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Symbols

Used symbols (units):

VH: heater voltage (V)

IH: heater current (A)

RH: heater resistance (Ω)

Voff : offset voltage (V)

Ioff : offset current (A)

Vmeas: measured voltage (V)

Imeas: measured current (A)

Rmeas: measured resistance (Ω)

Uel: elastic energy (J)

Fel: restoring elastic force (N)

Fes: electrostatic force (N)

n0: in-plane tension (N/m)

n0(0): pre-tension (N/m)

E: Young’s modulus (Pa)

h: thickness (m)

z: displacement of the center of the membrane (m)

R: radius (m)

ν: Poisson’s ratio

C: capacitance (Fa)

VG: DC gate voltage (V)

A: area of drum (m2)

g: gap size (m)

ε0: dielectric constant

f0: resonance frequency (Hz)

m: effective mass (kg)

k: effective stiffness (N/m)

αeff : thermal expansion of the graphene-heater system (1/K)

κ: thermal conductivity of the silicon oxide (W/K)
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I. Temperature profile simulations

In this section we lay out the details of the 3D finite-elements simulations of the temperature

increase in the heater structure. In the simulations, we take a heat flux of 81 mW through

the heater, while keeping the bottom of the silicon chip thermally anchored. In Fig. S1(a) we

show the temperature across the cutline running horizontally through the heater structure.

This is to estimate the influence of the heat conductance through the electrodes and bonding

wires on the thermal profile of the heater, the simulation is repeated for a case where

the edges of the heater are also thermally anchored. It is shown that in both cases the

temperature at the center of the heater is the same (25 K), proving that heat transport

through the leads is negligible and the dominant heat sink is the silicon through the thin

layer of SiO2.

To evaluate the dominant thermal resistance of the system, a vertical cutline through the

Si-SiO2-AuPd is shown in Fig. S1(b). The thermal profile along the z-axis shows that the

thermal resistance of SiO2 is dominant in the system, as the total temperature drop across

the silicon is less than 1 K.

end of heater at 
reference T

bottom of Si at 
reference T

ΔT (K)

Z
 p

os
iti

on
 (
μ

m
)

Si

SiO2

AuPd

-500

a b
PH = 81 mW

25

15

20

10

5

2520151050

0.2

0

-0.2

-0.4

-0.6

-0.8

Position (μm)
-50 0 50

Δ
T

 (
K

)

FIG. S1. Temperature profiles of the heater device. (a) Horizontal cutline through the heater device

(dashed line in inset) for two cases: the red line is the temperature along the heater structure when the

thermal reference (293 K) is at the bottom of the Si chip. The blue line shows the temperature profile when

the thermal sink is at the edges of the heater electrodes, through the bonding wires. (b) Temperature profile

along the vertical direction when the Si chip is at the reference temperature (293 K). Almost the entire

temperature drop is across the SiO2 layer.
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II. Resistance measurement

In the experiments the resistance of the heater RH is measured using a Keithley 2400

Sourcemeter. This is done by setting the desired voltage on the Sourcemeter and mea-

suring both the actual heater voltage VH as well as the current IH that flows through it.

Such monitoring is done during the mechanical measurements, as well as in separate char-

acterization measurements where VH is swept (cf. Fig. 1(e), main text). Naturally, the

resistance is the ratio of the voltage to the current. However, the measured values can have

offsets w.r.t. their true values: Vmeas = VH + Voff and Imeas = IH + Ioff . This is illustrated
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FIG. S2. (a) Heater current-voltage measurement. The inset shows a zoom of the data. (b) Measured

resistance and fit of Eq. S1.

in Fig. S2(a) using the data from Fig. 1(d) from the main text. The IV curve does not

go through the origin, indicating that current offsets, voltage offsets, or both, are present.

When with these present, simply dividing the measured voltage and current does not give

the right resistance RH:

Rmeas = Vmeas

Imeas
= VH + Voff

IH + Ioff
= RH ×

IH + Voff/RH

IH + Ioff
= RH ×

VH + Voff

VH/RH + Ioff
6= RH. (S1)

In particular, Eq. S1 shows that the measured resistance approaches RH for large IH, but

also that it diverges at IH = −Ioff .

Although Eq. S1 contains both Voff and Ioff , these cannot be determined independently

from a measurement of Rmeas(Vmeas) as Eq. S1 can be rewritten as:

Rmeas(Vmeas) = Vmeas

Vmeas/RH + (Ioff − Voff/RH) , (S2)
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after eliminating Imeas. This only contains the combination of Ioff and Voff as a single

parameter I0 ≡ Ioff − Voff/RH.

