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1 Supplementary notes on Approach

1.1 Probabilistic Matrix Factorization

As discussed earlier, the main notion behind the probabilistic matrix factorization (PMF) (Mnih and Salakhutdinov, 2007) is to find a factorization that

minimizes the mean square error (MSE) on the observed data, and maintain good performance on those observed data considered for test set, with the
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assumption of Gaussian noise in the data. For example, to factorize the OMIM matrix (Amberger et al., 2011) using PMF, it represents each row (gene)

and each column (phenotype) by a latent vector of size D, and then find the

min
G,P

∑
(i,j)∈IOMIM

OMIMi,j −GTi × Pj + λG ‖ G ‖2F + λP ‖ P ‖2F (S1)

where OMIMi,j ∈ OMIM matrix is the observed data, λG and λP are regularization parameters and greater than zero, and ‖ · ‖F denotes the

Forbenius norm, which is defined as:

‖ R ‖F=

√√√√ N∑
i=1

M∑
j=1

| ri,j |2 =
√
trace(RRT ) (S2)

PMF, Indeed, use a linear model with Gaussian observation noise. Accordingly, last two terms in the PMF optimization problem (1) are derived from

the Gaussian prior with zero mean on both latent variables, Gi and Pj , and a Gaussian noise model on OMIMi,j .

1.2 A Detailed on our proposed model

As we discussed in the manuscript, Bayesian PMF (BPMF) (Salakhutdinov and Mnih, 2008), proposes a fully Bayesian treatment of the PMF approach

by introducing common multivariate Gaussian priors for latent variables. In order to complete the OMIM matrix using BPMF, similarly to PMF, BPMF

also uses a linear model with Gaussian observation noise. As we shown, we propose an extended version of BPMF with the ability to work with multiple

auxiliary Genomic and Phenotypic information. To incorporate the geneâŁ™s features xi ∈ RFgene (the phenotypeâŁ™s features zi ∈ RFphen ), we

integrate a term βTgenexi (βTphenzi) into the Gaussian mean µG (µP ). Then, it was shown that the equations (3) and (4), in the original manuscript are

expressed as

P (G, | xi, µG,ΛG) = N (Gi | µG + βTgenexi,Λ
−1
G ) (S3)

P (P, | zj , µP ,ΛP ) = N (Pj | µP + βTphenzj ,Λ
−1
P ) (S4)

Where βgene ∈ RFgene×D and βphen ∈ RFphen×D have been introduced as the link matrices for the gene’s (phenotype’s) features. Fgene (Fphen)

is the dimension of the gene’s (phenotype’s) features. Theses equations above ( S3 and S4) offers the linear model for latent vectors. Technically, our

proposed model learns the link matrices βgenes and βphen to predict latent variables Gi and Pj from xi and zj , respectively.

To have a fully Bayesian treatment for βgene (βphen), we consider a zero mean multivariate normal as its prior. However, our proposed prior on

βgene (βphen) scales with the precision of latent variables in order to incorporate the auxiliary information to the factorization process.

P (βgene, | Λgene, λβgene ) = N (vec(βgene) | 0,Λ−1
G ⊗ (λβgeneI)

−1)

= λ
FgeneD/2

βgene
| ΛG |

D
2 exp(

1

2
λβgene tr(βgeneΛ−1

G βTgene)

(S5)

where ⊗ denotes the Kronecker product, and vec(βgene) denotes the vectorization of βgene. And λβgene ≥ 0 is the diagonal element of the precision

matrix, and ΛG is the precision matrix of the latent variable for genes. This prior is natural as the scale ofG is not predetermined. Accordingly, we place
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a gamma distribution hyperprior 1 on λβgene , owning the fact that the choice of λβgene is problem dependent, as discussed in similar context(Porteous

et al., 2010).

P (λβgene , | µ, ν) = Gamma(λβgene | µ, ν) ∝ λν/2−1
βgene

exp(−
ν

2µ
λβgene ) (S6)

where µ and ν are fixed hyperparameters, which are both set to 1 in the experiments. The same full Bayesian treatment is developed for βphen.

