Supplemental Information

Correlating Drug-Target Kinetics and *In vivo* Pharmacodynamics: Long Residence Time Inhibitors of the FabI Enoyl-ACP Reductase

F. Daryaee,^{a#} A. Chang,^{a#} J. Schiebel,^{c,e,f} Y. Lu,^a Z. Zhang,^a K. Kapilashrami,^a S. G. Walker,^b C.

Kisker,^c C. A. Sotriffer,^e S. L. Fisher^d* and Peter J. Tonge^a*

^aInstitute for Chemical Biology & Drug Discovery, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA.

^bInstitute for Chemical Biology & Drug Discovery, Department of Oral Biology and Pathology Stony Brook University, Stony Brook, NY 11794-3400, USA.

^cRudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany.

^dThe Broad Institute, Cambridge MA 02142, USA.

^eInstitute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany.

^fPresent address: Institute of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany.

#These authors contributed equally to this work.

*Correspondence to: <u>stewfisher@slfisherconsulting.com</u> and <u>peter.tonge@stonybrook.edu</u>

Derivation of a PK/PD model incorporating 1 step uncompetitive inhibition

The mechanistic PK/PD model that we described in Walkup et al.¹ assumes that every enzyme species apart from ES leads to inhibition of bacterial growth. The original model was derived for competitive two-step enzyme inhibition. The saFabI inhibitors operate through a one-step binding mechanism and are uncompetitive inhibitors, thus they bind to ES and not E (**Scheme 1**).

$$E + S \xrightarrow{K_m} ES \xrightarrow{k_{cat}} E + P$$

$$k_4 \iint_{K_3} K_i = k_4/k_3$$
ESI

Scheme 1

The first task is to calculate the concentration of ES based on **Scheme 1**. Interconversion between enzyme [E] and substrate [S] and enzyme-substrate complex [ES] is rapid, but formation of the enzyme-substrate-inhibitor complex is slow.

The total enzyme concentration $[E_0]$ is given by Equation S1.

$$[E_0] = [E] + [ES] + [ESI]$$
Equation S1

Dividing both sides of Equation S1 by $[E_0]$ gives the ratio of each form of the enzyme with respect to the initial total enzyme concentration (Equation S2).

$$1 = \frac{[E]}{[E_0]} + \frac{[ES]}{[E_0]} + \frac{[ESI]}{[E_0]}$$
Equation S2
If we define $\frac{[E]}{[E_0]}$ as $[E], \frac{[ES]}{[E_0]}$ as $[ES]$, etc. we have Equation S2,
$$1 = [E] + [ES] + [ESI]$$
Equation S3

Assuming that we have steady-state conditions for enzyme and enzyme-substrate complex formation, we have (Equation S4),

$$[ES] = \frac{[E][S]}{\kappa_m}$$
 Equation S4

Equation S3 becomes Equation S5:

$$1 = [ES] * \frac{K_m}{[S]} + [ES] + [ESI]$$

$$1 - \left(1 + \frac{K_m}{[S]}\right) * [ES] = [ESI]$$

$$M = \frac{K_m}{[S]}; \beta = 1 + \frac{K_m}{[S]}$$

$$1 - \beta * [ES] = [ESI]$$
Equation S5

Taking derivatives of both sides with the assumption that substrate and inhibitor concentrations,

[S] and [I], are not changing over time, we have Equations S6

$$-\beta * \frac{d[ES]}{dt} = \frac{d[ESI]}{dt}$$
 Equation S6

According to Scheme 1, there is an equilibrium between [ES] and [ESI], so,

$$\frac{d[ESI]}{dt} = k_3 * [ES] * [I] - k_4 * [ESI]$$
 Equation S7

Combining Equations S6 and S7, we have

$$-\beta * \frac{d[ES]}{dt} = k_3 * [ES] * [I] - k_4 * [ESI]$$
 Equation S8

Replacing [ESI] with the equation containing [ES], Equation S5, and also replacing k_3 with $\frac{k_4}{K_i}$, we

have

$$-\beta * \frac{d[ES]}{dt} = k_4 * [ES] * \frac{[I]}{\kappa_i} - k_4 * (1 - \beta * [ES])$$
 Equation S9

