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7Present address: Centre for Integrative Biology, Università degli Studi di Trento, via Sommarive 9, 38123 Trento, Italy
8Lead Contact

*Correspondence: dk10012@cam.ac.uk (D.K.), mrw@uow.edu.au (M.R.W.)

https://doi.org/10.1016/j.celrep.2018.05.074
SUMMARY

The aberrant aggregation of a-synuclein is associ-
ated with several human diseases, collectively
termed the a-synucleinopathies, which includes Par-
kinson’s disease. The progression of these diseases
is, in part, mediated by extracellular a-synuclein olig-
omers that may exert effects through several mecha-
nisms, including prion-like transfer, direct cytotox-
icity, and pro-inflammatory actions. In this study,
we show that two abundant extracellular chaper-
ones, clusterin and a2-macroglobulin, directly bind
to exposed hydrophobic regions on the surface of
a-synuclein oligomers. Using single-molecule fluo-
rescence techniques, we found that clusterin, unlike
a2-macroglobulin, exhibits differential binding to
a-synuclein oligomers that may be related to struc-
tural differences between two previously described
forms of aS oligomers. The binding of both chaper-
ones reduces the ability of the oligomers to permea-
bilize lipid membranes and prevents an oligomer-
induced increase in ROS production in cultured
neuronal cells. Taken together, these data suggest
a neuroprotective role for extracellular chaperones
in suppressing the toxicity associated with a-synu-
clein oligomers.
INTRODUCTION

The a-synucleinopathies are a group of progressive and, ulti-

mately, fatal neurodegenerative disorders, including Parkinson’s

disease (PD), dementia with Lewy bodies (DLB) andmultiple sys-

tem atrophy (MSA). The pathological hallmark of these disorders

is the selective loss of neurons and the aberrant accumulation of
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a-synuclein (aS) within protein inclusions in neuronal or glial cells

(Chiti and Dobson, 2017). How the aggregation of aS causes

disease is still unclear; however, a body of data implicate the

direct cytotoxicity of aS oligomers (Chen et al., 2015; Chiti and

Dobson, 2017; Ingelsson, 2016; Winner et al., 2011). During

the aggregation process, aS oligomers undergo a structural con-

version from a relatively unstable species to more stable and

compact oligomers that have increased cytotoxicity and resis-

tance to proteinase-K degradation compared to the preceding

oligomers (Cremades et al., 2012; Horrocks et al., 2015; Iljina

et al., 2016). This conversion occurs before the oligomers are

incorporated into fibrillar structures and is a critical step in the

aggregation pathway of aS.

aS can account for up to 1% of all cytosolic proteins in neu-

rons, but it is also present in extracellular fluids, including cere-

brospinal fluid (CSF) and blood plasma (El-Agnaf et al., 2003).

Recent evidence suggests that this extracellular aS significantly

contributes to the onset and spreading of disease within the

affected brain (Lee et al., 2014). Indeed, as with a growing num-

ber of neurodegenerative diseases, it appears that the local

spread of pathology may be due to a prion-like propagation pro-

cess (Auli�c et al., 2014; Chiti and Dobson, 2017; Emmanouilidou

and Vekrellis, 2016; Marques and Outeiro, 2012). Direct neuro-

toxicity of extracellular aS has also been observed, which could

be caused by the unregulated insertion of aS aggregates into cell

membranes and/or neuroinflammatory responses such as mi-

croglia activation and generation of intracellular reactive oxygen

species (ROS) (Cremades et al., 2012; Fusco et al., 2017; Rey-

nolds et al., 2011; Zhang et al., 2005).

Extracellular chaperones (ECs) are a small class of proteins

that act efficiently to enhance the clearance of misfolded pro-

teins from extracellular body fluids. Clusterin (CLU) was the first

mammalian EC discovered (Wilson and Easterbrook-Smith,

2000) and has been shown to inhibit the aggregation of a very

broad range of proteins, including aS (Yerbury et al., 2007).

Thus, since both CLU and aggregates of aS can be present

together outside cells, a direct in vivo interaction between the
.
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two proteins is feasible and likely. Similarly, another well charac-

terized EC, a2-macroglobulin (a2M) (Wyatt et al., 2014), may also

interact with aS. A polymorphism in the a2M gene has been

linked with PD, although this link cannot be established for all

populations (Kr€uger et al., 2000; Nicoletti et al., 2002; Tang

et al., 2002).

In addition to a possible extracellular interaction, CLU and aS

may interact within the cellular environment. Under conditions

of endoplasmic reticulum (ER) stress, the secretion of CLU to

the extracellular environment is inhibited, and the protein is ret-

rotranslocated from the ER and/or Golgi to the cytosol (Nizard

et al., 2007; Zhang et al., 2014). We have recently shown that

this process is sufficient to protect cultured neuronal cells

and Drosophila melanogaster from proteotoxicity associated

with the aggregation of the amyotrophic lateral sclerosis

(ALS)-linked protein TDP-43 (Gregory et al., 2017). ER stress

has been linked to both ALS and PD pathologies; moreover,

the overexpression of mutational variants of aS is sufficient to

induce ER stress (Gallegos et al., 2015). These observations

suggest that a cytosolic interaction between aggregated aS

and CLU is also possible. Indeed, CLU has been found co-

localized with intracellular aS in patients with a variety of dis-

eases, including cortical Lewy bodies in DLB, brain stem

Lewy bodies in PD and DLB, and glial cytosolic inclusions in

MSA (Sasaki et al., 2002).

