Cell Chemical Biology, Volume 25

Supplemental Information

PD_{n-3 DPA} Pathway Regulates Human Monocyte

Differentiation and Macrophage Function

Kimberly Pistorius, Patricia R. Souza, Roberta De Matteis, Shani Austin-Williams, Karoline G. Primdahl, Anders Vik, Francesca Mazzacuva, Romain A. Colas, Raquel M. Marques, Trond V. Hansen, and Jesmond Dalli

Supplemental Figures

Figure S1: Decreased $PD_{n-3 DPA}$ in ALOX15 deficient mice. Related to Figure 1 and Table S1.

Bone marrow monocytes were isolated from WT or ALOX15 deficient mice. These $(2x10^6 \text{ cells/ml})$ were then incubated with *E. coli* $(1x10^8 \text{ CFU/mL})$ for 30 min $(37^\circ\text{C}; \text{PBS}^{+/+})$. Incubations were quenched with ice-cold methanol and products identified and quantified using lipid mediator profiling. Results are mean ± SEM. n = 4 mice per group. * P<0.05.

Figure S2: Knockdown of both ALOX15 and ALOX15B reduces $PD_{n-3 DPA}$ biosynthesis in human monocytes. Related to Figure 1.

Human monocytes were transfected with shRNA to (A) ALOX15, (B) ALOX15B or CT shRNA (see methods for details). The cells (1x10⁶ cells/mL) were incubated with *E. coli* (5x10⁷ CFU/mL) for 45 min (37°C) and PD_{n-3 DPA} levels were ascertained using lipid mediator profiling. Results are mean \pm SEM. n = 5 donors.

Figure S3: Characterizing the synthetic 16S,17S-ePD_{n-3 DPA}. Related to Figure 3. (A) ¹H-NMR spectrum of methyl (7*Z*,10*Z*,12*E*,14*E*)-15-((2*S*,3*S*)-3-((*Z*)-pent-2-en-1-yl)oxiran-2-yl)pentadeca-7,10,12,14-tetraenoate (methyl ePD1_{n-3 DPA}). (B) ¹³C-NMR spectrum of methyl (7*Z*,10*Z*,12*E*,14*E*)-15-((2*S*,3*S*)-3-((*Z*)-pent-2-en-1-yl)oxiran-2-yl)pentadeca-7,10,12,14-tetraenoate (methyl ePD1_{n-3 DPA}). (C) HSQC spectrum of methyl (7*Z*,10*Z*,12*E*,14*E*)-15-((2*S*,3*S*)-3-((*Z*)-pent-2-en-1-yl)oxiran-2-yl)pentadeca-7,10,12,14-tetraenoate (methyl ePD1_{n-3 DPA}). (D) HRMS of methyl (7*Z*,10*Z*,12*E*,14*E*)-15-((2*S*,3*S*)-3-((*Z*)-pent-2-en-1-yl)oxiran-2-yl)pentadeca-7,10,12,14-tetraenoate (methyl ePD1_{n-3 DPA}).

Figure S4: Acid alcohol trapping product profile for synthetic $16S, 17S-ePD_{n-3 DPA}$. Related to Figure 2.

The epoxide was incubated in acidified methanol and products were profiled using LC/MS-MS. (A) MRM chromatogram for ion pairs *m/z* 375>277. (B-C) MS-MS spectra employed in the identification of (B) 10-methoxy,17S-hydroxy-7Z,11E,13E,15E,19Z-docosapentaenoic acid and (C) 16-methoxy,17S-hydroxy-7Z,10Z,12E,14E,19Z-docosapentaenoic acid in monocyte incubations.

Figure S5: 16S,17S-ePD_{n-3 DPA} and PD1_{n-3 DPA} rectify monocyte differentiation following ALOX15 inhibition restoring macrophage responses. Related to Figure 7.

