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1 Interval-Wise Testing (IWT)

Let y1,i(x), i = 1, . . . , n1 be the feature curves corresponding to the n1 genomic regions of the
first group, and y2,j(x), j = 1, . . . , n2 be the feature curves corresponding to the n2 genomic
regions of the second group. We assume that y1,i(x) and y2,i(x) are two random samples from
two independent random functions, defined in the interval I.

The IWT tests the null hypothesis HI
0 that the distributions of two random functions on the

interval I are equal, versus the alternative hypothesis HI
1 that they differ. Let S be a subinterval

S = (xa, xb) ⊆ I or a complementary subinterval S = I \ (xa, xb). We indicate with HS
0 and HS

1

the restrictions of the null and alternative hypotheses to S.
The first step of the IWT consists of a functional permutation test for HS

0 vs HS
1 on every

possible S = (xa, xb) ⊆ I and S = I \ (xa, xb). Given a test statistic T , we estimate its
permutational distribution under HS

0 by evaluating its value T (S) for all possible permutations
of the n1 + n2 curves. The test p-value pS is the proportion of permutations that lead to a test
statistic greater than or equal to the one observed in the actual data. When the number of
possible permutations is large, we approximate the test p-value considering a fixed number B of
random permutations.

The second step of the IWT concerns the computation of the adjusted p-value curve p̃(x),
defined at each x ∈ I as

p̃(x) = sup
S3x

pS

The adjusted p-value curve p̃(x) controls the interval-wise error rate, i.e. the probability of
rejecting the null hypothesis HS

0 on every interval S ⊆ I where it is true:

∀S ⊆ I s.t. HS
0 is true Pr [∀x ∈ S, p̃(x) ≤ α] ≤ α.
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The final step of the IWT consists of identifying locations with a significant difference between
the two groups by selecting all the points x ∈ I such that p̃(x) < α, where α is the desired
significance level.

1.1 Testing multiple locations and scales

In order to detect both locations and scales at which differences between the random functions
are significant, the extended version of IWT evaluates multiple scales and computes an adjusted
p-value curve p̃s(x) for each scale s ≤ |I| (the size of I). For each fixed scale s, p̃s(x) is computed
considering only subintervals S = (xa, xb) ⊆ I and complementary subintervals S = I \ (xa, xb)
of length |S| ≤ s. As a consequence, p̃s(x) controls the interval-wise error rate on all intervals
of length at most s and identifies locations that are significant at scale s.

In practice, feature curves y1,i(x) and y2,i(x) are observed only on a discrete grid of equally
spaced points x1, . . . , xK (each point corresponds to a measurement of the feature in one small
window). As a consequence, the algorithm implemented by IWTomics partitions the interval I
in K subintervals S1, . . . , SK of the same size – each containing exactly one point of the grid.
The test is performed considering these K subintervals as locations, and the possible scales
ranges from 1 (1 subinterval, no adjustment applied) to K (K subintervals, adjustment applied
up to the entire interval I). The adjustment performed at scale s takes into considerations the
hypotheses on every single subinterval HS1

0 , . . . ,HSK
0 , the hypotheses on every interval obtained

as the union of 2 subintervals HS1∪S2
0 , . . . ,H

SK−1∪SK

0 , and so on up to every interval obtained as

union of s subintervals HS1∪···∪Ss
0 , · · · , HSK−s+1∪···∪SK

0 . The adjustment performed by IWtomics
obviously induces a loss of statistical power with respect to a global test on the entire interval
I, but it allows one to identify locations and scales at which the two random functions differ
significantly. In addition, this adjustment retains better statistical power than procedures such
as Bonferroni or Benjamini-Hochberg applied to the points of the grid. A visual comparison
between the unadjusted p-value curve p̃1(x) (at scale 1) and the adjusted p-value curve p̃s(x)
for a given scale, provides the user with an indication about the loss of statistical power due to
adjustment.

1.2 Test statistics

In the extended version of the IWT, different test statistics can be employed in the first step
to compute the test p-value pS , allowing one to focus on different characteristics of the curve
distributions.

For every S ⊆ I we define the mean test statistic as

Tmean(S) =
1

|S|

∫
S

(
ȳ1(x)− ȳ2(x)

)2
dx,

where ȳ1(x) = 1
n1

∑n1
i=1 y1,i(x) and ȳ2(x) = 1

n2

∑n2
j=1 y2,j(x) are the sample means of the curves

in the two groups.
The median test statistic is defined as

Tmedian(S) =
1

|S|

∫
S

(
y
(0.50)
1 (x)− y(0.50)2 (x)

)2
dx,

where y
(0.50)
1 (x) and y

(0.50)
2 (x) are the pointwise sample medians of the curves in the two groups.

