
“main_supp” — 2018/3/22 — page 1 — #1

Accurate prediction of orthologs in the presence of divergence after duplication 1

Supplementary material

Proof of Proposition 3

It suffices to show that for any triple of distinct vertices u, v, w, uv ∈
E(G) and vw ∈ E(G) imply that uw ∈ E(G). Let Euv , Evw and
Ewu denote the set of edges on the unique u− v, v−w andw−u paths
in T , respectively. In T , one can get from w to u by first going from w to
v, then from v to u. This implies that Ewu ⊆ Evw ∪ Euv . As none of
the edges in Evw ∪ Euv is marked as divergent, by definition, we have
that u and w are similar, and thus uw is an edge of G.

An algorithm for STUC with allowable splits

We describe how to solve the STUC problem with allowable splits using
dynamic programming. Given X ⊆ Σ, a set of clusters C and allowable
splits A, denote by OPT (X,C ,A) the minimum number of losses in a
species treeS, but only counting the lost clades that are strict subsets ofX ,
and subject to the conditions that (1) X ∈ clades(S) and (2) S has only
splits from A. To rephrase more formally, let lS(C,X) be the number
of maximal C-free nodes v of the species tree SC with the additional
condition that clade(v) ⊂ X . Then OPT (X,C ,A) is the minimum of∑

C∈C lS(C,X) over all possible species trees that contain theX clade
(and only splits from A). DefineOPT (X,C ,A) =∞ if no such species
tree exists. Clearly, OPT (Σ,C ,A) yields a solution to our restricted
STUC instance, since every loss occurs at a clade that is a strict subset of
Σ, and any species tree contains the Σ clade. We would like to devise a
recurrence formula for OPT (Σ,C ,A).

Towards this goal, first let {A,B} be a split ofX ⊆ Σ and letC ∈ C .
Define the cost lA,B(C) of C with respect to {A,B} as

lA,B(C) =


1 if C ∩ (Σ \X) 6= ∅, and exactly one of

C ∩A or C ∩B is empty

0 otherwise

In words, we count a loss for lA,B(C) is C has something outside
X = A ∪ B, and C loses all of A or all of B. We can now state our
recurrence:

Lemma 1. If |X| = 1, then OPT (X,C ,A) = 0. If |X| > 1, then
either OPT (X,C ,A) =∞, or OPT (X,C ,A) is equal to

min
{A,B}∈spl(X)∩A

OPT (A,C ,A) +OPT (B,C ,A) +
∑
C∈C

lA,B(C)


where spl(X) is the set of all possible splits of X .

Proof. We prove the Lemma by induction on |X|. As a base case,
suppose |X| = 1. Then for any species tree S and any cluster
C, lS(C,X) must be zero since S does not contain a C-free node
v such that clade(v) ⊂ X (as otherwise, clade(v) = ∅). Now
suppose that the Lemma holds for any strict subset of X , and assume
OPT (X,C ,A) 6= ∞. Let S be a species tree containing a node v
satisfying clade(v) = X and having every split in A, chosen such that S
minimizes

∑
C∈C lS(C,X). Let v1, v2 be the children of v and let

{A,B} = {clade(v1), clade(v2)}. Then {A,B} ∈ spl(X) ∩ A.
Since in the recurrence, the range of splits over which we take the
minimum contains {A,B}, it suffices to prove that OPT (X,C ,A) =

OPT (A,C ,A) +OPT (B,C ,A) +
∑

C∈C lA,B(C).
For some C ∈ C , let FC

A (resp. FC
B) be the set of maximal C-

free nodes w of SC such that clade(w) ⊂ A (resp. clade(w) ⊂
B). Moreover, let FC be the set of maximal C-free nodes that
belong to {v1, v2}. Then OPT (X,C ,A) =

∑
C∈C lS(C,X) =

∑
C∈C (|FC

A |+ |F
C
B |+ |F

C |). To prove the Lemma, we will show that∑
C∈C |FC

A | = OPT (A,C ,A),
∑

C∈C |FC
B | = OPT (B,C ,A)

and
∑

C∈C |FC | =
∑

C∈C lA,B(C).
To achieve this, we first show that the subtrees of S rooted at v1 and

v2 must incur OPT (A,C ,A) and OPT (B,C ,A) losses, respectively.
Consider a species tree S′ that contains a node v′ satisfying clade(v′) =