Dividing both sides of Equation S9 by $-\beta$ and also applying some basic algebraic principles, leads to Equation S10:

$$\frac{d[ES]}{dt} = \frac{-k_4}{\beta} * [ES] * \frac{[I]}{K_i} + \frac{k_4}{\beta} - k_4 * [ES]$$

$$\frac{d[ES]}{dt} = \frac{k_4}{\beta} - \left(k_4 + \frac{k_4}{\beta} * \frac{[I]}{K_i}\right) * [ES]$$

$$k = k_4 + \frac{k_4}{\beta} * \frac{[I]}{K_i}$$

$$\frac{d[ES]}{dt} = \frac{k_4}{\beta} - k * [ES]$$
Equation S10

Integrating the differential equation yields

$$[ES] = \frac{k_4}{\beta * k} + \left([ES]_0 - \frac{k_4}{\beta * k} \right) * e^{-k * t}$$
Equation S11

Equation S11 can then be incorporated into Equation S12 which relates the concentration of every enzyme species that is not ES to the rate of bacterial growth, where λ is the logarithmic growth rate, ε is the maximum inhibitor-induced kill rate and *N* is the bacterial cell count in CFU/mL, to give Equation S13:

$$\frac{dN}{dt} = (\lambda - \varepsilon [NotES])N$$
 Equation S12
$$\frac{dN}{dt} = \left(\lambda - \varepsilon \left(1 - \frac{k_4}{\beta * k} - \left([ES]_0 - \frac{k_4}{\beta * k}\right) * e^{-k * t}\right)\right)N$$
 Equation S13

Integration of Equation S13 gives Equation S14

$$[N] = [N_0] exp\left(\left[\lambda - \varepsilon \left(1 - \frac{k_4}{\beta * k} \right) \right] t + \varepsilon \frac{\left([ES]_0 - \frac{k_4}{\beta * k} \right)}{k} (1 - e^{-k * t}) \right)$$
Equation S14

It is important to note that [I] is the concentration of inhibitor at the target (i.e. the intracellular drug concentration). Since we do not have direct knowledge of this value, we introduce a permeability factor ρ_m , which relates the intracellular drug concentration to the concentration of drug in the media in the *in vitro* PAE experiment or to the free fraction plasma drug concentration in the *in vitro* experiments. As we don't have any experimental value for ρ_m , we estimate its value after fitting the *in vitro* PAE data to Equation S14 by choosing a random seed value and letting the value float within a large constraint range to get the best estimate of ρ_m based on the best fit.

 $[I] = [Drug]_{in media or plasma} * \rho_m$

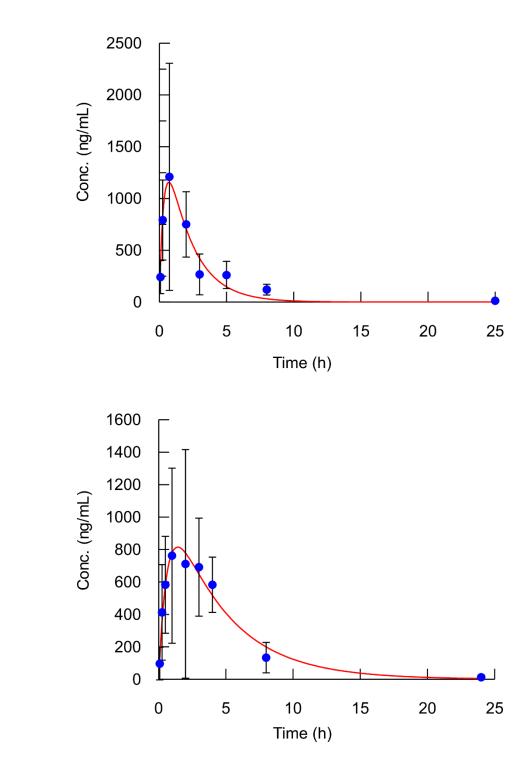
Calculation of TO_{min} and TO_{max}

To estimate the minimum and maximum target occupancy required for antibacterial activity, a new model, complementary to the original integrated model, has been developed in Mathematica. In this new model equations S10 and S12 are again our key equations.

