Enantioselective Remote *Meta*-C–H Arylation and Alkylation *via* a Chiral Transient Mediator

Hang Shi, Alastair N. Herron, Ying Shao, Qian Shao, and Jin-Quan Yu*

Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road. La Jolla, CA 92037, USA.

TABLE OF CONTENTS

GENERAL INFORMATION	2
EXPERIMENTAL SECTION	3
I. Desymmetrization of Diarylmethyl Amines	3
A. Preparation of Substrates	3
B. Optimization of the Reaction Conditions	7
C. Pd/(+)-NBE-CO ₂ Me Catalyzed Desymmetrization of Diarylmethyl Amines	9
D. Directing Group Cleavage of Desymmetrization Product 2ae	31
E. Mechanistic Studies	32
II. Enantioselecitve Remote C-H Activation of Homobenzylamines	
A. Preparation of Substrates	
B. Optimization of the Reaction Conditions	43
C. Pd/(+)-NBE-CO ₂ Me Catalyzed Desymmetrization of Homobenzylamines	44
D. Pd/(+)-NBE-CO ₂ Me Catalyzed Kinetic Resolution of Homobenzylamines	52
X-RAY CRYSTALLOGRAPHIC DATA	58
NMR SPECTRA	64
SFC TRACES	
REFERENCES	

GENERAL INFORMATION

Solvents

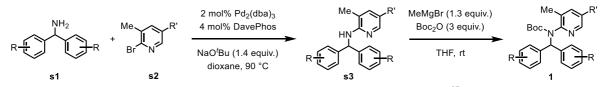
Dry chloroform, dichloromethane (DCM), tetrahydrofuran (THF), 1,4-dioxane, and *tert*-butylmethylether (TBME) were purchased from Sigma-Aldrich. Chloroform- d_1 , acetonitrile- d_3 , and acetone- d_6 were purchased from Cambridge Isotope Laboratories.

Chromatography

Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate.

Spectroscopy and Instruments

¹H NMR was recorded on Bruker DRX-600 instrument (600 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to 7.26 ppm of chloroform-*d*, the center peak of the pentet at 1.94 ppm of acetonitrile-*d*₃, or the center peak of a pentet at 2.05 ppm of acetone-*d*₆. ¹³C NMR spectra were recorded on Bruker DRX-600 instrument (150 MHz), and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center peak of a triplet at 77.16 ppm of chloroform-*d*, the center peak of a septet at 1.32 ppm of acetonitrile-*d*₃, or the center peak of a septet at 1.32 ppm of acetonitrile-*d*₃, or the center peak of a septet at 29.84 ppm of acetone-*d*₆. ¹⁹F NMR spectra were recorded on Bruker AMX-400 instrument (376 MHz), and were fully decoupled by broad band proton decoupling. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sext = sextet, sep = septet, m = multiplet, br = broad. Coupling constants, *J*, were reported in Hertz unit (Hz). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Enantiomeric ratios (er) were determined on the Agilent Technologies supercritical fluid chromatography (SFC) system using commercially available chiral columns. The single crystal X-ray diffraction studies were carried out on a Bruker Kappa APEX-II CCD diffractometer equipped with Mo Kα radiation ($\lambda = 0.71073$).


Starting materials

All substrates were used as received from commercial suppliers, unless otherwise stated. Pd(OAc)₂ and AgOAc were purchased from Sigma-Aldrich. Methyl (1*S*,4*R*)-bicyclo[2.2.1]hept-2-ene-2-carboxylate ((+)-NBE-CO₂Me, $[\alpha]_D^{25.5} = +237$. (*c* = 1.0, CHCl₃)) was synthesized from (1*S*,2*R*,3*S*,4*R*)-3-(methoxycarbonyl)bicyclo[2.2.1]hept-5-ene-2-carboxylic acid³⁴ (98% ee after crystallization³⁵) following literature procedures³⁶.

EXPERIMENTAL SECTION

I. Desymmetrization of Diarylmethyl Amines

A. Preparation of Substrates

Diarylmethyl amines (s1) were synthesized following the literature procedures³⁷. 2-Bromopyridines (S2) are commercial available.

General procedure for synthesis of substrates: Amine s1 (1 equiv.), $Pd_2(dba)_3$ (2 mol%), DavePhos (4 mol%) and NaO'Bu (1.4 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. 2-Bromopyridines s2 (1 equiv.) and 1,4-dioxane (0.33 M) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 90 °C. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. Water was added to the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography to afford compound s3.