1.3 A Detailed on our proposed Gibbs sampler

In this section we present the conditional distributions of the Gibbs sampler for all variables except for βgene and βphen. The outline of Gibbs sampling

for our proposed model is as follows: Based on (4) and (5), the conditional probability for Gi and Pj are

P (Gi | OMIM, P,ΘG, x, β, λ, α,ΛG) = N (Gi | µ∗Gi , [Λ
∗
Gi

]−1)

∝
∏

j∈IOMIM(i,)

N (OMIM(i,j) | GTi Pj , α−1)

×N (Gi | µG + βTgenexi,Λ
−1
G ))

(S7)

where

Λ∗Gi = ΛG + α
∑

(i,j)∈IOMIM(i,)
PjP

T
j

(S8)

µ∗Gi = [Λ∗Gi ]
−1 + (ΛG(µG + βTgenexi) + α

∑
(i,j)∈IOMIM(i,)

PjOMIM(i,j)) (S9)

From the above equations, we see that if gene i does not have features then βTgenexi is 0. We also place the Normal -Wishart hyperprior for µG and

λG, same as being used in BPMF.

P (µG,ΛG | Θ0) = N (µG | µ∗0, (β∗0ΛG)−1)NW(Λ−1
G |W0, µ0) (S10)

WhereNW denote the normal Wishart distributions. In this study, we set µ0 = 0, β0 = 2 and ν0 = D and ,W0 to the identity matrix for both gene

and phenotype. Combining the hyperprior in S8 with S1 we get the following conditional probability:

P (µG,ΛG | G, x, βgene,Θ0) = N (µG | µ∗0, (β∗0ΛG)−1)NW(Λ−1
G |W ∗0 , µ∗0) (S11)

where

µ∗0 =
β0µ0 +NGḠ

β0 +NG
β∗0 = β0 +NG ν∗0 = ν0 +NG (S12)

[W ∗0 ]−1 = W−1
0 +NGS̄ +

β0NG

β0 +NG
(µ0 + Ḡ)(µ0 + Ḡ)T (S13)

1 A hyperprior is a prior distribution on a hyperparameter, that is, on a parameter of a prior distribution.
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Ū =
1

NG

NG∑
i=1

(Gi − βTgenexi) S̄ =
1

NG

NG∑
i=1

(Gi − βTgenexi)(Gi − βTgenexi)T (S14)

While in BPMF the Gaussian priors model the latent variablesGi , in our proposed work the Gaussian priors model the residualGi−βTgenexi instead; this

being the key difference in comparison with BPMF. The conditional probability for precision parameter if the weight vector, λ(βgene), can be obtained

from (14) and (15)

P (λβgene | βgene,ΛG, µ, ν) = gamma(λβgene | µ̄, ν̄) (S15)

where

ν̄ = FgeneD + ν µ̄ =
(FgeneD + ν)µ

ν + µtr(βgeneΛ−1
G βTgene)

(S16)

Note that the conditional probability for λβphen
has exactly the same form.

1.4 A Detailed on our Noise Injection Sampler

Based on equations S12 and S14, the conditional probability for βgene can be reformulated as

P (βgene | µgene,ΛG, G, x, λβgene )

∝ exp(−
1

2

NG∑
i=1

(Gi − µG − βTgenexi)TΛG(Gi − µG − βTgenexi))

−
1

2
λβgene tr(βgeneΛ−1

G βTgene))

(S17)

LetX representsX = [x1, · · ·, xN ] andU = [G1−µG, · · ·, GN −µG]. As both the likelihood and prior terms contain ΛG, thus it can be factored

out:

P (βgene | µgene,ΛG, G, x, λβgene )

∝ exp(−
1

2
tr[(G−Xβgene)T (G−Xβgene) + λβG (βgeneβ

T
gene)ΛG])

(S18)

Then, the parameters of the Gaussian (mean and precision) can be reformulated as:

P (βgene | µgene,ΛG, G, x, λβgene )

∝ exp(−
1

2
vec(βgene − β̂gene)T (ΛG ⊗ (XTX + λβgeneI))vec(βgene − β̂gene))

(S19)

where βgene = (XTX + λβgeneI)X
TG is the mean and ΛG ⊗ (XTX + λβgeneI) is the precision of the posterior.