A, that has every split in A, and such that
∑

C∈C lS′ (C,A) =

OPT (A,C ,A). Note that S′ exists since, in particular, S is a possible
solution. Let S′

v′ be the subtree of S′ rooted at v′. In S, replace the
Sv1 subtree rooted at v1 by the S′

v′ subtree. Observe that this new
tree obtained has costOPT (A,C ,A) +

∑
C∈C |FC

B |+
∑

C∈C |FC |,
implying that

∑
C∈C |FC

A | = OPT (A,C ,A). By a similar reasoning,∑
C∈C |FC

B | = OPT (B,C ,A).
So far, we have shown that OPT (X,C ,A) = OPT (A,C ,A) +

OPT (B,C ,A)+
∑

C∈C |FC |. It remains to argue that
∑

C∈C |FC | =∑
C∈C lA,B(C). Fix some C ∈ C . If s(C) < v or s(C) ⊕ v, then

neither of v1 and v2 can be a maximal C-free node. If s(C) = v, the
same holds, because s(C) = v implies that C contains an element
from both clade(v1) and clade(v2). In both these cases, FC = ∅.
Accordingly, lA,B = 0 in these cases (because when s(C) ≤ v, we have
C∩(Σ\X) = ∅, and when s(C)⊕v, bothC∩A andC∩B are empty).
Assume that s(C) > v. It follows that C ∩ (Σ \X) 6= ∅, and also that
C ∩X 6= ∅. The latter implies that v1 and v2 cannot both be maximalC-
free nodes. If only v1 isC-free maximal, then FC = {v1}. Accordingly,
lA,B(C) = 1, since C ∩ A = ∅. The same holds if only v2 is maximal
C-free. Finally, if none of v1 and v2 are maximal C-free, then FC = ∅,
and accordingly lA,B(C) = 0. In every case, we have equality between
|FC | and lA,B(C). This shows that

∑
C∈C |FC | =

∑
C∈C lA,B(C),

concluding the proof.

Observe that spl(X) ∩ A can be computed in time O(|A||X|), as
it suffices to iterate over every element of A and check whether the split
partitions X .

In the next section, we prove Theorem 7, i.e. that the above
dynamic programming formulation leads to an algorithm that runs in time
O(|A|2|C ||Σ|).

We construct the set A in a heuristic fashion as follows. We build a
collection D of subsets of Σ, and A consists of all the pairs {D1, D2}
where D1, D2 ∈ D and D1 ∩D2 = ∅. To construct D, sort the species
of Σ by non-increasing order of frequency, where the frequency of x is
the number of clusters of C that contain x. This results in an ordering
(s1, . . . , sm) of Σ. Then for any i, j ∈ [m] with i < j, add the set
{si, si+1, . . . , sj} to D. For good measure, we also add every cluster
Ci ∈ C to D, concluding the construction. The idea behind the ordering
is that if a set of species have a similar frequency, it is possibly because
they always appear together in the same clusters. This set may thus be part
of some split of S.

Proof of Theorem 7

Consider the algorithm that starts computing OPT (Σ,C ,A) and
recursively computes OPT (X,C ,A) for the necessary values of X
according to the formulation of Lemma 1. Assume that OPT (X,C ,A)

is computed once for each value of X , and stored in memory if this
value is required later on. The value of OPT (X,C ,A) only needs to
be computed if A contains a pair of the form {X,Y }. Therefore, at most
2|A| computations of OPT (X,C ,A) are necessary. The time required
to compute OPT (X,C ,A), without counting the time for the recursive
calls, corresponds to the time required to compute lA,B(C) for each
C ∈ C and each {A,B} ∈ spl(X)∩A. The value lA,B(C) only needs
to compute intersections over subsets of Σ and thus takes time O(|Σ|).
Since there are at most |A| splits in spl(X) ∩ A, the time required for

“main_supp” — 2018/3/22 — page 2 — #2

2 Lafond et al.

OPT (X,C ,A) isO(|A||C ||Σ|). As mentioned before,X can take 2|A|
values, and the overall complexity is O(|A|2|C ||Σ|).

Proof of Theorem 8

First note that if σ(x) = σ(y), then no edge will ever be added between
x and y, due to the condition in line 5. Hence no two genes from the same
species are ever made orthologs. We must prove that the graph output
by the algorithm has no forbidden P3 and no P4. Beforehand we make
an important observation. Consider an iteration, when some cluster C is
merged with its favorite cluster Cj . Let z ∈ Cj . Then either z becomes
orthologous with every member of C, or with none of them. Moreover,
these relations between z and C remain until the end of the algorithm.

Now, suppose that vertices x, y, z introduce a P3 in G (with edges
xy and yz) at the i-th iteration, for some i ∈ [k − 1]. Assume that
σ(x), σ(y), σ(z) are all distinct. We must prove that σ(x)σ(z)|σ(y) is
a triplet of S, as required by S-consistency. Let the clusters C1, . . . , Ck

be the clusters at the beginning of the i-th iteration (in particular, there
are i − 1 empty clusters due to line 7). To avoid ambiguity, if we need
to refer to some cluster Cl at the beginning of the h-th iteration, we will
writeC(h)

l (hence, under our notation, we useCl as a shorthand forC(i)
l).

Now, let C be the cluster chosen at the i-th iteration, and let Cj be the
favorite cluster of C chosen at this iteration. Since only edges between C
and Cj are added at this i-th iteration, C and Cj must both contain one
of {x, y, z}.