Despite the potentially critical importance of the binding be-

tween ECs and aS oligomers, our understanding of the nature

of the interaction is limited. Previous work has shown that both

CLU and a2M bind to misfolded proteins to inhibit their aggrega-

tion (Wyatt et al., 2013). However, very limited information is

available regarding whether specific sizes or structures of oligo-

mers are bound preferentially or on the stoichiometries of bind-

ing of chaperone to misfolded client proteins. CLU is known to

interact with oligomers of the 40-amino-acid isoform of amy-

loid-b (Ab), ranging from dimers up to 50mers (Narayan et al.,

2011). CLU also forms stable high-molecular-weight complexes

with amorphous aggregates of proteins with a mass ratio of 1:2

(CLU:client) (Wyatt et al., 2009); however, the stoichiometry of

complexes formed between either CLU or a2M and amyloid-

forming proteins is not known.

In this report, we used a single-molecule fluorescence tech-

nique, termed two-color coincidence detection (TCCD) (Orte

et al., 2008a), to show that both CLU and a2M interact directly

with aS oligomers. TCCD allows the properties of two individual

proteins, each labeled with one of two spectrally distinct fluoro-

phores, to be studied with high sensitivity (Horrocks et al., 2015).

This approach allows the detection of individual species by

avoiding measurements of ensemble averages and has been

used previously to study the kinetics of aS aggregation (Cre-

mades et al., 2012; Horrocks et al., 2015). In the present study,

we demonstrate that the interactions between the chaperones

and aS oligomers are inhibited by 4,40-dianilino-1,10-bi-
naphthyl-5,50-disulfonic acid (bisANS), suggesting that the bind-

ing involves exposed hydrophobic groups on the surface of the

oligomers. Additionally, we show that the chaperones specif-

ically inhibit both an aS-induced increase in lipid membrane

permeability and the aS-induced induction of ROS production

in neuronal cells.
RESULTS

We first performed TCCD measurements to explore the inter-

action of the ECs with aS during the aggregation process. To

achieve this, we made use of the A90C mutational variant

aS, which allows the conjugation of a fluorophore through a

single thiol group; previous studies have shown that the conju-

gation does not significantly change the behavior of the protein

from that of wild-type aS (Cremades et al., 2012). aSA90C-

AF488 (70 mM) was incubated under aggregation-inducing

conditions in the presence of CLU-AF647 (0.7 mM). We took al-

iquots from the aggregation reaction and monitored, via TCCD,

the stoichiometry of any CLU:aS complexes formed. The num-

ber of monomers in an oligomer is estimated based on the total

fluorescence intensity of the oligomer compared to that of the

monomer. Since this is not a direct measurement of the olig-

omer size, and is approximate, we refer to this as the apparent

size. Wherever the term ‘‘monomer’’ is used regarding CLU

and a2M, we are referring to the physiological heterodimer

and tetramer, respectively. Under these conditions, both

CLU and a2M were found to greatly inhibit the aggregation of

wild-type aS (Figure S1). Previous fluorescence lifetime exper-

iments have shown that AF488 conjugated to aS is not

quenched during the oligomerzation of the protein (Cremades

et al., 2012). Additionally, since CLU-AF647 did not show any

evidence of quenching when bound to unlabeled aS fibrils (Fig-

ure S1), we assumed that fluorescence quenching is not a sig-

nificant factor, particularly when bound to the small oligomers.

We were interested to see to which species CLU was bound,

and so we searched for coincidence events between the two

different fluorophores. After 6 hr of aggregation, we observed

coincident events showing that CLU was predominantly bound

to small oligomers (approximately tetramers) with an equimolar

stoichiometry to aS. For larger oligomers, CLU was found to

bind to aS at substoichiometric ratios, with an average CLU/

aS ratio of 0.1 calculated for the largest oligomers detected

(Figures 1A and 1C). As expected, after 48 hr of aggregation,

a larger number of aS oligomers were detected than after

6 hr (Figures 1B and 1D; additional time points are shown in

Figure S2). At this later time point, as at 6 hr, a population of

larger aS oligomers with a low CLU/aS ratio (approximately

0.06) was detected (Figures 1B and 1D). In addition, a popula-

tion of ‘‘CLU-rich’’ oligomers were also detected (Figure 1B).

These CLU-rich oligomers had an average CLU/aS ratio of

0.8 and generally contained less than 15 aS monomers. Over-

all, these data show that CLU binds to a wide range of aS

species, from at least dimers to oligomers containing 30 aS

molecules.