Human monocytes were incubated with M-CSF (20ng/mL) and 15-LOX inhibitor (10µM), ALOX15 inhibitor + 16S, 17S-ePD_{n-3 DPA} (1nM), ALOX15 inhibitor + PD1_{n-3 DPA} (1nM), or vehicle (37°C, 5% CO₂ in RPMI supplemented with human serum). On day 7 (A) cells were collected and expression of lineage markers was determined using fluorescently labelled antibodies and flow cytometry. (B-C) cells were incubated with fluorescently labelled apoptotic cells for 45 min (37°C) and phagocytosis was evaluated using (B) ImageStream (C) fluorescent plate reader . * P < 0.05 vs ALOX15 inhibitor incubations; # P < 0.05 versus vehicle incubations.

Supplemental Tables

 Table S1: ALOX15 inhibitor shifts human monocyte-derived macrophage lipid mediator profiles Related to Figure 1.

DHA bioactive metabolome	Q1	Q3	Vehicle	ALOX15 inhibitor
RvD1	375	141	268 ± 46	13.3 + 3.3*
ByD2	375	1/1	127.6 + 12.8	620 + 425*
RVD2	275	141	127.0 ± 42.0	10.4 ± 5.2
ByD4	275	101	13.3 ± 7.0	10.4 ± 0.2
RVD4	375	101	172.0 ± 33.9	127.7 ± 42.7
RVD5	359	199	104.1 ± 37.4	05.0 ± 31.9
	359	101	639.4 ± 233.8	532.5 ± 187.5
17R-RvD1	375	141	47.0 ± 18.8	19.0 ± 5.7
17R-RvD3	375	147	12.5 ± 4.2	8.3 ± 4.3
PD1	359	153	24.4 ± 6.2	16.6 ± 5.7 *
10S,17S-diHDHA	359	153	309.0 ± 114.3	220.8 ± 92.3 *
17R-PD1	359	153	18.7 ± 10.7	17.0 ± 12.3
22-OH-PD1	375	153	7.4 ± 3.8	4.8 ± 3.1 *
MaR1	359	221	$64.2 \hspace{0.2cm} \pm \hspace{0.2cm} 56.6$	22.1 ± 10.5
MaR2	359	191	184.0 ± 98.9	161.2 ± 88.0
7S,14S-diHDHA	359	221	259.9 ± 87.3	427.0 ± 143.6
22-OH-MaR1	375	221	196.1 ± 79.5	200.1 ± 74.6
4S.14S-diHDHA	359	101	69.7 ± 61.7	20.5 ± 9.9
14-0x0-MaR1	357	248	16.3 ± 7.4	9.5 ± 5.4
n-3 DPA bioactive metabolome				
RvT1	377	239	39.9 ± 21.2	26.7 ± 12.3
RvT2	377	197	34.6 ± 21.6	25.8 ± 16.7
RvT3	377	197	22.1 ± 12.8	10.0 ± 3.9
RvT4	361	211	36.0 ± 11.2	62.7 ± 34.6
	001		00.0 = 11.2	02.11 = 01.10
RvD1.	377	143	39.8 ± 16.5	28.0 ± 15.0 *
RvD2	377	143	212 + 85	129 + 31
RVD5	361	199	125.2 ± 32.7	76.6 + 16.1*
I V D On-3 DPA	501	133	120.2 - 52.1	70.0 ± 10.1
	361	183	325 + 91	110 + 12*
	261	262	32.0 ± 3.1	$12.4 \pm 9.2*$
	261	192	27.3 ± 10.0 22.0 ± 7.6	10.4 ± 0.2
A15tropo DD1	261	103	53.9 ± 7.0	19.0 ± 0.0
10opi A15tropo DD1	261	103	01.0 ± 23.9	52.2 ± 23.4
TOEPI-A TStrans-PD In-3 DPA	301	105	75.5 ± 19.4	55.0 ± 20.6
MoD1	261	240	120 + 72	19.2 + 11.4
	301	249	13.0 ± 7.3	10.2 ± 11.4
75, 145-0INDPA	301	249	11.9 ± 20.2	47.0 ± 14.2
EDA hissotiva matahalama				
	240	105	19 5 11 0	18.6 10.7
RVET	349	195	18.5 ± 11.9	18.0 ± 12.7
RVE2	333	199	269.5 ± 102.2	246.0 ± 112.1
RVE3	333	201	93.8 ± 33.6	90.7 ± 39.9
AA bloactive metabolome	054	0.17	544.0 007.5	100 7 000 5
	351	217	514.2 ± 307.5	422.7 ± 239.5
LXB ₄	351	221	602.9 ± 280.3	492.4 ± 228.9 *
55,155-diHETE	335	235	5259.1 ± 1992.8	3585.6 ± 1638.2 *
15R-LXA₄	351	217	386.2 ± 172.4	308.7 ± 146.9
15R-LXB ₄	351	221	1848.8 ± 855.8	1283.9 ± 516.3
LTB ₄	335	195	175.8 ± 170.4	60.1 ± 58.7
5S,12S-diHETE	335	195	1145.4 ± 596.4	1073.1 ± 586.4
20-OH-LTB ₄	351	195	1.9 ± 0.6	1.4 ± 0.5
PGD ₂	351	189	2191.3 ± 326.6	1277.4 ± 251.7 *
PGE ₂	351	189	1983.8 ± 901.7	1151.9 ± 507.9
PGF _{2α}	353	193	466.7 ± 196.9	230.1 ± 45.7
TxB ₂	369	169	63661.3 ± 43046.4	19094.8 ± 14290.9