$$\frac{d[ES]}{dt} = \frac{k_4}{\beta} - k * [ES]$$
Equation S10
$$\frac{dN}{dt} = (\lambda - \varepsilon[NotES])N = (\lambda - \varepsilon(1 - [ES]_t))N$$
Equation S12

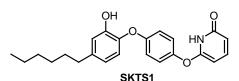
However, to estimate the minimum and maximum target occupancy an extra condition is introduced in which all target occupancy levels $(1-[ES]_t)$ with values less than TO_{min} result in no effect and values higher than TO_{max} produce the maximum obtainable efficacy (Equation S15). In addition, a linear correlation between occupancy and effect is assumed to exist between TO_{min} and TO_{max} (Equation S16).

$$\frac{dN}{dt} = \lambda * N - \varepsilon * (\text{If}[(1 - [ES]_t) < TO_{max}, \text{If}[(1 - [ES]_t) > TO_{min}, 1/(TO_{max} - TO_{min}) * (1 - [ES]_t) - TO_{min}/(TO_{max} - TO_{min}), 0], 1]) * N$$
Equation S15


$$0 < \frac{(1 - [ES]_t) - TO_{min}}{TO_{max} - TO_{min}} < 1$$
 Equation S16

Fitting of the experimental PAE data obtained at each drug concentration to Equation S15 yields values of TO_{min} and TO_{max} , as well as the value of $[ES]_t$ at the beginning of PAE phase.

Pharmacokinetic Data for PT55 and PT119



b)

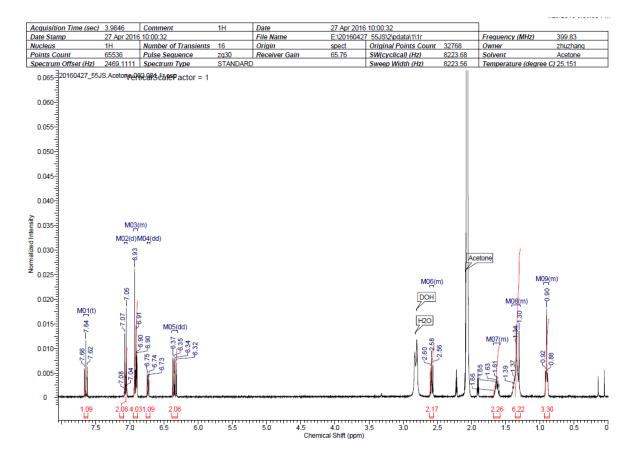


Figure 1. Pharmacokinetics (PK) of a) PT55 and b) PT119. Experimental data points represent mean values from triplicate and error bars represent 1 s.d. Solid lines are the result of fitting the experimental values to a one-compartment PK model. The PK parameters are given in Table 3.

Analytical Data for SKTS1

Chemical Formula: C₂₃H₂₅NO₄ Exact Mass: 379.17836

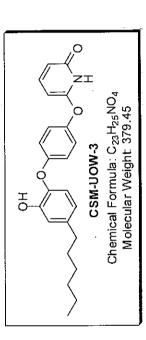
¹H NMR (400 MHz, Acetone) d ppm 0.87 - 0.94 (m, 3 H) 1.28 - 1.41 (m, 6 H) 1.58 - 1.68 (m, 2 H) 2.56 - 2.61 (m, 2 H) 6.35 (dd, J=13.87, 7.84 Hz, 2 H) 6.73 (dd, J=8.16, 2.01 Hz, 1 H) 6.89 - 6.95 (m, 4 H) 7.06 (d, J=9.16 Hz, 2 H) 7.64 (t, J=7.91 Hz, 1 H). ESI-MS (m/z): calc for C₂₃H₂₅NO₄ [M - H]⁻ 378.2; found 378.1 [M - H]⁻. HRMS (m/z): calc for C₂₃H₂₅NO₄ [M + H]⁺ 380.1856; found 380.1855 [M + H]⁺; calc for C₂₃H₂₅NO₄ [M - H]⁻ 378.1711; found 378.1717 [M - H]⁻.