We next studied the formation of a2M-aS complexes in a

manner similar to that used for CLU, as described earlier.

aSA90C-AF488 (70 mM) and a2M-AF647 (0.7 mM) were co-incu-

bated under conditions that facilitated aggregation, and the re-

sulting oligomers were examined using TCCD at various time

points. Similarly to CLU, a2M significantly inhibited the aggrega-

tion of aSunder these conditions (Figure S1), and again, after 6 hr

of incubation, the resulting small aS oligomers showed a broad

distribution centered around an equimolar stoichiometry with

a2M (Figures 2A and 2C). The ratio tended to decrease as
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Figure 1. The Ratio of CLU:aS Decreases in

Larger Oligomers

aSA90C-AF488 (70 mM) and CLU-AF647 (0.7 mM)

were co-incubated in PBS (pH 7.4) at 37�C, with

shaking at 200 rpm. The formation of aS-CLU

complexes was quantified by single-molecule

TCCD.

(A and B) Contour plots of the apparent number of

aS monomers constituting an oligomer as a func-

tion of the ZCLU/aS value for samples taken from the

aggregation reaction after 6 hr (A) and 48 hr (B),

respectively. ZCLU/aS represents the logarithm of

the apparent ratio of CLU to aS in each oligomer.

The data shown are representative of three sepa-

rate experiments. The numbers in the inserts

indicate the number of complexes represented in

the plot.

(C and D) Frequency histograms of the number of

oligomers at different ZCLU/aS values (for the data

shown in A and B, respectively). The dotted lines

each indicate a specific CLU: aSA90C stoichiometry

(as shown on the upper x axis). The data are

representative of three independent experiments.
increasing numbers of aS monomers were present in the olig-

omer. The largest oligomers detected (consisting of�30 aSmol-

ecules) had an approximate a2M/aS ratio of 0.03. After aSA90C-

AF488 had been incubated with a2M-AF647 for 48 hr, oligomers

were more abundant and tended to contain more a2M than simi-

larly sized oligomers after 6 hr of incubation (Figures 2B and 2D;

additional time points are shown in Figure S2). Small oligomers

detected in the aggregation reaction after 48 hr still had an

approximate equimolar ratio of a2M:aS. However, in the largest

oligomers detected at 48 hr (containing �30 aS monomers),

the a2M/aS ratio was around 0.1, approximately three times

greater than at the 6-hr time point. In order to further compare

the differences in binding stoichiometry at various times during

the aggregation reaction, the average numbers of apparent

a2M and aS monomers in different oligomers were plotted (Fig-

ures 2E and 2F). This reveals that (1) at all time points, there was a

linear dependence of the a2M:aS ratio on oligomer size (Fig-

ure 2E), and (2) the a2M:aS ratio increased linearly over time

for oligomers of all sizes (Figure 2F).

To further investigate the binding of the ECs to the oligomers,

we examined whether this binding was a result of hydrophobic

interactions by exploiting the effects of the presence of bisANS,

a well-established probe of solvent-exposed hydrophobicity

(Bothra et al., 1998; Poon et al., 2002; Sheluho and Ackerman,

2001). We first incubated wild-type aS for 9 hr under aggregating

conditions and examined the species formed at this time point by

super-resolution microscopy using Nile red; we found that they

matched the characteristics observed previously for oligomers
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formed under these conditions (i.e.,

approximately spherical and <200 nm

in diameter; Figure S3). The mixture of

monomeric and oligomeric aS was ad-

sorbed to a microplate and next blocked

with BSA and treated with a range of

concentrations of bisANS to block any
exposed hydrophobic regions. Following subsequent incubation

with either CLU or a2M, the extent of chaperone binding was as-

sessed by an ELISA. The bisANS dose-dependently reduced the

binding of bothCLU and a2M to the aS oligomers (Figures 3A and

3B), suggesting that the hydrophobic regions exposed on the

surface of the oligomers mediates the binding. Neither of the

chaperones was found to bind to the BSA blocker or to mono-

meric aS (Figure S3).

Having shown that the chaperones bind to exposed hydro-

phobic regions present on aS oligomers, we hypothesized

that this binding could act to reduce the cytotoxicity of the

oligomers. For this purpose, we first used a methodology that

enables the quantification of aggregate-induced toxicity by

measuring their effects on the permeability of a lipid bilayer

(Flagmeier et al., 2017). In this assay, the Ca2+-sensitive dye

Cal-520 is incorporated into surface-tethered vesicles, and

Ca2+ present in solution can enter the vesicles when the lipid

membrane is permeabilized (by, for example, a protein olig-

omer). The resulting increase in fluorescence intensity can be

quantified by total internal reflection fluorescence (TIRF) micro-

scopy and used to determine the extent of membrane perme-

ability. In contrast to a non-EC control protein (BSA), incubation

of aS oligomers with both CLU and a2M significantly reduced

the ability of the oligomers to permeabilize the membranes

(96 ± 4% and 69 ± 7% protection at a 1:10 substoichiometric

ratio of chaperone to monomer, respectively; Figures 3C and

3D). BSA did not reduce the Ca2+ influx even when present

at an equimolar ratio of BSA:aS (Figure S3). The effect of the



Figure 2. Time-Dependent Changes in the

Association of a2M with aS Oligomers

aSA90C-AF488 (70 mM) and a2M-AF647 (0.7 mM)

were co-incubated in PBS (pH 7.4) at 37�C, with

shaking at 200 rpm. The formation of aS-a2M

complexes was quantified by single-molecule

TCCD.