Human monocytes were incubated with M-CSF (20ng/ml) and either a ALOX15 inhibitor or vehicle (37°C, 5% CO₂). On day 7 incubations were quenched with ice-cold methanol and lipid mediators identified using LC/MS-MS based profiling. Results are mean \pm SEM and expressed in pg/1x10⁷ cells. Q1, M-H (parent ion); and Q3, diagnostic ion in the MS-MS (daughter ion). * p<0.05 using Mann Whitney test.

Table S2: Altered lipid mediator profiles in monocytes from ALOX15 deficient mice.to Figure 1 and Supplemental Figure 1.

DHA bioactive metabolome	Q1	Q3	WT	ALOX15 ^{-/-}
RvD1	375	141	1.63 ± 0.78	0.19 ± 0.20
RvD2	375	141	2.00 ± 1.37	0.20 ± 0.17
RvD3	375	147	0.17 ± 0.08	0.01 ± 0.02
RvD4	375	101	1.96 ± 1.31	0.14 ± 0.07
RvD5	359	199	23.03 ± 11.87	2.99 ± 2.14
RvD6	359	101	0.60 ± 0.34	0.00 ± 0.00
17R-RvD1	375	141	0.83 ± 0.30	$0.08 \pm 0.08^*$
17R-RvD3	375	147	0.66 ± 0.34	0.10 ± 0.06
	010		0.00 = 0.01	0.10 = 0.00
PD1	359	153	2.08 ± 1.15	0.13 ± 0.07
10S 17S-diHDHA	359	153	31.28 + 17.71	0.30 + 0.19
17R-PD1	359	153	169 + 117	0.02 + 0.01
22-0H-PD1	375	153	0.16 + 0.11	0.02 ± 0.01
	010	100	0.10 ± 0.11	0.00 ± 0.04
MaR1	359	221	17.48 ± 4.89	0.57 ± 0.62 *
MaR2	359	191	1 55 + 1 17	0.07 ± 0.07
7S 14S-diHDHA	359	221	852 + 403	0.07 = 0.07 0.14 + 0.12 *
22-OH-MaR1	375	221	270 + 240	0.14 ± 0.12 0.32 + 0.32
	350	101	2.70 ± 2.40 3.22 ± 2.30	0.52 ± 0.52
145,145-0111D11A	357	2/18	3.22 ± 2.30 1 20 + 0.95	0.13 ± 0.14 0.11 + 0.10
14-0x0-mart1	557	240	1.20 ± 0.00	0.11 ± 0.10
n-3 DPA bioactive metabolome				
RvT1	377	239	15.45 ± 4.39	1.40 ± 1.46 *
RvT2	377	197	9.08 + 4.20	0.97 + 0.43*
RvT3	377	107	2.03 ± 1.20	0.01 ± 0.07
RvT4	361	211	2.33 ± 1.07 $3/31 \pm 10.67$	0.11 ± 0.07 0.01 + 1.03
	001	211	04.01 ± 10.07	0.01 - 1.00