To a solution of compound s3 (1 equiv.) in THF (0.2 M) was added MeMgBr (1.3 equiv.) at 0 °C, and the resulting mixture was allowed to warm up to room temperature and stirred for 30 min. Then Boc_2O (3 equiv.) was added into the mixture. The resulting mixture was allowed to warm up to room temperature and stirred for 12 hours. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography to afford compound 1.

tert-Butyl (di-m-tolylmethyl)(3,5-dimethylpyridin-2-yl)carbamate (1a)

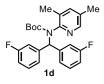
Chromatography eluent: hexane/EtOAc = 15:1 v/v.

¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.13–8.02 (m, 1H), 7.58 (s, 1H), 7.44 (s, 1H), 7.25 (s, 1H), 7.21–7.15 (m, 1H), 7.08 (s, 1H), 7.02–6.76 (m, 4H), 6.40 (s, 1H), 2.32 (s, 3H), 2.18 (s, 3H), 2.12 (s, 3H), 1.94 (s, 3H), 1.25 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 154.74, 151.62, 146.71, 143.66, 140.22, 138.41, 137.97, 133.28, 132.72, 131.86, 129.66, 128.85, 128.63, 128.26, 126.11, 80.91, 67.70, 28.33, 21.58, 21.24, 17.71, 17.67. HRMS (ESI-TOF) *m/z* calc'd for $C_{27}H_{33}N_2O_2$ [M+H]⁺: 417.2537; found: 417.2550.

tert-Butyl (di-m-tolylmethyl)(3-methylpyridin-2-yl)carbamate (1a')

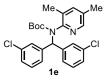
Chromatography eluent: hexane/EtOAc = 15:1 v/v.

¹H NMR (600 MHz, Acetonitrile- d_3) δ 8.24 (dd, J = 4.8, 1.8 Hz, 1H), 7.59 (s, 1H), 7.46 (s, 1H), 7.36 (dd, J = 7.6, 1.8 Hz, 1H), 7.25 (s, 1H), 7.14–6.73 (m, 6H), 6.43 (s, 1H), 2.32 (s, 3H), 2.12 (s, 3H), 2.00 (s, 3H), 1.26 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3) δ 154.47, 153.85, 146.45, 143.41, 139.97, 139.62, 138.26, 137.93,


133.45, 131.70, 129.55, 128.69, 128.52, 128.17, 126.00, 123.41, 80.91, 67.55, 28.18, 21.40, 21.15, 17.68. HRMS (ESI-TOF) m/z calc'd for C₂₆H₃₁N₂O₂ [M+H]⁺: 403.2380; found: 403.2390.

tert-Butyl (bis(3-methoxyphenyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1c)

Chromatography eluent: hexane/EtOAc = 8:1 v/v.


¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.09 (d, *J* = 2.3 Hz, 1H), 7.54 (s, 1H), 7.30–7.09 (m, 3H), 6.99 (s, 1H), 6.82 (s, 1H), 6.76–6.52 (m, 3H), 6.43 (s, 1H), 3.79 (s, 3H), 3.57 (s, 3H), 2.18 (s, 3H), 1.97 (s, 3H), 1.26 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 160.63, 159.88, 154.73, 151.48, 146.81, 145.35, 141.61, 140.34, 133.42, 132.87, 129.95, 129.47, 123.56, 121.32, 116.64, 114.91, 113.83, 112.82, 81.01, 67.48, 55.81, 55.74, 28.36, 17.74. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{27}H_{35}N_2O_4$ [M+H]⁺: 449.2435; found: 449.2445.

tert-Butyl (bis(3-fluorophenyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1d)

Chromatography eluent: hexane/EtOAc = 15:1 v/v.

¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.08 (d, J = 2.3 Hz, 1H), 7.70 (d, J = 6.4 Hz, 1H), 7.51–7.29 (m, 2H), 7.23 (d, J = 2.3 Hz, 1H), 7.12 (s, 1H), 7.04 (s, 1H), 6.96 (s, 1H), 6.91–6.73 (m, 2H), 6.51 (s, 1H), 2.19 (s, 3H), 1.99 (s, 3H), 1.27 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 163.75 (d, J = 243.5 Hz), 162.95 (d, J = 245.9 Hz), 154.52, 151.08, 146.87, 145.96, 142.43, 140.54, 133.63, 132.69, 130.86, 130.36, 127.04, 125.10, 117.74 (d, J = 22.2 Hz), 115.98 (d, J = 23.7 Hz), 115.02 (d, J = 21.5 Hz), 114.57 (d, J = 22.2 Hz), 81.47, 66.55, 28.29, 17.72, 17.64; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ -115.10, -115.68. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₅H₂₇F₂N₂O₂ [M+H]⁺: 425.2035; found: 425.2043.

tert-Butyl (bis(3-chlorophenyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1e)

Chromatography eluent: hexane/EtOAc = 20:1 v/v.