Similarly, the multi-quantile test statistic is given by

Tmulti−quantile(S) =
∑
q∈Q

1

|S|

∫
S

(
y
(q)
1 (x)− y(q)2 (x)

)2
dx,
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where, for every x ∈ I, y
(q)
1 (x) and y

(q)
2 (x) are the quantiles of order q of the curves in the two

groups, and Q is a set of probabilities.
Finally, we define the variance statistic as

Tvariance(S) =
1

|S|

∫
S

Var(y1(x))

Var(y2(x))
dx,

where Var(y1(x)) and Var(y2(x)) are the pointwise sample variances of the curves in the two
groups. In this case the test p-value pS is computed considering both tails of the permutational
distribution, in order to obtain a two-sided test.
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2 IWTomics test results and workflow
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Figure S1: Graphical representation of IWT results on the simulated dataset shown in Fig. 1.
(a) Elements 1 vs Controls; (b) Elements 2 vs Controls; (c) Elements 3 vs Controls; (d) Elements
1 vs Elements 2; (e) Elements 1 vs Elements 3; (f) Elements 2 vs Elements 3. In each panel, the
heatmap at the top shows the adjusted p-value curve for each possible scale (the bottom row
shows scale 1, i.e. the unadjusted p-value curve; the top row shows the maximum scale possible).
The middle plot shows the adjusted p-value curve at the selected scale threshold, with significant
locations (p-value< 0.05) highlighted in gray. The bottom plot shows the pointwise boxplot of
the curves in the two groups contrasted by the test, and the sample size corresponding to each
window in each group.
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3 Comparing IWTomics with other methods

We demonstrate the effectiveness of IWTomics and its advantages over alternative approaches
utilizing both real biological data and simulated data examples.

3.1 Real data example: recombination hotspots in fixed ETn

We consider a real biological example concerning recombination hotspots in the flanking regions
of fixed ETns (elements of the Early Transposon family of active Endogenous Retroviruses
in mouse). The dataset comprises a total of 2438 64-kb regions in the mouse genome; 1296
surrounding ETn elements (32-kb upstream and 32-kb downstream of each element) and 1142
controls (64-kb regions). Recombination hotspots are measured in 1-kb windows inside each
region (see Fig. S3). This dataset is a subset of the one collected and analyzed in Campos-
Sánchez et al. (2016), and it is provided within the R package IWTomics.

To investigate whether recombination plays a role in ETn fixation in the mouse genome,
we contrast measurements of recombination hotspots in the flanks of fixed ETn and in control
regions. We do this with four different approaches; namely:

1. IWTomics; this computes an adjusted p-value curve taking into consideration contiguity
of measurements in adjacent windows (see Suppl. Section 1);

2. a global t-test ; this considers the average signal across the 64 windows in each region, and
does not involve a p-value correction;

3. a collection of 64 local t-tests; this considers separately the signals in the 64 window in
each region, and does involve a p-value correction (see below);

4. a graphical contrasting of average profiles, which can be enriched for inferential purposes
(again, see below).

For the multiple testing correction in (3) we consider comb-p (Pedersen et al., 2012), a state-
of-the-art recent method whose underpinning is similar to that of IWTomics. Thus, performance
of (3) with comb-p should be the most competitive with IWTomics. Comb-p corrects accounting
for spatial correlation between the p-values. Notably though, and unlike IWTomics, it requires
fixing a tuning parameter – the maximum lag for computing autocorrelations.

For the approach in (4), we employ one of very many existing software packages that allow
the user to plot ChIP-seq read counts average profiles (see e.g. Stempor and Ahringer, 2016;
Anders et al., 2015); namely the R package ChIP-seeker (Yu et al., 2015). We select ChIP-seeker
because it is the most adaptable to data other than read coverage (IWTomics can be applied
to any kind of data) and because, unlike other packages, it has an inferential component; it
provides pointwise bootstrap confidence intervals. We note that in ChIP-seeker the signals for
each window within each region are normalized, and this is done separately for the two groups of
regions (more specifically, since the data are meant to be read counts, frequencies are computed
dividing the sum of measurements for a given window by the total sum of measurements over
all windows). Since ChIP-seeker represents differences between such normalized averages in
each window, a constant difference along the whole region would disappear because of the
normalization. Table S1 summarizes the characteristics of the different approaches considered
for comparison, highlighting some of the advantages of IWTomics; its use of permutations and
its ability to work with different test statistics make it more flexible, its technique to correct for
multiple testing is very effective because it leverages contiguity of measurements, it is capable
of detecting both significant locations and significant scales and, because of its functional data
underpinning, it can handle NAs (missing values).