(A and B) Contour plots of the apparent number of

aS monomers constituting a given oligomer as a

function of the Za2M/aS value for samples taken

from the aggregation reaction after 6 hr (A) and 48

hr (B). Za2M/aS represents the logarithm of the

apparent ratio of a2M to aS in each oligomer. The

numbers in the inserts indicate the number of

complexes represented in the plot.

(C and D) Frequency histograms of the number of

oligomers at different Za2M/aS values (for the data

shown in A and B, respectively). The dotted lines

each indicate a specific a2M:aSA90C stoichiometry

(as shown on the upper x axis). Data are repre-

sentative of three independent experiments.

(E) aSA90C-AF488 (70 mM) and a2M-AF647 (0.7 mM)

were co-incubated in PBS at 37�C, with shaking at

200 rpm, for the indicated time. For each time

point, the average numbers of apparent monomers

of a2M and aS per oligomer were calculated. The

data were fitted to linear regressions.

(F) The gradients of each linear regression for each

time point shown in (A). A time-dependent linear

increase in the amount of a2M found bound to aS

can be observed. Data shown are means ± SEM

(n = 3).
chaperones was dose dependent, with both chaperones

providing >95% protection at a concentration equimolar to

that of monomeric aS. Additionally, both CLU and a2M reduced

the aS-induced permeabilization when aS was aggregated in

the presence of the chaperone in a 1:100 substoichiometric ra-

tio of chaperone to aS monomer (Figure S3).

To determine whether this effect was sufficient to alter the

cellular response to aS oligomers, we measured the effect of

both ECs on the cellular production of ROS (Cremades et al.,

2012). Intracellular ROS has previously been shown to activate

apoptosis in neurons (Jenner, 2003) and is typically one of the

first aberrant cellular responses induced by exposure to toxic

protein oligomers (Canevari et al., 2004; Zampagni et al.,

2011). The oxidation of dihydroethidium (DHE) to ethidium was

used to measure the rate of ROS production immediately after

the addition of aS oligomers to Neuro-2a cells, in the presence

or absence of the ECs. The addition of pre-formed oligomers
Cell R
alone, or of oligomers preincubated with

BSA, resulted in an approximately 2.5-

fold increase in the rate of ROS produc-

tion. Preincubation of the oligomers with

CLU or a2M ameliorated their ability to

induce ROS formation in cells (Figures

3E and 3F). As neither chaperone alone

had any effect on the rate of ROS produc-

tion, the protective effect is not the result

of the chaperones inhibiting the ability of
the cells to produce ROS but rather indicates a protective effect

conferred by the ECs binding to the oligomers.

DISCUSSION

In the present study, we investigated the direct interaction of

ECs with aS under conditions where aggregation occurs. We

first used TCCD to examine the stoichiometry of the EC/aS

complexes. Using this approach, we have shown that the na-

ture of the binding between the chaperones and aS oligomers

is specific for each chaperone and, in the case of CLU, appears

to depend on subtle differences in the oligomeric structures.

In aliquots taken from aggregation reactions after 6 hr, the

stoichiometry of the complexes formed between each EC and

aS were similar. Both chaperones tended to bind small oligo-

mers (<5 aS monomers) in an approximate equimolar ratio.

Oligomers containing >5 aS monomers were observed to be
eports 23, 3492–3500, June 19, 2018 3495



Figure 3. Hydrophobic Shielding Reduces the Ability of aS Oligomers to Induce Membrane Disruption and ROS Production

(A and B) BisANS inhibits the binding of CLU (A) and a2M (B) to aS oligomers. The chaperones (present at 10 mg , mL�1) were incubated in an ELISA plate pre-

coated with aggregated aS, and the amount of bound chaperone was then measured by ELISA. Neither chaperone bound to monomeric aS or the BSA blocker

(Figure S3). Data shown are means ± SD of three independent experiments.

(C) aS oligomers were pre-incubated with CLU, a2M, or BSA and then added to surface-tethered lipid vesicles filled with the Ca2+-sensitive fluorophore Cal-520.

The extent of membrane permeabilization was quantified as a percentage of maximum fluorescence produced after incubation with the Ca2+ ionophore ion-

omycin. Example images of vesicles after the addition of the indicated sample are shown. Scale bar (bottom right), 2 mm.

(D) Quantification of the data shown in (C). a2M or CLU (0.05–50 nM) was incubated with aggregated aS. The extent of membrane permeabilization decreased

with increasing chaperone concentration. Data shown are means ± SD of 9 fields of view (at least 800 vesicles) and are representative of two independent

experiments.

(E) Aggregated aS preincubated with CLU, a2M, or BSA (each present at a 1:10 substoichiometric ratio) was added to Neuro-2a (N2a) cells. The rate of ROS

production before and after the sample addition was quantified bymeasuring the oxidation of DHE to ethidium by epifluorescencemicroscopy. The change in the

rate of ROS generation due to the addition of a sample was calculated by subtracting the gradient of the pre-addition line from the gradient of the post-addition

line. Example rates of ROS production in a single cell under the indicated conditions are shown.