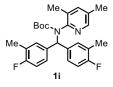
¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.08 (d, *J* = 2.3 Hz, 1H), 7.87 (s, 1H), 7.58 (s, 1H), 7.42–7.26 (m, 2H), 7.24 (d, *J* = 2.3 Hz, 1H), 7.21–6.95 (m, 4H), 6.47 (s, 1H), 2.19 (s, 3H), 1.98 (s, 3H), 1.27 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 154.46, 151.06, 146.90, 145.22, 141.94, 140.57, 134.54, 133.89, 133.71, 132.64, 130.94, 130.80, 130.26, 129.53, 129.09, 128.27, 127.99, 127.70, 81.57, 66.51, 28.28, 17.72, 17.60. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₅H₂₇Cl₂N₂O₂ [M+H]⁺: 457.1444; found: 457.1452.

$$F_3C$$
 F_3C F_3C

$\textit{tert-Butyl}\ (bis (3-(trifluoromethyl)phenyl) methyl) (3, 5-dimethylpyridin - 2-yl) carbamate\ (1f)$

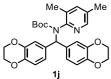
Chromatography eluent: hexane/EtOAc = 15:1 v/v.

¹H NMR (600 MHz, Acetonitrile- d_3) δ 8.17 (s, 1H), 8.06 (d, J = 2.4 Hz, 1H), 7.95 (s, 1H), 7.72–7.51 (m, 2H), 7.50–7.25 (m, 4H), 7.21 (d, J = 2.3 Hz, 1H), 6.67 (s, 1H), 2.17 (s, 3H), 1.96 (s, 3H), 1.26 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3) δ 154.44, 150.91, 146.98, 143.91, 140.79, 140.60, 134.86, 133.85, 133.09, 132.62,


131.12, 130.90, 130.68, 130.33, 130.06, 129.59, 127.74, 126.42, 125.95, 125.10, 124.85, 124.62, 81.71, 66.56, 28.23, 17.66, 17.48; ¹⁹F NMR (376 MHz, Acetonitrile- d_3) δ -63.37, -63.65. HRMS (ESI-TOF) m/z calc'd for C₂₇H₂₇F₆N₂O₂ [M+H]⁺: 525.1971; found: 525.1972.

tert-Butyl (bis(3-chlorophenyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1e)

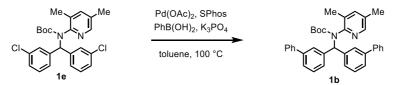
Chromatography eluent: hexane/EtOAc = 20:1 v/v.


¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.65 (s, 1H), 8.18 (dd, J = 4.9, 1.8 Hz, 1H), 7.77–6.20 (m, 10H), 2.11 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 161.10 (d, J = 245.2 Hz), 154.33, 152.63, 146.44, 140.00, 134.13, 133.46, 131.68, 130.41, 124.70, 123.63, 115.66 (d, J = 21.9 Hz), 81.67, 53.64, 28.25, 17.24; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ -118.43, -119.60. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₄H₂₅F₂N₂O₂ [M+H]⁺: 411.1879; found: 411.1890.

$\textit{tert-Butyl}\ (bis (4-fluoro-3-methylphenyl) methyl) (3, 5-dimethylpyridin-2-yl) carbamate\ (1i)$

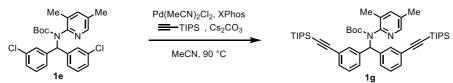
Chromatography eluent: hexane/EtOAc = 20:1 v/v.

¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.03 (d, *J* = 2.3 Hz, 1H), 7.59 (s, 1H), 7.46 (s, 1H), 7.16 (d, *J* = 2.3 Hz, 1H), 7.09–6.77 (m, 3H), 6.69 (s, 1H), 6.35 (s, 1H), 2.21 (s, 3H), 2.14 (s, 3H), 2.00 (s, 3H), 1.90 (s, 3H), 1.22 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 161.09 (d, *J* = 242.6 Hz), 154.60, 151.32, 146.77, 140.37, 139.23, 135.88, 134.38, 133.49, 132.72, 132.21, 130.25, 128.13, 125.00 (d, *J* = 15.5 Hz), 124.61 (d, *J* = 12.6 Hz), 115.20 (d, *J* = 22.8 Hz), 114.73 (d, *J* = 22.9 Hz), 81.13, 66.32, 28.34, 17.72, 17.62, 14.74, 14.33; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ -121.40, -122.73. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₃₁F₂N₂O₂ [M+H]⁺: 453.2348; found: 453.2361.



tert-Butyl (bis(2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1j) Chromatography eluent: hexane/EtOAc = 4:1 v/v.