We can observe in Fig. S3 that recombination hotspots content shows a small difference in
mean between the flanks of fixed ETn and control regions. This difference is localized near the
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Method
Type of
inference

Test
statistic

Multiple testing
correction

Handle
NA

Detect
location

Detect
scale

IWTomics Permutation
Multiple
statistics

Yes
(adjacent windows)

Yes Yes Yes

Global t-test Parametric Mean NA Yes No No

Local t-test
with comb-p

Parametric Mean
Yes
(correlated windows)

Yes Yes No

ChIP-seeker Bootstrap
Normalized
mean

No No Yes No

Table S1: Comparison of IWTomics with other existing approaches.

ETn insertion site (i.e. the center of the 64-kb region). IWTomics (with mean difference test
statistic) captures this very localized effect in the subregion between 5 kb upstream and 1 kb
downstream of the insertion site, and suggests a scale of 8-kb (see Fig. S4). The global t-test
on the average signal in the 64-kb region fails to capture a significant difference between the
two groups (p-value 0.32). The local t-test with comb-p correction produces significant results
around the insertion site, but it identifies a larger subregion than IWTomics. More importantly,
the subregion width strongly depends on the choice for the maximum lag to be employed for
the autocorrelation computation (Fig. S5). For example, an extreme maximum lag of 50 kb
(the largest viable on the data; for larger lags we do not have enough windows to estimate the
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Figure S3: Plot of recombination hotspots content in the flanking regions of fixed ETns (red)
and in control regions (green). Solid lines represent the average curves for the two types of
regions (average signals in each 1-kb window), while dashed lines represent pointwise quartiles
(all identically equal to zero for these data). The heatmap at the bottom shows the sample size
in each position.
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Figure S4: Graphical representation of IWT results for the test ETn fixes versus control. See
caption of Fig. S1.
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Figure S6: Average profile plot obtained with ChIP-seeker. The semi-transparent bands indicate
the 95% pointwise bootstrap confidence interval for the average profile of each group.

autocorrelation) produces p-values< 0.05 for the whole 64-kb region. A maximum lag of 8 kb
(the one at which the autocorrelation comes close to 0 for the first time) finds a significant
difference in the subregion between 10 kb upstream and 6 kb downstream of the insertion site.
The results more similar to those of IWTomics are obtained using a maximum lag of 2 kb, which
leads to the identification of the subregion between 8 kb upstream and 4 kb downstream of the
insertion site. Contrasting average profiles with ChIP-seeker (Fig. S6) indicates a significant
difference in the central part of the region, and also in the window 30 kb upstream of the
insertion site. This is is due to the fact that pointwise bootstrap confidence intervals produced
by ChIP-seeker do not correct for multiple testing, hence the probability of false positive is
higher than the nominal one.

3.2 Simulated data example

To further compare the performances of IWTomics and of the other approaches listed in Ta-
ble S1, we consider a simulated dataset provided with the IWTomics package (“regionsFea-
tures center” data) and used in Figs. 1 and S1. This dataset comprises four groups of regions
(“Elements 1”, “Elements 2”, “Elements 3” and “Controls”) and two features (“Feature 1” and
“Feature 2”). The regions have different lengths, up to 100 kb, and they are aligned at their
center. The features resolution is 2 kb (hence the maximum number of windows is 50), and
there are some missing data (NA). Part of this dataset has been used to produce Figs. 1 and
S1; Fig. S7 shows the dataset in its entirety. Since we know the ground truth (in terms of
difference in distributions), we evaluate the methods by computing the number of true and false
positive windows identified by each. For IWTomics, we consider two specifications of the test
statistics; mean difference and multiple quantile difference (with quantiles 0.25, 0.50 and 0.75).
Corresponding to each specification, we also report the scale identified by the p-value heatmap.
For the local t-test with comb-p adjustment, we consider two choices for the maximum lag; the
one suggested by the autocorrelation plot, as well as the best one (i.e. the maximum lag that
leads to best true and false positives numbers). For ChIP-seeker, since the tool does not handle
missing data (NA), we need to make an arbitrary choice and set all NAs to 0 (i.e. the baseline
level for read coverage data). Table S2 shows the results of this comparison and indicates that
IWTomics usually performs better than the other approaches, being both highly sensitive and
highly specific.