1.5 Supplementary details of our assessment strategy

Table S1 shows the details of our first assessment strategy. As explained in the paper among 2625 disease-gene annotations extracted from OMIM database

(Amberger et al., 2011) , six random splits into 90% training (2363 annotations) and 10% (262 annotations) test data prepared. The generated test sets

includes 131, 138, 148, 133, 150 and 139 diseases.
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Fig. S1. Average BEDROC scores result: GeneHound with various side information vs BPMF. The performance of GeneHound with various side information, and BPMF are evaluated on
OMIM1 benchmark. We use 40 latent dimensions for all proposed models. The label of each panel corresponds to the value of α used to evaluate the model. A greater α, emphasizes more
on early recognition. BPMF does not use side information, and consequently it fails to provide an accurate matrix completion. OMIM1 benchmark was designed to investigate the advantage
of incorporating side information into matrix factorization process. The number of training genes on this benchmark for some diseases are too low to have a fair and accurate comparison
with Endeavour. Accordingly, the OMIM2 benchmark was designed to have a fair comparison between Endeavour and our proposed method.

2 A detailed discussion of results

Table S1 shows 65 diseases that we use to evaluate our Bayesian data fusion model for gene prioritization. For each disease, the total number of available

annotations in OMIM for theses diseases used for both training and test are also reported in the Table S1.

Table S1: The 65 diseases that we investigated in this study. The total number of disease-

linked genes (including the training and test) for each disease investigated in this work are

listed. The OMIM diseases investigated in this study are grouped based on the 10th version of

the International Statistical Classification of Diseases and Related Health Problems (ICD-10)

(Icd, 2010).

Diseases Name Number

of genes

BEDROC

scores

α = 160.9

ICD-10 cha-

pter

AIDS 45 0.49 A

Malaria 16 0.28 A

Mycobacterium tuberculosis 11 0.31 A

Colorectal cancer 55 0.34 C

Gastric cancer 12 0.44 C

Leukemia 56 0.34 C

Lipoma 14 0.25 C

Lung cancer 15 0.32 C
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Pancreatic cancer 10 0.40 C

Prostate cancer 15 0.19 C

Renal cell carcinoma 15 0.26 C

Diamond-Blackfan anemia 10 1.00 D

Fanconi anemia 16 0.85 D

Immunodeficiency 15 0.30 D

Neutropenia 13 0.09 D

Spherocytosis 16 0.31 D

Thrombocytopenia 11 0.40 D

Ceroid lipofuscinosis 10 0.74 E

Combined oxidative phosphorylation deficiency 15 0.44 E

Congenital disorder of glycosylation 15 0.76 E

Glycogen storage disease 16 0.74 E

Lipodystrophy 62 0.42 E

Obesity 24 0.33 E

Peroxisome biogenesis disorder 10 0.70 E

Premature ovarian failure 10 0.27 E

Alzheimer diseaser 14 0.37 F

Mental retardation 82 0.59 F and G

Parkinson disease 16 0.60 F and G

Amyotrophic lateral sclerosis 41 0.58 G

Centronuclear myopathy 30 0.46 G

Charcot-Marie-Tooth disease 30 0.67 G

Dystonia 13 0.24 G

Epilepsy 29 0.55 G

Epileptic encephalopathy 14 0.47 G

Leigh syndrome 19 0.45 G

Miller syndrome 14 0.31 G

Neuronopathy 23 0.49 G

Spastic paraplegia 11 0.57 G

Spinal muscular atrophy 10 0.50 G

Cataract 28 0.57 H and Q

Retinitis pigmentosa 122 0.58 H

Usher syndrome 11 0.86 H

Deafness 74 0.79 H2

Cardiac arrhythmia 12 0.58 I

Coronary artery disease 11 0.27 I
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Left ventricular noncompaction 46 0.55 I

Myocardial infarction 13 0.19 I

Asthma and nasal polyps 16 0.20 J

Ciliary dyskinesia 18 0.72 J

Rheumatoid arthritis 10 0.25 M

Systemic lupus erythematosus susceptibility 12 0.35 M

Spermatogenic failure 30 0.25 N

Bardet-Biedl syndrome 17 0.84 Q

CHARGE syndrome 14 0.02 Q

Ectodermal dysplasia 10 0.35 Q

Ehlers-Danlos syndrome 10 0.52 Q

Ichthyosis 14 0.31 Q

Joubert syndrome 27 0.76 Q

Meckel syndrome 16 0.66 Q

Metaphyseal anadysplasia 13 0.34 Q

Microcephaly 15 0.22 Q

Osteogenesis imperfecta 21 0.44 Q

Osteopetrosis 14 0.46 Q

Hypogonadotropic hypogonadism with or with-

out anosmia

19 0.40 R

Mitochondrial complex deficiency 28 0.64 NA
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Fig. S2. The average BEDROC scores over diseases grouped based on the number of known genes for 2 different enrichment focuses. GeneHound and Endeavour are evaluated on OMIM1
benchmark. The label of each bar corresponds to the number of diseases in each group. A greater α, emphasizes more on early recognition.