Assume that x, y and z all belong to a distinct cluster at the i-th
iteration, say the clusters C,Cj and Ch. Then there is an edge going
from Ch to at least one of C or Cj . This edge was added in an iteration
prior to i, implying that one of C,Cj or Ch must have been emptied,
a contradiction. We may therefore assume that C and Cj contain all of
{x, y, z}. We check all the possible locations of x, y and z:

• Ifx, z ∈ C and y ∈ Cj , thenσ(y)⊕s(C) (because every y−C edge
must have been added by the algorithm). Moreover, σ(x), σ(z) ≤
s(C) (by the definition of s(C)). This implies σ(x)σ(z)|σ(y) is a
triplet of S, as required.

• If x, y ∈ C and z ∈ Cj , z is a neighbor of y but not x. But z should
be a neighbor of every member of C, or of none of them. Hence z
cannot form a P3 with x and y. Similarly, we cannot have z, y ∈ C
and x ∈ Cj .

• If x ∈ C, y, z ∈ Cj , then σ(y) ⊕ s(C), σ(x) ≤ s(C) and
σ(z) ≤ s(C) (otherwise zx would be an edge). This implies the
σ(x)σ(z)|σ(y) triplet inS, as required. The same idea works if z ∈ C
and x, y ∈ Cj .

• Finally, suppose that y ∈ C and x, z ∈ Cj . Then σ(x) ⊕ s(C)

and σ(z) ⊕ s(C). For the sake of contradiction, assume w.l.o.g.

that σ(y)σ(x)|σ(z) is a triplet of S (the other contradicting triplet
is σ(y)σ(z)|σ(x), and the same proof applies). Since x and z do not
share an edge, they did not belong to the initial set of given clusters.
Then there must have been some iteration h < i such that C(h)

j was

the favorite of some cluster C(h)
l , with either x ∈ C(h)

j , z ∈ C(h)
l

or vice-versa. Suppose x ∈ C
(h)
j , z ∈ C

(h)
l . As no edge was

added between x and z, we had σ(x) ≤ s(C
(h)
l). Thus s(C(h)

l)

is a common ancestor of σ(x) and σ(z). Since σ(y)σ(x)|σ(z) is
a triplet of S and σ(x), σ(z) ⊕ s(C), we have s(C(h)

l) > s(C).
However, the algorithm iterates over the clusters in non-decreasing
order with respect to S, a contradiction since C should have been
handled before Ch at the h-th iteration. The same argument holds for
the case z ∈ C(h)

j , x ∈ C(h)
l .

This proves that every P3 satisfies the requirement of Theorem 6.
Now, suppose that verticesw, x, y, z introduce aP4 at the i-th iteration

(with edgeswx, xy, yz), at which pointC is merged with its favoriteCj .
Observe that as above, we may assume that C and Cj contain all of
{w, x, y, z}. Notice also thatCj cannot contain only one vertex from this
P4: this vertex must either be adjacent to the 3 others, or to none of them,
both cases preventing a P4. Also, Cj cannot contain exactly two of these
vertices. Indeed, if w, x ∈ Cj and y, z ∈ C, then since xy is an edge,
x shares an edge with every member of C. This includes the xz edge, a
contradiction. One can check that the type of argument holds for the other
five cases w, y ∈ Cj , w, z ∈ Cj , x, y ∈ Cj , x, z ∈ Cj and y, z ∈ Cj

in which Cj has exactly two vertices of the P4.
It follows that Cj must have 3 vertices. In particular, we either have

both x, z ∈ Cj , or only one of x or z is in Cj . Suppose x, y ∈ Cj and
w.l.o.g. w ∈ C, z ∈ Cj . Then σ(y) ≤ s(C), σ(z) ≤ s(C) and σ(x)⊕
s(C). Note that this implies σ(x) 6= σ(z). Moreover, σ(x) 6= σ(y) 6=
σ(z), since xy and yz are edges. These fact imply that σ(y)σ(z)|σ(x) is
a triplet of S, and that the x, y, z P3 should be forbidden, contradicting
the fact that every P3 is consistent. It remains to cover the case when
only one of x or y is in Cj . Suppose, w.l.o.g. that x ∈ C, w, y, z ∈
Cj . Note that σ(w) ⊕ s(C), σ(y) ⊕ s(C) and σ(z) ≤ s(C). As we
did before, consider the iteration h at which w and z both ended up in
Cj . Then either w ∈ C

(h)
j and z ∈ C

(h)
l for some l, or vice-versa.

If w ∈ C
(h)
j and z ∈ C

(h)
l , then σ(w) ≤ s(C

(h)
l). Thus C(h)

l is a

common ancestor of σ(w) and σ(z), which implies s(C(h)
l) > s(C)

since σ(w) ⊕ s(C) and σ(z) ≤ s(C). This contradicts the ordering
of the iterations of the algorithm. If z ∈ C

(h)
j and w ∈ C

(h)
l , then

σ(z) ≤ s(C(h)
l), s(C(h)

l) is a common ancestor of σ(w) and σ(z), and
we reach the same contradiction. This concludes the proof.