RvD1 _{n-3 DPA}	377	143	2.48 ± 2.06	0.33 ± 0.20
RvD2 _{n3DPA}	377	143	0.97 ± 0.52	0.15 ± 0.09
RvD5 _{n-3 DPA}	361	199	3.67 ± 0.13	1.08 ± 0.23 *
PD1 _{n-3 DPA}	361	183	1.59 ± 0.53	0.00 ± 0.00 *
PD2 _{n-3 DPA}	361	263	1.86 ± 0.86	0.05 ± 0.03 *
10S, 17S-diHDPA	361	183	1.49 ± 0.45	0.01 ± 0.01 *
∆15trans-PD1 _{n-3 DPA}	361	183	1.93 ± 0.99	0.08 ± 0.04 *
10epi-∆15trans-PD1 _{n-3 DPA}	361	183	$1.49 \hspace{0.2cm} \pm \hspace{0.2cm} 0.45$	0.14 ± 0.10 *
MaR1 _{n-3 DPA}	361	249	0.70 ± 0.48	0.08 ± 0.08
7S, 14S-diHDPA	361	249	8.85 ± 5.22	0.57 ± 0.43
EPA bloactive metabolome	0.40	105		
RVE1	349	195	2.36 ± 1.43	0.28 ± 0.24
RvE2	333	199	1.39 ± 0.95	0.25 ± 0.15
RvE3	333	201	3.11 ± 1.88	0.42 ± 0.42
AA bioactive metabolome				
I XA	351	217	1.66 ± 0.69	0.03 ± 0.02 *
I XB₄	351	221	12.41 ± 4.13	4.86 ± 3.35
5S 15S-diHETE	335	235	84 99 + 58 58	692 + 478
15R-I XA.	351	217	202 + 083	6.02 ± 4.10 6.03 ± 4.01
15R-LXB	351	221	1.02 + 1.00	0.28 + 0.14
	001		1.02 - 1.12	0.20 - 0.14
LTB₄	335	195	348.45 ± 98.93	97.71 ± 83.25 *
5S,12S-diHETE	335	195	0.00 ± 0.00	0.00 ± 0.00
20-OH-LTB ₄	351	195	2.73 ± 1.81	0.02 ± 0.02
PGD ₂	351	189	1256.77 ± 411.18	129.81 ± 104.81 *
PGE ₂	351	189	397.88 ± 215.48	32.80 ± 26.30
PGF _{2a}	353	193	730.81 ± 330.29	71.06 ± 65.35 *
TxB ₂	369	169	2374.02 ± 784.55	131.47 ± 112.91 *

Bone marrow monocytes (2x10⁶ cells/mL) were incubated with *E. coli* (2x10⁸ cells/mL) for 45 minutes at 37°C. Incubations were quenched with ice-cold methanol and lipid mediators identified using LC/MS-MS based profiling. Results are mean \pm SEM and expressed in pg/1x10⁷ cells. Q1, M-H (parent ion); and Q3, diagnostic ion in the MS-MS (daughter ion). * p<0.05 using Mann Whitney test.