(F) Quantification of the data shown in (E). The change in the rate of ROS production produced by each sample relative to the buffer-only sample is

indicated. The values are means ± SD of approximately 50 cells across three replicate treatments. **p < 0.01, analyzed by one-way ANOVA with a

Bonferroni post-test.
associated with proportionally less chaperone, suggesting that

the number of chaperone-accessible binding sites on the aS

oligomer surface does not increase linearly with the number

of aS monomers in an oligomer. These data also indicate

that, on average, slightly fewer a2M molecules are associated

with the oligomers of all sizes when compared with CLU. This

is likely to be the result of the significant difference in size be-

tween the two chaperones: a2M is much larger than CLU

(approximately 720 kDa for the a2M tetramer and 80 kDa for

the CLU heterodimer). CLU is known to exist in solution as a

polydisperse mixture of oligomers of the heterodimer (Hoch-

grebe et al., 2000; Poon et al., 2002). It is not known whether

these species exhibit variable chaperone activity; however,

even a CLU tetramer is approximately half the size of a2M.
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As a result, the binding of a2M to aS is likely to be sterically

limited by previously bound chaperones to a greater extent

than for CLU. This could potentially help explain the observa-

tion that dimeric a2M is a more efficient chaperone than the

native tetramer (Wyatt et al., 2014). The biological function of

CLU oligomers is not known, although it has been suggested

that they act as reservoirs of a more chaperone-active CLU

heterodimer that is released when required (Poon et al.,

2002). Unfortunately, the role of these oligomers is difficult to

investigate experimentally using single-molecule techniques

due to the rapid dissociation of the oligomers upon dilution.

Interestingly, compared to the complexes observed after 6 hr

of incubation, a distinct population of CLU/aS complexes

emerged at later time points that were relatively large (up to



�15 aS monomers) and CLU rich (CLU/aS ratio = 0.8). One

possible explanation for the appearance of this population may

be a time-dependent association of additional aS monomers

with already formed CLU/aS complexes; however, the clear

delineation between this population and those observed at 6 hr

suggests that this is not the case. It was recently shown that

aS oligomers exhibit a broad distribution of structure-dependent

surface hydrophobicity (Bongiovanni et al., 2016). The data pre-

sented here indicate that the binding of CLU to the oligomers is

mediated by hydrophobicity, suggesting that the ability of CLU to

bind to the oligomers is dependent on some aspect of the olig-

omer structure. Furthermore, the observed time dependence

of the differential binding of CLU to aS oligomers cannot be ex-

plained by the differential binding of CLU monomers and oligo-

mers, which are both present at the start of the experiment

before dilution for single-molecule measurements. This can,

however, be explained by CLU binding to aS oligomers of

different structures.

Both a2M and CLU have previously been shown to reduce

the toxic effects of Ab oligomers (Fabrizi et al., 2001; Narayan

et al., 2014) and reduce the toxicity of CSF from Alzheimer’s

disease patients and healthy controls (Drews et al., 2017; Yer-

bury and Wilson, 2010). This is believed to be a result of the

endocytic clearance of the oligomer from the extracellular

space through the formation of oligomer-chaperone complexes

such as those directly observed in this report. This process is

thought to be one of the central systems acting to maintain

extracellular proteostasis (Wyatt et al., 2013). Additionally, the

work presented here indicates that the binding of ECs to

oligomers directly inhibits the latter from aberrantly interacting

with lipid membranes. Similarly to other client proteins (Poon

et al., 2002), the association between ECs and aS oligomers

appears to be mediated by regions of exposed hydrophobicity,

evidenced by the inhibition of binding by the hydrophobic

probe bisANS. Thus, by interacting with the oligomers, chaper-

ones appear to shield the surface hydrophobicity present on

the oligomers. Although the precise mechanism by which aS

oligomers confer cytotoxicity is unknown, direct membrane

disruption appears to be one of the contributing factors

(Poon et al., 2002). Given that hydrophobicity contributes to

the interaction between aS and lipid membranes (Pfefferkorn

et al., 2012; van Rooijen et al., 2009), it is not surprising that

the chaperones inhibited the permeabilization of lipid vesicles

caused by aS oligomers. This provides a feasible mechanistic

explanation for the observation that the chaperones prevent

an increase in ROS production elicited by the oligomers.

Overall, despite evidence that the binding of both a2M and

CLU to aS oligomers is mediated by surface-exposed regions

of hydrophobicity on the oligomers, the binding of each chap-

erone shows unique characteristics. The data suggest that the

interaction between the chaperones and aS oligomers appears

to depend on both the identity of the chaperone and the struc-

tural properties of the oligomer. When considered alongside

the chaperone-mediated reduction in aS-induced membrane

permeability and ROS production, these data provide evidence

to support a neuroprotective role for ECs in the a-synucleinopa-

thies and suggest a mechanism by which these chaperones may

operate within other disease contexts.
EXPERIMENTAL PROCEDURES

Protein Purification and Labeling

aS (wild-type and A90C; aSA90C), CLU, and a2M were purified as described

previously (see Cremades et al., 2012; French et al., 2008; and Poon et al.,

2002, respectively). aSA90C was labeled with either Alexa Fluor 488 (AF488)