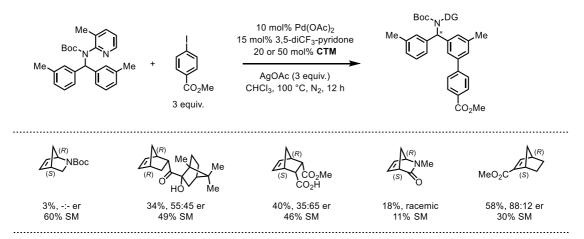
¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.10 (d, *J* = 2.3 Hz, 1H), 7.38 (s, 1H), 7.25 (d, *J* = 2.3 Hz, 1H), 7.07 (s, 1H), 6.82 (s, 1H), 6.55 (s, 3H), 6.27 (s, 1H), 4.26 (s, 4H), 4.13 (s, 4H), 2.23 (s, 3H), 1.98 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 154.65, 151.53, 146.71, 144.16, 143.57, 143.35, 140.33, 137.09, 133.32, 132.76, 123.97, 121.83, 119.94, 117.82, 117.42, 116.88, 80.85, 66.49, 65.28, 65.16, 28.38, 17.76, 17.74. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{25}H_{27}Cl_2N_2O_2$ [M+H]⁺: 457.1444; found: 457.1452.



tert-Butyl (di(thiophen-2-yl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1k) Chromatography eluent: hexane/EtOAc = 15:1 v/v. ¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.11 (d, *J* = 2.3 Hz, 1H), 7.36 (s, 1H), 7.33 (d, *J* = 2.3 Hz, 1H), 7.29–7.10 (m, 2H), 6.96 (s, 1H), 6.92–6.74 (m, 3H), 2.25 (s, 3H), 1.95 (s, 3H), 1.32 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 154.00, 151.57, 147.06, 145.75, 144.49, 140.60, 133.66, 132.40, 128.27, 127.02, 126.81, 126.74, 81.77, 58.94, 28.34, 17.80, 17.63. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₁H₂₅N₂O₂S₂ [M+H]⁺: 401.1352; found: 401.1360.

tert-Butyl (di([1,1'-biphenyl]-3-yl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1b)

Aryl chloride **1e** (0.23 g, 0.5 mmol, 1 equiv.), Pd(OAc)₂ (5.6 mg, 0.025 mmol, 5 mol%), SPhos (21 mg, 0.05 mmol, 10 mol%), PhB(OH)₂ (0.244 g, 2.0 mmol, 4.0 equiv.), and K₃PO₄ (0.53 g, 2.5 mmol, 5.0 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen, and then toluene (4 mL) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 100 °C. After 12 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography (hexane/EtOAc = 12:1 v/v) to afford 0.19 g compound **1b** as a white solid (70% yield). ¹H NMR (600 MHz, Acetonitrile-*d*₃) δ 8.29–8.09 (m, 2H), 7.72–7.06 (m, 18H), 6.67 (s, 1H), 2.16 (s, 3H), 1.98 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃) δ 154.83, 151.45, 146.97, 144.28, 141.98, 141.50, 141.15, 140.68, 140.42, 133.62, 132.99, 130.45, 130.07, 129.88, 129.58, 129.16, 128.11, 127.82, 127.71, 126.81, 126.19, 81.16, 67.52, 28.38, 17.71. HRMS (ESI-TOF) *m/z* calc'd for C₃₇H₃₇N₂O₂ [M+H]⁺: 541.2850; found: 541.2854.


tert-Butyl (bis(3-((triisopropylsilyl)ethynyl)phenyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (1g) Aryl chloride 1e (0.183 g, 0.4 mmol, 1 equiv.), Pd(MeCN)₂Cl₂ (10 mg, 0.04 mmol, 10 mol%), XPhos (38 mg, 0.08 mmol, 20 mol%), and Cs₂CO₃ (0.65 g, 2.0 mmol, 5.0 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Ethynyltriisopropylsilane (0.36 mL, 1.6 mmol, 4.0 equiv.) and MeCN (3 mL) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 90 °C. After 12 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexane/EtOAc = 20:1 v/v) to afford 0.18 g compound 1g as a yellow liquid (60% yield).

¹H NMR (600 MHz, Acetone- d_6) δ 8.11 (d, J = 2.2 Hz, 1H), 7.98 (s, 1H), 7.73 (s, 1H), 7.49–7.06 (m, 7H), 6.56 (s, 1H), 2.21 (s, 3H), 2.02 (s, 3H), 1.28 (s, 9H), 1.13 (s, 42H); ¹³C NMR (150 MHz, Acetone- d_6) δ 154.12, 151.67, 146.79, 143.03, 140.79, 140.34, 134.36, 132.98, 132.13, 131.26, 131.08, 129.79, 128.99, 128.69,

123.81, 123.39, 108.63, 108.12, 90.45, 80.93, 66.85, 28.29, 19.01, 17.69, 17.63, 12.02. HRMS (ESI-TOF) m/z calc'd for C₄₇H₆₉N₂O₂Si₂ [M+H]⁺: 749.4892; found: 749.4891.