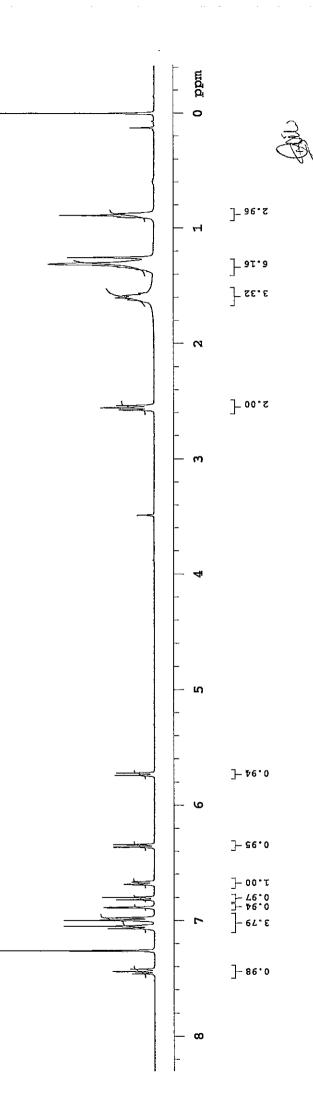
References

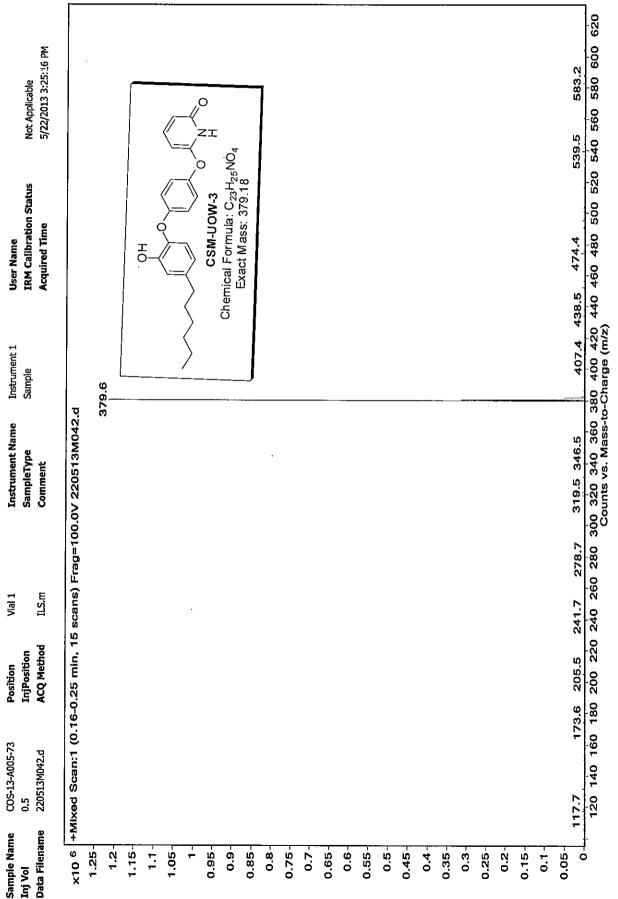
G. K. Walkup, Z. You, P. L. Ross, E. K. Allen, F. Daryaee, M. R. Hale, J. O'Donnell, D. E. Ehmann, V. J. Schuck, E. T. Buurman, A. L. Choy, L. Hajec, K. Murphy-Benenato, V. Marone, S. A. Patey, L. A. Grosser, M. Johnstone, S. G. Walker, P. J. Tonge and S. L. Fisher, *Nat Chem Biol*, 2015, **11**, 416-423.

COS-13-A005-73 in CDC13 File No : 20130527_26

.