C5maleimide or Alexa Fluor (AF647) C2maleimide (Invitrogen). The aSwas first

incubated for 15 min with 10 mM DTT at room temperature (RT) to ensure

reduction of the engineered cysteine residue. The reduced aSA90C was

concentrated to approximately 400 mM using a Vivaspin 500 (10,000 MWCO)

and buffer exchanged through a PD-10 column (GE Healthcare Life Sciences)

into degassed PBS. The protein was then added to a 1.5-fold molar excess of

the functionalized fluorophores, and the tube was flushed with nitrogen to pre-

vent oxidation of the cysteines. The protein was incubated at 4�C overnight,

with shaking followed by purification from unreacted fluorophore using a

PD-10 column equilibrated in PBS (pH 7.4). The fluorescent labeling of

aSA90C has previously been shown to have minimal influence on the aggrega-

tion of the protein (Cremades et al., 2012; Horrocks et al., 2015). Similarly, CLU

and a2M (Sigma Aldrich) were individually labeled with N-hydroxysuccinimidyl

ester forms of either AF488 or AF647 (Invitrogen). To achieve this, the proteins

(each at approximately 2 mg , mL�1) were incubated with a 10-fold molar

excess of the functionalized fluorophore for 1 hr at RT or overnight at 4�C. Un-
conjugated dyewas removed by buffer exchange into PBS (or PBSwith 0.01%

azide in the case of a2M) using a PD-10 column. The final protein concentration

and labeling efficiency were determined according to the manufacturer’s

instructions.

Aggregation of aS

Any pre-aggregated material present in the monomer stock was first removed

from the monomer population by ultra-centrifugation at 90,000 rpm for 1 hr at

4�C. Then, aS was aggregated in the presence or absence of the ECs. When

present, the chaperone was used at a molar ratio to aS of 1:100. All aggrega-

tions were performed using 70 mM aS in PBS (pH 7.4), with shaking at 200 rpm,

37�C, in an Innova43 Incubator Shaker Series (New Brunswick Scientific). Pro-

tein LoBind tubes (Eppendorf) were used to minimize protein adsorption; time

point samples were flash frozen in liquid nitrogen for storage before use.

Microfluidics

Single-channel microfluidic devices were used to increase the rate of data

acquisition through sample flow and remove the bias for preferentially

measuring smaller species that occurs as a result of diffusion. These devices

were made of polydimethylsiloxane (PDMS), patterned using a silicon wafer,

and bonded to borosilicate glass cover slides by exposure to oxygen plasma.

The construction and use of these devices for examining aS aggregation has

been described previously (Horrocks et al., 2015).

Single-Molecule TCCD

TCCD measurements were performed with fluorescent proteins present at

50 pM. Dilutions, in freshly filtered (0.02 mm) PBS, were performed immediately

before analysis. TCCD measurements were made using a custom-built

confocalmicroscope. Briefly, the intensities of a 488 nm laser (Spectra Physics

Cyan, CDRH) and a 633 nm laser (Melles Griot, 25-LHP-151 helium neon

[HeNe]) were first attenuated using neutral density filters. The beams were

expanded and collimated by passage through a spatial filter (488 nm laser) or

telescopic lenses (633 nm laser) before being made concentric with a dichroic

mirror (505DRLP Omega Filters). The beams were then directed into the back

port of an inverted microscope (Nikon Eclipse TE2000-U) and focused 10 mm

into the sample by a Fluor 100X, 1.30 NA, oil-immersion objective (Nikon).

The emitted fluorescence was collected by the same objective and passed

through a 50 mm pinhole (Melles Griot) before being separated into two chan-

nels by a further dichroic mirror (585DRLP, Omega Filters). Emission in each

channel was passed through long-pass and band-pass filters (535AF45 and

510ALP Omega Filters for the blue-green channel and 696AF55 and 565ALP

Omega Filters for the red channel) and focused on avalanche photodiodes

(Perkin-Elmer Optoelectronics, SPCM-14) for quantification.

The apparent size of an oligomer measured by confocal microscopy was

calculated by first determining the fluorescence intensity of the monomer.
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This was typically given by the average intensity of non-coincident events

before the sample was incubated under conditions to promote aggregation.

The number of monomers in each coincident burst was then characterized as:

NMonomers =
ID
IMD

+
IA
IMA

where ID and IA are the intensities of the coincident burst in the donor and

acceptor channels, respectively; and IMA and IMD are themeanmonomer inten-

sities in the donor and acceptor channels, respectively (Orte et al., 2008a). In a

similar fashion, the natural logarithmof the apparent ratio of chaperone to client

in each oligomer (Z) was calculated according to the following equation:

Z = ln

0
@

�
Ichaperone
Imchaperone

�
�

Iclient
Imclient

�
1
A

where I refers to the intensity of a peak above the threshold from fluorophores

conjugated to the chaperone or client protein, and Im refers to the intensity of

the monomer. These Z values are used to display the ratio of chaperone to

client, so that the scale is visually symmetrical around a 1:1 stoichiometry

(Z = 0). It should be noted that, in these experiments, the apparent monomer

intensity determined from any given dataset is dependent upon the value

used to threshold those data. However, since the threshold was determined

automatically, as described previously (Clarke et al., 2007; Orte et al.,

2008b), the error in the calculated number of monomers labeled with each

fluorophore is the same when comparing the two labeled species. Thus, all

references to the number of monomers constituting an oligomer refers

to apparent monomers, and although the given values scale correctly with

each other, they may differ from the true value.