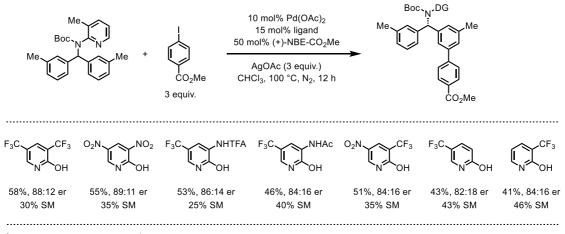

B. Optimization of the Reaction Conditions

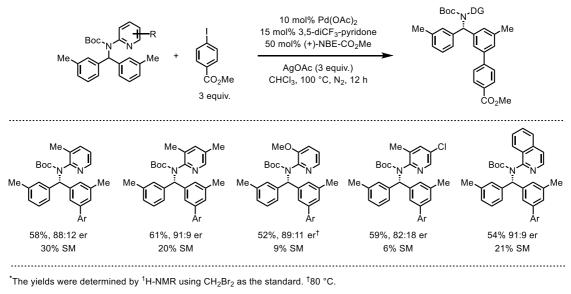
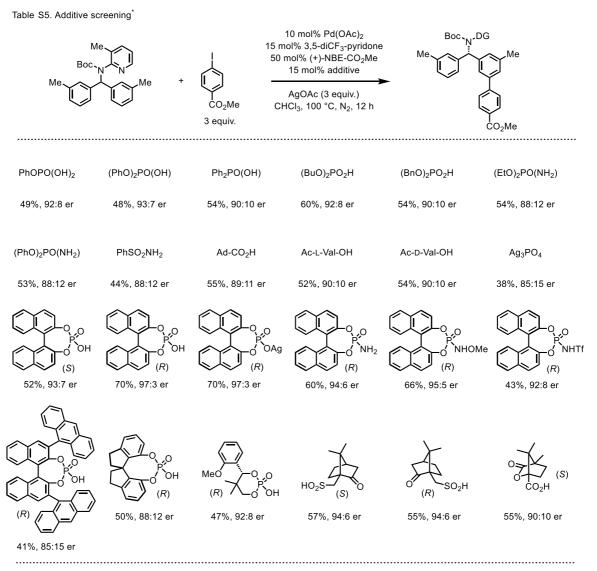
Table S1. Chiral transient mediator screening

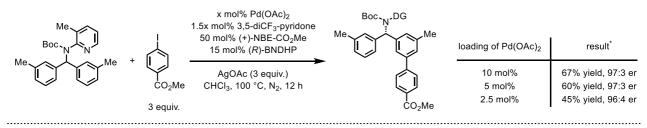
^{*}The yields were determined by ¹H-NMR using CH_2Br_2 as the standard.

Table S2. Ligand screening

^{*}The yields were determined by ¹H-NMR using CH₂Br₂ as the standard.

Table S3. Directing group screening*


Table S4. Salt screening* Boc. DG 10 mol% Pd(OAc)₂ 15 mol% 3,5-diCF₃-pyridone Me Me 50 mol% (+)-NBE-CO2Me Boo Μ 50 mol% salt AgOAc (3 equiv.) CHCl₃, 100 °C, N₂, 12 h ĊO₂Me 2.5 equiv. ĊO₂Me LiOAc NaOAc KOAc CsOAc LiH₂PO₄ 51%, 85:15 er 49%, 84:16 er 49%, 83:17 er 44%, 80:20 er 53%, 86:14 er LiF NaH₂PO₄ KH₂PO₄ Li₃PO₄ Cs_2CO_3 50%, 84:16 er 51%, 84:16 er 56%, 87:13 er 55%, 86:14 er 43%, 82:18 er

^{*}The yields were determined by ¹H-NMR using CH_2Br_2 as the standard.

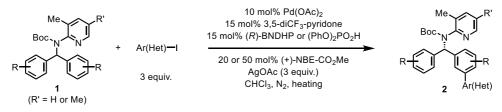
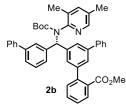

*The yields were determined by ¹H-NMR using CH₂Br₂ as the standard.