Table S3: Tissue resident macrophages from ALOX15 mice display and altered expression of lineage markers that is rescued by $PD1_{n-3 DPA}$ administration. Related to Figure 1 and Figure 7.

Large Peritoneal Macrophages					
Lineage Marker	WT	12/15-LOX ^{-/-}	12/15-LOX ^{-/-} + PD1 _{n-3 DPA}		
TIM 4	11479.5 ± 1285.4	7487.1 ± 1108.7 *	10738.4 ± 1767.6		
CD64	5112.7 ± 460.6	5299.6 ± 478.1	5267.6 ± 802.9		
TGFβ	924.9 ± 112.0	647.1 ± 124.2	1106.9 ± 162.8 #		
MHCII	10338.4 ± 772.9	9914.0 ± 1200.7	9471.4 ± 1791.3		
Arg-1	1192.0 ± 254.3	2004.1 ± 223.5 *	1398.8 ± 333.3		
IL-10	$621.4 \hspace{0.1 in}\pm\hspace{0.1 in} 86.9$	911.1 ± 46.0 **	787.4 ± 113.8		
CD11b	7844.2 ± 856.0	11380.1 ± 737.9 **	9023.9 ± 1028.7 #		
Small Peritoneal Macrophages					
Lineage Marker	WT	ALOX15 ^{-/-}	ALOX15 ^{-/-} + PD1 _{n-3 DPA}		
TIM-4	1741.6 ± 160.8	1129.3 ± 175.9 *	1680.4 ± 313.8		
CD64	7908.3 ± 569.2	10092.6 ± 698.8 *	8196.0 ± 984.2		
TGFβ	117.2 ± 7.6	181.5 ± 15.4 **	140.1 ± 12.7 #		
MHCII	5972.0 ± 250.4	4923.7 ± 335.9 *	5943.4 ± 767.6		
Arg-1	4284.9 ± 354.0	3356.3 ± 219.6 *	4160.4 ± 544.7		
IL-10	365.1 ± 25.7	452.6 ± 41.4	357.9 ± 14.2 #		

111533.7

CD11b

296952.6

 \pm

Splenic Macrophages					
Lineage Marker	WT	ALOX15 ^{-/-}	ALOX15 ^{-/-} + PD1 _{n-3 DPA}		
PTGS2	701.0 ± 22.2	894.7 ± 4.4 **	792.3 ± 14.4 ##		
iNOS	3822.8 ± 273.1	4589.0 ± 184.4	4066.7 ± 290.0		
CD64	7528.5 ± 468.8	9644.3 ± 292.0 *	8484.7 ± 315.6		
TGFβ	72.2 ± 9.3	118.7 ± 7.2 *	$96.2 ~\pm~ 9.9$		
MHCII	11416.3 ± 461.6	10378.7 ± 369.3	10847.0 ± 247.2		
CD11c	347.8 ± 6.0	501.0 ± 33.6 *	$405.7 \hspace{0.1 in} \pm \hspace{0.1 in} 18.8$		
Arg-1	70.6 ± 7.6	170.0 ± 10.6 **	129.3 ± 4.1 #		
IL-10	123.0 ± 2.0	154.7 ± 2.2 **	136.7 ± 1.7 #		
CD11b	2129.0 ± 172.6	4029.7 ± 174.9 **	2476.7 ± 92.3 #		

125432.1

 \pm 30807.4

490012.7 ± 204253.1 #

Tissue resident macrophages were collected from WT mice given vehicle (PBS) or ALOX^{-/-} mice given either vehicle of 10ng PD1_{n-3 DPA} daily for 7 days. The expression of lineage markers was determined using flow cytometry and fluorescently labeled antibodies. Results are mean \pm SEM n=7 mice per group for Large and small peritoneal macrophages n= 7 and splenic macrophages n=4 mice per group. * P < 0.05; ** P <0.01 vs WT vehicle group; # P < 0.05; ** P <0.01 vs ALOX15 vehicle group.