TIRF Microscopy

Borosilicate glass cover slides (24 3 50 mm, thickness number 1; VWR Inter-

national) for use in TIRF microscopy were cleaned by exposure to oxygen

plasma for 30 min (FEMTO plasma system, Diener Electronic). Frame-Seal in-

cubation chambers (Bio-Rad) were attached to the surface of the slides to

create wells, which were then coated in aspartic acid (1mg/mL; Sigma Aldrich)

for 15 min. The aspartic acid was removed, and the slide was rinsed with PBS

before use. Samples were analyzed at approximately 3 mM monomer equiva-

lents—a concentration that allowed individual aggregates to be resolvable on

the surface of the slide. Either 5 mM thioflavin T or 5 nM Nile red was added to

the sample before imaging to visualize aS aggregates (Bongiovanni et al.,

2016). Measurements were performed on a custom-built inverted optical mi-

croscope. The intensities of 405 nm, 532 nm, and 641 nm lasers were attenu-

ated using neutral density filters, after which the beams were circularly polar-

ized using quarter-wave plates specific to each wavelength. The beams were

then expanded and collimated using Galilean beam expanders and made

concentric using dichroic mirrors before being passed through the back aper-

ture of an invertedmicroscope and focused using an oil immersion TIRF objec-

tive (APON60XO TIRF, Olympus). Fluorescence emission was separated from

excitation light using dichroic mirrors (Di02-R532 and Di01-R405/455/561/635

for 532 nm and 405/641 nm excitation, respectively; Semrock) and passed

through appropriate filters (BLP01-488R-25, LP02-568RS-25, and BLP01-

635R-25 for 405 nm, 532 nm, and 641 nm excitation, respectively; Semrock).

The fluorescence was then expanded and focused on an electron-multiplying

charge-coupled device (Evolve 512, Photometrics) for imaging.

Super-resolution images were reconstructed using the Drift Calculator

and Peak Fit package (GDSC SMLM, University of Sussex) in ImageJ using

gain = 37.7 analog to digital units (ADU) per photon, minimum photons >30,

and precision <30 nm. Cluster analysis was performed to remove random lo-

calizations using DBSCAN (sklearn v0.18.1, Python 2.7); minimum points

threshold = 10, and epsilon = 3.

ELISA

aS was aggregated for 9 hr as described earlier, centrifuged at 13,000 3 g for

10min to remove any large aggregates, and then diluted to 2.5 mM. The protein
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was then adsorbed to a high-binding 96-well microplate (Corning) for 2 hr at RT

with gentle shaking. After the incubation, the plate was rinsed with PBS and

blocked with 150 mM BSA as described earlier. Some wells were then incu-

bated with bisANS (Sigma) in a concentration range of 0–100 mM to block sol-

vent-exposed hydrophobic regions (Poon et al., 2002). Following this, the wells

were incubated with CLU or a2M for 1 hr at RT (each at 10 mg , mL�1 diluted

into the BSA blocking solution). The wells were then rinsed five times with

PBS before the amount of bound chaperone was quantified using horseradish

peroxidase (HRP)/chromogen detection of appropriate antibodies according

to the manufacturer’s instructions (antibodies and reagents from CLU and

a2M ELISA kits, ab174447 and ab108883, respectively; Abcam).

Single Vesicle Assay

A quantitative vesicle assay was used to measure the ability of aS oligomers to

permeabilize membranes as described previously (Flagmeier et al., 2017). aS

was aggregated as described earlier, and aliquots were removed and diluted

so that the final concentration of aS added to the vesicles was 50 nM. The

diluted samples were preincubated for 5 min at RT in the presence or absence

of a2M, BSA, or CLU (concentrations are indicated in the legend for Figure 3)

before being added to the solution above POPC lipid vesicles containing Cal-

520 (100 mM; Stratech Scientific) tethered to the surface using biotin/neutravi-

din linkage. A change in the fluorescence as a result of Ca2+ (present at 1.3mM

in L-15 buffer; Thermo Fisher Scientific) entering the vesicles was quantified by

means of TIRF microscopy using a 488 nm laser for excitation (Toptica Pho-

tonics) and emission filters BLP01-488R-25 and FF01-520/44-25 (Semrock).

The fluorescence intensity of each vesicle was then normalized to the

maximum possible fluorescence intensity of the vesicle measured following

incubation with ionomycin (1.4 mM; Sigma). For each sample, the acquisition

of 9 fields of view (3 3 3 grid) was automated to prevent user bias.