10



−20 −10 0 10 20

0.
0

0.
5

1.
0

1.
5

Feature 1

Windows

F
ea

tu
re

 1 Elements 1
Elements 2
Elements 3
Controls

−20 −10 0 10 20

Controls
Elements 3
Elements 2
Elements 1

Sample size

0 8.75 17.5 26.25 35

(a)

−20 −10 0 10 20

0
5

10
15

Feature 2

Windows

F
ea

tu
re

 2 Elements 1
Elements 2
Elements 3
Controls

−20 −10 0 10 20

Controls
Elements 3
Elements 2
Elements 1

Sample size

0 8.75 17.5 26.25 35

(b)

Figure S7: Pointwise boxlot of (a) “Feature 1” and (b) “Feature 2” in the four groups of regions
“Elements 1”, “Elements 2”, “Elements 3” and “Controls”.
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Feature 1 Feature 2

Method
Element 1

vs
Control

Element 2
vs

Control

Element 3
vs

Control

Element 1
vs

Control

Element 2
vs

Control

Element 3
vs

Control

IWTomics
mean

scale 16kb
7/8

(0/41)

scale 100kb
50/50
(0/0)

scale 100kb
20/20
(0/30)

scale 98kb
49/49
(0/0)

scale 18kb
3/50
(0/0)

scale 100kb
25/25
(0/25)

IWTomics
quantiles

scale 16kb
6/8

(1/41)

scale 100kb
50/50
(0/0)

scale 100kb
20/20
(0/30)

scale 98kb
49/49
(0/0)

scale 100kb
50/50
(0/0)

scale 100kb
25/25
(0/25)

Global t-test
8/8

(41/41)
50/50
(0/0)

20/20
(30/30)

49/49
(0/0)

0/50
(0/0)

25/25
(25/25)

Local t-test
with comb-p

autocor

lag 8kb
8/8

(5/41)

lag 8kb
50/50
(0/0)

lag 14kb
20/20

(14/30)

lag 6kb
49/49
(0/0)

lag 6kb
17/50
(0/0)

lag 32kb
25/25

(12/25)

Local t-test
with comb-p

best

lag 2kb
8/8

(3/41)

lag 8kb
50/50
(0/0)

lag 2kb
20/20
(4/30)

lag 6kb
49/49
(0/0)

lag 70kb
50/50
(0/0)

lag 2kb
25/25
(1/25)

ChIP-seeker
8/8

(7/41)
0/50
(0/0)

20/20
(25/30)

11/49
(0/0)

5/50
(0/0)

19/25
(17/25)

Table S2: Comparison of IWTomics with other existing approaches. Each cell reports the ratio
of true positive windows, and in parentheses the ratio of false positive windows (note that the
total number of windows is 50, corresponding to 100kb, for “Elements 2” “Elements 3”, while
“Elements 1” has 49 windows, corresponding to 98kb).

4 IWTomics runtime

IWTomics runtime depends on several characteristics of the dataset and of the test performed.
First, it depends on the feature measurement resolution, and thus on the number of loca-
tions/scales (K) considered in the test. Computation of the unadjusted p-value curve (scale 1)
is linear in K, while the adjustment procedure is in the order of K2. Second, runtime increases
with the sample size, i.e. with the number of regions available in the different groups. Third, it
depends on the test statistic employed. In particular, mean difference is the fastest among the
provided test statistics, while quantile difference is the slowest because its computation requires
a sorting step. Finally, runtime is linear in the number of random permutations (B) employed
to approximate the p-values, and in the number of tests performed.

In order to provide an indication about IWTomics runtime requirements, we present a simu-
lation analysis performed on a 64-bit Debian GNU/Linux 7 OS running on a 2.3 GHz processor
with 8 cores and 16 GB RAM. The simulation considers a test between two groups of regions,
with equal sample size ranging between 10 and 10000 regions, and number of locations/scales
K = 10, 100 and 500. A total of B = 1000 random permutations are employed to compute p-
values (default choice in the package; this provides a p-value resolution of 0.001). Fig. S8 shows
simulation results concerning (a) mean difference and (b) quantile difference (with 0.25, 0.50
and 0.75 quantiles) test statistics. Points represent the average runtime across 5 independent

12



10 50 10
0

50
0

10
00

50
00

10
00

0

0.005
0.01

0.05
0.1

0.5
1

5
10

IWTomics, mean statistic

# Regions per group

T
im

e 
(m

in
)

Locations
10
100
500

(a)

10 50 10
0

50
0

10
00

50
00

10
00

0

0.05

0.1

0.2

0.5

1

2

5

10

20

50

IWTomics, multi-quantile statistic

# Regions per group

T
im

e 
(m

in
)

Locations
10
100
500

(b)

Figure S8: IWTomics runtime analysis on simulated data. (a) Mean difference test statistic;
(b) Quantile difference test statistic (quantiles of order 0.25, 0.50 and 0.75).

runs (interestingly, the 5 runtimes were always very close to each other, hence we provide only
average values).

Real applications of IWTomics such as the ones discussed in Section 3 typically involve
groups of a few hundreds to a few thousands of genomic regions, with features measured on
50− 100 windows. In these cases, a test based on the mean difference statistic takes less than
half minute to run, while a test based on the quantile difference statistic is in the order of 1
minute. Importantly, IWTomics has a reasonable runtime even when 10000 genomic regions are
considered in each of the two groups, and the test is performed on 500 locations/scales.
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