
Online Appendix A

In this appendix, we review the properties of three popular IRT trait estimation methods. Each of

these trait estimation algorithms considers the likelihood of a response vector yj by person j, which for

dichotomous items equals

L(θ|yj , ξ) =
M∏
i=1

P (yij = 1|ξi, θ)yij (1− P (yij = 1|ξi, θ))1−yij , (A1)

where P denotes the probability of a keyed item response (yij = 1) for item i, i = 1, . . . ,M , θ is the latent

trait parameter, and ξ is a vector of item parameters. The log of the likelihood function equals

l(θ |yj , ξ) =
M∑
i=1

[yij log(P (yij = 1|ξi, θ)) + (1− yij) log(1− P (yij = 1|ξi, θ))] , (A2)

and the test information function, I(θ), equals

I(θ) =

M∑
i=1

[P ′i (θ)]
2

Pi(θ)[1− Pi(θ)]
, (A3)

where Pi(θ) is condensed notation for P (yij = 1|ξi, θ), and P ′i (θ) =
∂Pi(θ)
∂θ . The maximum likelihood (ML)

trait estimate equals the θ value that maximizes the log likelihood in Equation A2, and the standard error

of the ML trait estimate equals the inverse square root of the test information function evaluated at the ML

trait estimate. Assuming correct model specification and conditional independence, the ML trait estimate is

asymptotically unbiased and normally distributed with a standard deviation equal to the standard error of

the estimate (Birnbaum, 1968, p. 457). However, this asymptotic result holds as the number of test items

increases, and most psychometric tests are too short to produce unbiased ML trait estimates. Lord (1983)

demonstrated that ML trait estimates are biased outwards, that is, high trait scores are positively biased

and low trait scores are negatively biased. Consequently, ML trait estimates can be infinite (for non-mixed

response patterns) or otherwise implausibly extreme. Thus, it is usually necessary to constrain the ML trait

estimate, for example, between -4 and +4. Additionally, ML trait estimates may be biased even when there

is high conditional test information (Samejima, 1993), that is, if the standard error of the estimate is small.

A Bayesian alternative to ML trait estimation is the expected a posteriori (EAP; Bock & Mislevy, 1982)

ability estimate, which equals the mean of the posterior distribution of ability after observing a subject’s

responses to one or more items. In quadrature form, the EAP trait estimate equals
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θ̂EAP =

∑Q
q=1XqL(Xq)W (Xq)∑Q
q=1 L(Xq)W (Xq)

, (A4)

whereX1, X2, . . . , XQ are the set ofQ quadrature nodes, L is the likelihood in Equation A1, andW (Xq) is the

quadrature weight associated with node q. Quadrature weights are calculated from the prior distribution of

the latent trait and scaled such that
∑Q
q=1W (Xq) = 1. The standard deviation of the posterior distribution

equals

se(θ̂EAP) =

(∑Q
q=1(Xq − θ̂)2L(Xq)W (Xq)∑Q

q=1 L(Xq)W (Xq)

)1/2

. (A5)

Although the se(θ̂EAP) notation is technically incorrect, we use it here to emphasize that the posterior

standard deviation is often substituted for the standard error of the estimated trait scores when computing

reliability coefficients (Bock & Mislevy, 1982) or when constructing confidence intervals (Waller & Reise,

1989). Although Bayesian estimates are known to be biased toward the middle of the prior distribution, EAPs

may be preferred because they always produce finite trait estimates in short tests or during the early stages

of a computerized adaptive test (CAT; Weiss, 1982). Additionally, Bock and Mislevy (1982) showed that

after approximately 20 items are administered, the posterior distribution approaches normality and closely

traces the likelihood function. As a result, EAP and ML trait estimates are very similar in sufficiently long

tests. An alternative and unbiased trait estimation method is weighted likelihood estimation (WL; Warm,

1989). Based on Lord’s (1983) derivation for the finite-test bias of the ML trait estimator, the WL trait

estimate is unbiased in tests of finite length and equals the θ value that satisfies

J(θ)

2I(θ)
+
∂l(uj |ξ, θ)

∂θ
= 0, (A6)

where

J(θ) =

M∑
i=1

P ′iP
′′
i

Pi(1− Pi)
, (A7)

∂l(uj |ξ,θ)
∂θ equals the first derivative of the log likelihood in Equation A2 with respect to θ, P ′i = ∂Pi

∂θ , and

P ′′i = ∂2Pi

∂θ2 . The standard error of the WL θ̂ equals

se(θ̂WL) =

(
I ′(θ̂)J(θ̂)− I(θ̂)J ′(θ̂)

2I(θ̂)2
+ I(θ̂)

)−1/2
(A8)
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where I(θ) is the test information function in Equation A3, I ′(θ) = ∂I(θ)
∂θ , and J ′(θ) = ∂J(θ)

∂θ . In a Monte

Carlo simulation study, Warm (1989) found that the WL estimator outperformed both ML and a Bayesian

estimator in terms of average absolute error, bias, and mean squared error. In that study, the advantages of

WLE over the other estimators were most prominent for extreme θ values.
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