Table S6. Additive screening*

*Isolated yield

C. Pd/(+)-NBE-CO₂Me Catalyzed Desymmetrization of Diarylmethyl Amines

General procedure: Arene **1** (0.10 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.2 mg, 10 µmol, 10 mol%), Ligand (3.5 mg, 15 µmol, 15 mol%), hydrogenphosphate (15 µmol, 15 mol%), aryl iodide (0.3 mmol, 3.0 equiv.), and AgOAc (50 mg, 0.30 mmol, 3.0 equiv.) were added into a 2-dram reaction vial. CHCl₃ (0.5 mL) and (+)-NBE-CO₂Me (20 mol% or 50 mol%) were added to the mixture. The vial was flushed with N₂, and then capped. The reaction mixture was then stirred at given temperature for 12 or 18 hours. After cooling to room temperature, the mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography afforded the title compound.

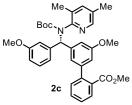

In NMR spectra, the carbamate motif caused a broadening of certain peaks. After removing of *tert*butyloxycarbonyl (Boc) group, the peaks became sharp and clear (see compound 2q).

Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(*m*-tolyl)methyl)-5'-methyl-[1,1'-biphenyl]-2-carboxylate (2a)

Substrate **1a** was arylated following the general procedure by using (PhO)₂PO₂H (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (22 µL, 0.15 mmol, 1.5 equiv.), AgOAc (33 mg, 0.2 mmol, 2.0 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%), and CHCl₃ (1 mL) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2a** (39.1 mg) was obtained in 71% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.07 (s, 1H), 7.86–6.58 (m, 8H), 7.70 (d, J = 6.4 Hz, 1H), 7.54 (t, J = 7.0 Hz, 1H), 7.42 (t, J = 7.5 Hz, 1H), 7.19 (s, 1H), 6.44 (s, 1H), 3.54 (s, 3H), 2.47–2.10 (m, 6H), 2.19 (s, 3H), 1.95 (s, 3H), 1.27 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.99, 155.05, 152.02, 146.98, 143.17, 141.83, 140.46, 138.45, 133.52, 133.06, 132.66, 132.23, 131.61, 130.42, 128.67, 128.32, 127.03, 81.22, 68.10, 52.60, 28.64, 21.57, 21.55, 17.86. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₅H₃₉N₂O₄ [M+H]⁺: 551.2904; found: 551.2906.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 4.32 \text{ min (minor)}$, 4.83 min (major): 97:3 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

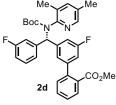


Methyl (*S*)-5'-([1,1'-biphenyl]-3-yl((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)methyl)-[1,1':3',1''-terphenyl]-2-carboxylate (2b)

Substrate **1b** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2b** (43.9 mg) was obtained in 65% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.15 (br s, 1H), 8.14 (s, 1H), 7.87–6.91 (m, 18 H), 7.75 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.21 (s, 1H), 6.72 (s, 1H), 3.48 (s, 3H), 2.18 (s, 3 H), 2.00 (s, 3 H), 1.31 (s, 9 H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.78, 155.11, 151.86, 147.19, 142.93, 142.61, 142.08, 141.69, 141.52, 140.65, 133.81, 133.28, 132.55, 132.39, 131.74, 130.60, 130.09, 130.01, 129.50, 128.70, 128.58, 128.53, 128.04, 128.00, 126.69, 81.45, 67.97, 52.61, 28.69, 17.92, 17.88. HRMS (ESI-TOF) m/z calc'd for C₄₅H₄₃N₂O₄ [M+H]⁺: 675.3217; found: 675.3215.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 7.12 \text{ min (minor)}$, 7.85 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

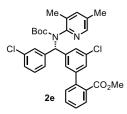

Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(3-methoxyphenyl)methyl)-5'-methoxy-[1,1'-biphenyl]-2-carboxylate (2c)

Substrate **1c** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%), and CHCl₃ (1.0 mL) at 60 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 7:2 v/v), compound **2c** (35.1 mg) was obtained in 60% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.09 (s, 1H), 7.76–6.50 (m, 8 H), 7.70 (d, J = 7.3 Hz, 1H), 7.54 (t, J = 7.1 Hz, 1H), 7.42 (t, J = 7.4 Hz, 1H), 7.22 (s, 1H), 6.46 (s, 1H), 3.72 (br s, 6H), 3.53 (s, 3H), 2.20 (s, 3H), 1.98 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 169.87, 160.60, 155.03, 151.89, 147.05, 145.27, 143.15, 142.85, 140.57, 133.65, 133.18, 132.68, 132.22, 131.54, 130.39, 129.87, 128.49, 123.68, 122.24, 115.76, 113.83, 81.32, 67.92, 56.31, 56.10, 52.63, 28.66, 17.93, 17.87. HRMS (ESI-TOF) *m/z* calc'd for C₃₅H₃₉N₂O₆ [M+H]⁺: 583.2803; found: 583.2798.