Figure S2 shows that GeneHound improves the predictive performance at top 1% enrichment focus by 9.68% on diseases with 10, 11, and 12 known

genes, 20.11% on diseases with 20 to 29 known genes, 27.13% on diseases with 30 to 39 known genes, 19.27% on diseases with 40 to 49 known genes,

11.12% on diseases with 50 to 59 known genes, and 73.74% on diseases with at least 60 training genes, whereas the largest performance drop was 2.73%

on diseases with 13 to 19 known genes. These results indicate that our proposed gene prioritization method can enhance the predictive performance of

gene prioritization task by employing the multi-task approach.
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Table S2. Early discovery improvements challenge: GeneHound vs Endeavour.It is observed that GeneHound improves the BEDROC score (at α = 228.5 which
corresponds to top 1% early discovery focus) obtained using Endeavour by more than 50% and 100% for twelve and three diseases, respectively. This compares
to three and zero BEDROC score improvements of diseases in OMIM2 benchmark using Endeavour.

Methods Disease names

Early
enrichment
improvement more than 50% more than 100%

GeneHound
improves
Endeavour

Ceroid lipofuscinosis (E)
Charcot-Marie-Tooth (H2)
Deafness(H2)
Osteogenesis imperfecta (Q)
Epilepsy(G)
Gastric cancer(C)
Lipoma(C)
Spinal muscular atrophy (G)
Amyotrophic lateral sclerosis (G)
Retinitis pigmentosa (H)
Mental retardation(F)
Coronary artery disease(I)

Osteogenesis imperfecta
(Q)
Lipoma(C)
Spinal muscular atrophy
(G)
Mental retardation(F)

Endeavour
improves
GeneHound

Ectodermal dysplasia (Q)
Microcephaly (Q)
Spherocytosis (D)

none

Final Results 12-3 4-0

Fig. S3. BEDROC scores result for the Certain infectious and parasitic diseases(A). The left bar shows the result of the GeneHound, and the right bar indicates the result of Endeavour
(Auhtor et al. , 2006; Tranchevent et al., 2016)

.
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Fig. S4. BEDROC scores result for diseases classified as the Neoplasm (C) in ICD-10.

Fig. S5. BEDROC scores result for the disease of the blood and blood-forming organs and certain disorders involving the immune mechanism (D).
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Fig. S6. BEDROC scores result for the endocrine, nutritional and metabolic diseases(E).

Fig. S7. BEDROC scores result for the disease of Mental and behavioural disorders (F).
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Fig. S8. BEDROC scores result for diseases of the nervous system (G).BEDROC score for each disease is calculated over all cross-validated genes. The α are set to 16.1 and 160.9

which correspond to 80% of the BEDROC being assigned to the top 10% and 1% prioritized genes. The left bar shows the result ofGeneHound_GeoAgg, and the right bar indicates
the result of Endeavour, GeneHound_GeoAgg offers the best average BEDROC score of 0.73 and 0.48 overall diseases of the nervous system score at 10% and 1% early discovery
focuses, respectively. This compares to 0.66 and 0.37 using Endeavour.
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Fig. S9. BEDROC scores result for diseases of the eye and adnexa (H).BEDROC score for each disease is calculated over all cross-validated genes. GeneHound_GeoAgg offers the
very promising average BEDROC scores of 0.86 and 0.66 overall diseases of the eye and adnexa score at 10% and 1% early discovery focuses, respectively. These are versus 0.66 and
0.37 using Endeavour.

enrichment focuses.

Fig. S10. BEDROC scores result for the disease of ear and mastoid process (H2).
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Fig. S11. BEDROC scores result for the disease of the circulatory system (I).

Fig. S12. BEDROC scores result for the disease of the respiratory system (J).
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Fig. S13. BEDROC scores result for the disease of musculoskeletal connective tissue (M).

Fig. S14. BEDROC scores result for the disease of the genitourinary system (N).
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Fig. S15. BEDROC scores result for the congenital malformations, deformations and chromosomal abnormalities (Q).

Fig. S16. BEDROC scores result for the disease of symptoms, signs and abnormal clinical and laboratory findingg (R).
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Fig. S17. BEDROC scores result for the Mitochondrial complex deficiency (NA) Mitochondrial complex deficiency is not classified in ICD-10.