Figure S2(b) shows the measured resistance Rmeas as well Eq. S2 fitted to the data. The

model fits the data well, and gives the fit values for the combined offset I0 = 18.42µA and

the heater resistance RH = 440.94 Ω. Note that even at VH = ±1 V the deviation between

Rmeas and RH is significant, a few Ohm, especially compared to the changes that occur while

changing the temperature or heater voltage as shown in Fig. 1(d). This offset is taken

into account in the temperature dependence of Fig. 1(d) where the current is measured at

VH = −1 V.

Finally, Eq. S1 can be inverted, giving:

RH = Vmeas −RH(Ioff − I0)
Imeas − I0

= Vmeas

Imeas − I0
. (S3)

For the last equality, the fact that I0 ≡ Ioff−Voff/RH holds for every combination of Ioff and

Voff that gives the same I0, including for Voff = 0, is used. Now by fitting the low-voltage

region [Fig. S2(b)] where RH is practically constant, one obtains the fit value for I0 that can

be inserted into Eq. S3 to find the actual resistance RH from the raw measurements. The

results in Fig. 1(d) are obtained using this procedure.
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III. Interplay between in-plane and out-of-plane tension

In this section, we outline the model for the influence of thermally-induced in-plane tension

on the gate tunability of the resonance frequency of the membrane. The deformation of the

drum under an electrostatic load is taken to be parabolic, such that its deformation shape

is given by: U(r) = 1 − r2

R2 , where R is the radius of the membrane. This is very close to

the shape of the fundamental eigenmode u(r, φ) = J0(kr), k ≈ 2.404/R.

The potential energy of a deformed membrane is mainly determined by the stretching

energy. This is because for thin membranes we can neglect bending rigidity, provided that

the condition h3

d2
E
n0
� 1 is satisfied [1]. The potential energy of a spherically deformed

membrane (by a uniform pressure load) is then given by:

Uel = 2πn0z
2 + 2πEh

3R2(1− ν)z
4, (S4)

where z is the displacement of the center of the drum. The restoring force can be calculated

as:

Fel = dUel

dz
= 4πn0z + 8πEh

3R2(1− ν)z
3, (S5)

To derive the electrostatic force felt by the drum, we make the parallel plate capacitor

and the uniform electrostatic load approximations, which are valid for small deflections.

Fes = ξ
1
2

ε0A

(g − z)2V
2

G, (S6)

where ξ accounts for the projection of the force on the center of the membrane. For a

parabolic deformation ξ = 0.5.

Expanding this around z = 0, we get:

Fes = 1
4ε0AV

2
G

( 1
g2 + 2z

g3 +O(z2)
)

(S7)

We can now write the force-balance equation of the system:

Fel − Fes = 4πn0z + 8πEh
3R2(1− ν)z

3 − 1
4ε0AV

2
G

( 1
g2 + 2z

g3

)
= 0, (S8)

which can be rewritten as:
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8πEh
3R2(1− ν)z

3 +
(

4πn0 − ε0AV
2

G
1

2g3

)
z − ε0AV

2
G

1
4g2 = 0. (S9)

Equation S9 is then used to calculate the equilibrium position z(VG, n0) of the drum.

The effective stiffness of the system k is given by:

k = 4πn0 −
ε0AV

2
G

2g3 + 8πEh
R2(1− ν)z

2, (S10)

which is also close to the dynamic spring constant of the fundamental mode.

The resonance frequency of the membrane can then be estimated as:

f0 = 1
2π

√
k

meff
, (S11)

where meff is the effective mass of the fundamental resonance mode (meff = 1
3m assum-

ing parabolic deformation). The pre-tension of the drum is calculated from the resonance

frequency at zero heater- and gate-voltage: n0(0) = 0.033 N/m. By substituting for z from

eq. S9 into eq. S10 and plugging this into eq. S11, we numerically calculate the resonance

frequency as a function of the DC voltage for varying in-plane tension. Figure S3(a) shows

the simulated f0 vs. VG curves for four different values of the in-plane tension together with

polynomial fits, which is a good approximation provided that the tension-induced hardening

is much stronger than the electrostatic softening, which seems to be the case judging by the

measurements presented in the main text. The effective Young’s modulus E is extracted

from numerical fitting of the the blue data points in panel (a), for zero heater voltage.
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FIG. S3. (a) Modeled f0 vs. VG curves for increasing in-plane tension n0 (colored data points) together

with polynomial fits (black curves). (b) Extracted curvature from the polynomial fits of the curves shown

in (a) as a function of the in-plane tension n0.

Panel (b) of Fig. S3 shows the curvature at VG = 0 V as a function of the in-plane tension.
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By relating the pre-tension to the heater voltage, we extract the thermal expansion coef-

ficient of the system.