DHE Assay

DHEwas used to measure the intracellular rate of ROS production in Neuro-2a

cells, using a method similar to that previously described (Cremades et al.,

2012). The cells were cultured in DMEM/Ham’s Nutrient Mixture F-12 (Thermo

Fisher Scientific) supplemented with 10% (v/v) fetal bovine serum (Bovagen

Biologicals) and incubated in a Heracell 150i CO2 incubator (Thermo Fisher

Scientific) under 5% (v/v) CO2 at 37�C. Cells to be analyzed were seeded in

24-well plates and left to grow to approximately 50% confluency. The cells

were rinsed with PBS before DHE (2 mM in PBS) was added. An epifluores-

cence microscope was used to quantify both the oxidized (ethidium: excita-

tion, 405–435 nm; emission, 440–480 nm) and reduced (DHE: excitation,

502–560 nm; emission, 590–630 nm) forms of DHE.Measurements were taken

every 30 s for 15 min before the addition of aggregated aS (30-mM monomer

equivalent) with and without preincubation with BSA, CLU, or a2M (all: 3 mM,

5 min at RT). DHE (2 mM) was present in any sample added to the cells to pre-

vent the dilution of the fluorophore. Measurements were then taken of the

same cells for a further 15 min. The ratio of the mean ethidium intensity to

the mean DHE intensity before and after the addition of the sample was calcu-

lated; a linear regression was fitted to the data, and the gradient of the slope

was used to determine the change in the rate of oxidation of DHE within cells.

In each experiment, the first two data points collected after the addition of the

DHE and sample (i.e., the 0-, 0.5-, 15.5-, and 16-min time points) were

excluded from the analysis, as the sample addition briefly disturbed the fluo-

rescence measurement.
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Figure S1. Related to Figures 1 and 2. (a) αS (70 µM) was incubated alone or with BSA (as a negative control), α2M 

or CLU (each at 0.7 µM) for 48 h at 37 °C and 200 rpm shaking. The time points were taken during the reaction and 

the extent of aggregation was quantified by ThT (20 µM) fluorescence using a Clariostar platereader (BMG LabTech; 

excitation 440-15 nm, emission 500-25 nm). Data shown are means ± SD of three replicate treatments. (b) CLU-

AF647 (100 nM) was incubated with shaking for 1 h with various concentrations of αS fibrils (equivalent monomer 

concentrations are shown, diluted from a 70 µM aggregation reaction incubated for 48 h). The absence of significant 

quenching was observed when the total fluorescence intensity of the solution was measured and found to be 

independent from the number of fibrils present. (c) TIRF microscopy was used to show that CLU can indeed bind to 

fibrils. Fibrils were identified using thioflavin T and are shown in green, CLU-AF647 is shown in red, coincidence 

appears yellow. Panels at right show larger versions of areas indicated by numbered yellow boxes. The scale bars are 

2 μm for the main panel, and 1 μm for each of the smaller panels. 

 

 

 



 

 
Figure S2. Related to Figures 1 and 2. αSA90C-AF488 (70 µM) and either α2M-AF647 (0.7 µM; left column) or CLU-

AF647 (0.7 µM; right column) were co-incubated at 37 °C, with shaking at 200 rpm, in PBS (pH 7.4). Samples were 

taken from the aggregation reaction at the indicated times and the formation of αS-chaperone complexes was 

quantified by single-molecule TCCD. Zchaperone/αS represents the logarithm of the apparent ratio of chaperone to client 

in each oligomer. The numbers in the inserts indicate the number of complexes represented in the plot.  Data shown 

are representative of at least three separate experiments. 

 

 



 

 

Figure S3. Related to Figure 3. (a) Monomeric αS was incubated at a concentration of 70 μM under aggregating 

conditions for 9 h. Aliquots were taken from the aggregation reaction and diluted to a concentration of 3 μM in PBS 

with 5 nM Nile red for super-resolution imaging. Small aggregates consistent with the expected appearance of 

oligomers were observed (see the three zoomed panels labelled ‘Nile red’). These aggregates were preincubated with 

CLU-AF647 for 5 min before imaging; panels labelled ‘CLU-AF647’ are images of the same region as the super-

resolution Nile red image but show the diffraction-limited fluorescence of colocalised CLU-AF647. (b and c) BSA, 

monomeric αS or αS incubated under aggregating conditions for 9 h (oligomeric αS) were adsorbed to a microplate. 

After BSA blocking and incubation with the indicated chaperone the quantity of bound (b) CLU or (c) α2M was 

measured by ELISA. *** p < 0.001; values shown are means ± SD of three independent experiments. (d) αS was 

incubated under aggregating conditions for 9 h. Aliquots were removed from the aggregation reaction and samples of 

αS were diluted and added to Cal-520-containing vesicles after preincubation in the presence or absence of BSA, α2M 

or CLU at equimolar concentrations to αS (50 nM). Unlike α2M and CLU, BSA did not counteract the membrane 

permeability induced by αS. Data shown are means ± SD of 9 fields of view (at least 1000 vesicles); *** p < 0.001. 

(e) CLU and α2M reduce αS-induced membrane disruption. α2M or CLU (700 nM) was incubated with αS (70 µM) 

for 48 h under aggregating conditions. At the time-points taken both α2M and CLU decreased the vesicle 

permeabilisation caused by αS aggregates. Data shown are means ± SD of 16 fields of view (at least 800 vesicles); 

*** p < 0.001. 
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