SFC Chiralpak® AD-3 column (12% isopropanol, 2.0 mL/min) $t_r = 5.42 \text{ min (major)}$, 6.91 min (minor): 95:5 er.

The absolute stereochemistry was assigned by analogy to compound **2ah**.

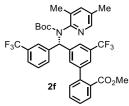

Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(3-fluorophenyl)methyl)-5'-fluoro-[1,1'-biphenyl]-2-carboxylate (2d)

Substrate **1d** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2d** (30.0 mg) was obtained in 54% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.08 (s, 1H), 7.85–6.61 (m, 8 H), 7.78 (d, J = 7.4 Hz, 1H), 7.57 (t, J = 7.3 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.26 (s, 1H), 6.53 (s, 1H), 3.56 (s, 3H), 2.20 (s, 3H), 2.00 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.32, 163.61 (d, J = 247.5 Hz), 154.82, 151.48, 147.12, 144.33, 141.91, 140.79, 133.00, 132.55, 132.25, 131.62, 130.81, 129.02, 127.10, 126.00, 116.42, 115.01 (d, J = 14.6 Hz), 81.78, 67.02, 52.68, 28.59, 17.87, 17.84; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ - 115.02, -115.65, -115.77, -116.51. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₃F₂N₂O₄ [M+H]⁺: 559.2403; found: 559.2403.

SFC Chiralpak[®] AD-3 column (10% isopropanol, 2.0 mL/min) $t_r = 3.78 \text{ min (major)}, 4.77 \text{ min (minor)}: 90:10 \text{ er.}$

The absolute stereochemistry was assigned by analogy to compound 2ah.

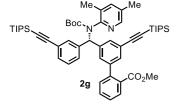

Methyl (S)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(3-chlorophenyl)methyl)-5'chloro-[1,1'-biphenyl]-2-carboxylate (2e)

Substrate **1e** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2e** (37.8 mg) was obtained in 64% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.08 (s, 1H), 8.01–6.66 (m, 8 H), 7.79 (d, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.47 (t, *J* = 7.5 Hz, 1H), 7.26 (s, 1H), 6.50 (s, 1H), 3.57 (s, 3H), 2.20 (s, 3H), 1.99 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.19, 154.75, 151.43, 147.14, 144.12, 141.77, 140.80, 134.50, 133.94, 132.95, 132.62, 132.10, 131.65, 130.89, 130.62, 129.56, 129.09, 128.37, 128.11, 81.86, 66.94, 52.72, 28.59, 17.88, 17.80. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₃Cl₂N₂O₄ [M+H]⁺: 559.2403; found: 559.2403.

SFC Chiralpak[®] AD-3 column (15% isopropanol, 2.0 mL/min) $t_r = 3.63$ min (major), 4.31 min (minor): 92:8 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

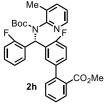

Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(3-(trifluoromethyl)phenyl)methyl)-5'-(trifluoromethyl)-[1,1'-biphenyl]-2-carboxylate (2f)

Substrate **1f** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/DCM/Et₂O = 3:3:1 v/v/v), compound **2f** (46.0 mg) was obtained in 70% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.06 (s, 1H), 8.36–6.93 (m, 10 H), 7.84 (d, J = 7.6 Hz, 1H), 7.24 (s, 1H), 6.71 (s, 1H), 3.54 (s, 3H), 2.19 (s, 3H), 1.98 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 169.07, 154.74, 151.27, 147.21, 143.44, 141.73, 140.87, 134.94, 134.10, 133.67, 132.96, 132.80, 132.02, 131.78, 131.08, 129.98, 129.29, 126.44, 125.19, 82.01, 66.99, 52.63, 28.54, 17.82, 17.69; ¹⁹F NMR (376 MHz, Acetonitrile- d_3) δ -63.10, -63.28, -63.39, -63.50. HRMS (ESI-TOF) *m/z* calc'd for C₃₅H₃₃F₆N₂O₄ [M+H]⁺: 659.2339; found: 659.2336.

