise. On the other hand, the hub-gene structure of the non-
tumor network is more affected by increasing levels of noise. Overall, TSNet can
recover more than half of the network edges and hub-structure of the original
tumor and non-tumor networks for different levels of noise.
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(a) Tumor purity comparison between original and noisy data

Noise Level 1 Noise Level 2

(b) Hub Gene Structure Comparison in 500-Node Network

Noise Level 1 Noise Level 2

Figure S7: (a) Scatterplot of tumor purity estimated based on original and
perturbed data for different levels of noise. (b) Scatterplot of number of con-
necting edges of hub-genes (i.e., nodes with more than 10 connecting edges) in
a 500-node network based on original and noisy data.
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