The relation between the heater-induced in-plane tension and VH can be written as:

n0 = n0(0) + ∆n0(VH), (S12)

where n0(0) is the pre-tension of the drum at room temperature and ∆n0(VH) is the added

tension due to heating. The thermally induced tension ∆n0(VH) is related to the thermally

added strain ε through:

∆n0(VH) = εEh. (S13)

The strain ε is, in turn, related to the thermal expansion of the system:

∆n0(VH) = αeff∆TEh. (S14)

The temperature increase of the system at a given voltage is determined by the total

heating power and the thermal conductivity of the system:

∆T = PH

κ
= V 2

H
RHκ

, (S15)

which yields:

n0 = n0(0) + αeffEh
V 2

H
RHκ

. (S16)

The factor 1
RHκ

= 0.72 K/V2 is experimentally determined from the temperature calibra-

tion of the heater shown in Fig. 1 of the main text. Since E is known from fitting the curve

of Fig. S3(a), the pre-factor Eh
RHκ

is found to be Eh
RHκ

= 432 NK/V2m.

We now use this relation to numerically fit the measured resonance frequency as a function

of heater voltage to estimate αeff . The net thermal expansion coefficient of the system is

found to be: αeff = 1.64 × 10−6 K−1. Substituting this value in the expression for n0 in

Fig. S3 (b), we get a good agreement with the extracted curvature from Fig. 3 (e) of the

main text.
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IV. Other devices

In this section we present data on two other graphene devices. Similarly to Fig. 3 (g)

from the main text, Fig. S4 shows f0 −Q plots for (a) a 5-nm thick and (b) a 18-nm thick

graphene drum. Both drums show the same trend: upon increasing the heater voltage (i.e.

the temperature of the heater), both the frequency and the quality factor go up. The thin

drum (Fig, S4 (a)) shows a ≈30 % frequency increase accompanied by a 56 % increase in the

quality factor. The 18-nm thick sample shows a minute frequency increase of 3 %, probably

owing to the fact that the resonance of thicker drums is determined by their bending rigidity,

rather than the tension. The quality factor, however, shows an increase of 121 %, which is

a significant improvement of the mechanical dissipation.
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FIG. S4. Thermal tuning of two other graphene devices: (a) a 5-nm thick few-layer graphene and (b) a

18-nm ultra-thin graphite drum. The resonance frequency is plotted against the quality factor while heating

the device up. The color of each dot corresponds to the temperature of the device.
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V. Independent tuning of f0 and Q

In this Section we demonstrate that we can independently tune the resonance frequency and

the quality factor. Figure S5(a) shows the accessible range in the f0 − Q space, showing

all the measurement curves of Fig. 3 from the main text. The area in gray represents the

accessible f0 − Q space by using the dc heater and gate voltages, VH and VG, as control

parameters. However, from this plot, as well as the data in Fig. 3, it is clear that when

changing either VG,eff or VH, both the quality factor and the resonance frequency change

simultaneously.
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FIG. S5. (a) f0−Q plot for varying heater and gate voltage. The gray area indicates the accessible region.

Each color represents a different heater voltage. (b) A double contour plot of the resonance frequency and

the quality factor for varying VG,eff and VH. Experimental values are measured at the locations of the black

dots. Independent tuning of the (c) quality factor and (d) resonance frequency by following one of the

contour lines of (b).

In Fig. S5(b) we visualize the same data using contour plots. These lines of constant f0

and Q are calculated using the contour function of Matlab R2017a. The x-axis shows the
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gate voltage VG,eff and the y-axis is the (square of the) heater voltage V 2
H . The blue curves are

lines of equal resonance frequency and the orange curves are lines of equal quality factor. By

definition, when following a contour line of either f0 or Q, the value of it remains constant.

The fact that a single blue contour intersects more than one orange contour and vice versa

shows that for a given value of one parameter, the other can be tuned independently in the

range given by the outermost intersection points of the two curves. Using a combination

of VH and VG, we can follow either contours of constant frequency or have constant quality

factors, as shown in Fig. S5(c-d). In Fig. S5(c) we show that we can keep the resonance

frequency constant (blue curve), while lowering the quality factor (orange curve). The

opposite effect is observed in Fig. S5(d): where we follow a contour of constant Q, while the

resonance frequency increases.

Technically, the contour curves are parameterized with the VG,eff as control parameter and

the corresponding value of V 2
H is calculated from the output of the contour function using

interp1 with the ’pchip’ option. Next, for each point along the curve a 2D interpolation

is performed to find the local values of f0 and Q. Due to the difference in the interpolation

algorithm and that in the contour function, small fluctuations in the "constant" parameter

are still visible. However, the changes in the other, i.e, "varying" parameter is much larger.

This clearly demonstrates the power of our system to have independent control over the

resonance frequency and damping of the graphene nanodrum.

[1] Mansfield, E. H., The bending and stretching of plates. Cambridge University Press, Cambridge,

UK, 2005.
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