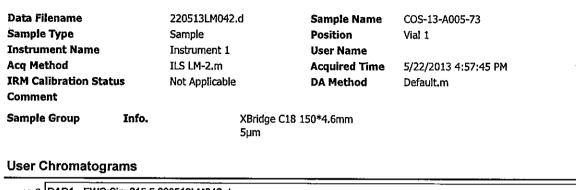

Sample Name:


Data Collected on: localhost.localdomain-vnmrs400 Archive directory:


Sample directory:

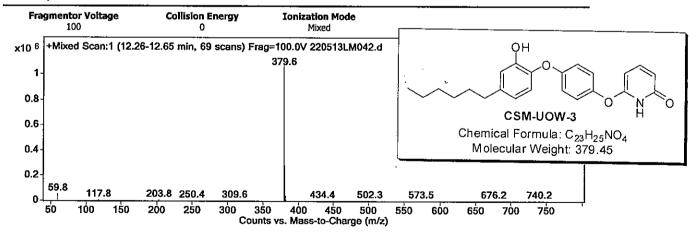
FidFile: PROTON

Pulse Sequence: FROTON (s2pul) Solvent: cdcl3 Data collected on: May 27 2013



ci.snink M.

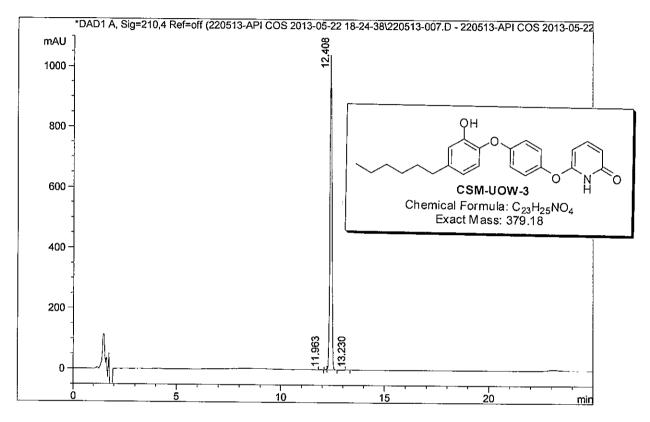
COSMIC Discoveries@IL\$

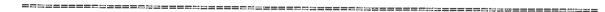

LC-MS Analysis Report

DAD1 - EWC:Sig=215,5 220513LM042.d x10 ² * 12.37 4 3 2 1 * 4.15 0 -1 11.85 7 8 9 10 11 mAU vs. Acquisition Time (min) 3 4 ĥ 2 5 6 12 13 14 15 16 17 **Integration Peak List**

Peak		RT	Area	%Area
	L	4.15	6.805	0.22
	2	11.85	1.721	0.06
3	3	12.37	3019.536	99.72

User Spectra




--- End Of Report ---

1 9 .13

COSMIC DISCOVERIES @ ILS HPLC ANALYSIS REPORT

		Seq Line	:	7	
Injection Date	: Wed, 22. May. 2013	Location	:	Vial 53	
Sample Name	: COS-13-A005-73	Inj. No.	:	1	
Acq Operator	: RADHA	Inj. Vol.	:	10 µl	
Acq. Method	: D:\chem32\1\DATA\220513-AP1	COS 2013-05-	-22		
Analysis Method	: D:\CHEM32_002\1\METHODS\AMI	COS.M			
Method Info	Column: X-BRIDGE C-18 150*4.6mm 5µm				
	Mobile phase: A) 0.1% TFA in Water B) ACN				
	T/%B:0/40,3/40,13/95,20/95,22/40,25/40				
	Flow:1.0ml/min, Diluent: MEOH				

Signal 1: DAD1 A, Sig=210,4 Ref=off

Pe	ak	RT	Area	Area %
#	I	[min]		
				·
1	1	11.963	7.412	0.101
1	21	12.168	8.706	0.119
I	31	12.408	7306.644	99.734
I	4	13.230	3.403	0.046

lavin 1.3

*** End of Report ***

======

Instrument 1

Thu, 23. May. 2013 09:34:18 am

Page 1 of 1

=================