SFC Chiralpak[®] OD-3 column (1% isopropanol, 3.0 mL/min) $t_r = 7.52$ min (major), 12.33 min (minor): 90:10 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

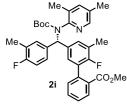

Methyl (S)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(3-((triisopropylsilyl)ethynyl)ph-enyl)methyl)-5'-((triisopropylsilyl)ethynyl)-[1,1'-biphenyl]-2-carboxylate (2g)

Substrate **1g** was arylated following the general procedure by using (PhO)₂PO₂H (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 6:1 v/v), compound **2g** (35.3 mg) was obtained in 40% yield as a yellow oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.11–6.83 (m, 9H), 8.06 (s, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.56 (t, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 1H), 6.49 (s, 1H), 3.56 (s, 3H), 2.20 (s, 3H), 1.98 (s, 3H), 1.28 (s, 9H), 1.14 (d, *J* = 7.2 Hz, 42H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.44, 154.84, 151.71, 147.12, 142.56, 142.12, 140.74, 133.79, 132.91, 132.53, 132.30, 131.61, 131.47, 131.19, 130.76, 129.27, 128.88, 123.90, 108.32, 91.87, 91.62, 81.73, 67.20, 52.67, 28.62, 19.22, 17.93, 17.81, 12.41. HRMS (ESI-TOF) *m/z* calc'd for C₅₅H₇₅N₂O₄Si₂ [M+H]⁺: 883.5260; found: 883.5265.

SFC Chiralpak[®] OD-3 column (10% isopropanol, 2.0 mL/min) $t_r = 18.12$ min (major), 20.46 min (minor): 93:7 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.



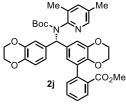
Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3-methylpyridin-2-yl)amino)(2-fluorophenyl)methyl)-4'-fluoro-[1,1'-biphenyl]-2-carboxylate (2h)

Substrate **1h** was arylated following the general procedure by using $Pd(OAc)_2$ (4.4 mg, 20 µmol, 20 mol%), Ligand (6.9 mg, 30 µmol, 30 mol%), (*R*)-BNDHP (10.4 mg, 30 µmol, 30 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2h** (22.8 mg) was obtained in 42% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.16 (d, *J* = 5.5 Hz, 1H), 7.92–6.64 (m, 10 H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.56 (t, *J* = 7.6 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 1H), 3.58 (s, 3H), 2.13 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.59, 161.52 (d, *J* = 245.6 Hz), 160.88 (d, *J* = 246.0 Hz), 154.60, 152.94, 146.64, 142.33, 140.24, 138.30, 134.47, 133.06, 132.50, 132.35, 131.75, 130.81, 130.72, 130.31, 128.64, 124.82, 123.82, 115.91 (d, *J* = 22.1 Hz), 115.59 (d, *J* = 22.6 Hz), 81.95, 53.89, 52.70, 28.54, 17.44; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃, 60 °C) δ -118.31, -119.65, -120.95, -122.80. HRMS (ESI-TOF) *m/z* calc'd for $C_{32}H_{31}F_2N_2O_4$ [M+H]⁺: 545.2246; found: 545.2244.

SFC Chiralpak[®] IC column (5% isopropanol, 2.0 mL/min) $t_r = 12.54 \text{ min (minor)}$, 13.87 min (major): 91:9 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

Methyl (*S*)-5'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(4-fluoro-3-methylphenyl)methyl) -2'-fluoro-3'-methyl-[1,1'-biphenyl]-2-carboxylate (2i)

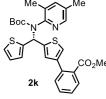

Substrate **1i** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at

100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound 2i (42.1 mg) was obtained in 72% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.07 (s, 1H), 7.87 (d, *J* = 7.8 Hz, 1H), 7.77–6.55 (m, 6H), 7.59 (t, *J* = 7.7 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.24 (s, 1H), 6.44 (s, 1H), 3.60 (s, 3H), 2.36–2.07 (m, 9H), 1.97 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 168.80, 161.41 (d, *J* = 242.7 Hz), 158.02 (d, *J* = 242.7 Hz), 157.22, 154.92, 151.76, 147.03, 140.64, 137.60, 134.49, 133.72, 133.09, 132.86, 132.38, 130.91, 129.13, 125.07, 124.94, 124.80, 124.72, 115.15 (d, *J* = 18.5 Hz), 81.42, 66.76, 52.59, 28.65, 17.87, 17.84, 14.70. ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ -121.40, -122.73, -124.84, -126.36. HRMS (ESI-TOF) m/z calc'd for C₃₅H₃₇F₂N₂O₄ [M+H]⁺: 587.2716; found: 587.2715.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 2.09 \text{ min (major)}$, 2.57 min (minor): 96:4 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

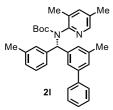


Substrate **1j** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 1:1 v/v), compound **2j** (33.1 mg) was obtained in 52% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.09 (s, 1H), 7.77 (d, J = 7.7 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.47–6.35 (m, 6H), 7.41 (t, J = 7.6 Hz, 1H), 7.25 (s, 1H), 6.30 (s, 1H), 4.30–4.00 (m, 8H), 3.64 (s, 3H), 2.22 (s, 3H), 1.99 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 169.20, 154.98, 152.00, 147.00, 144.23, 143.81, 140.60, 138.96, 133.55, 133.16, 132.57, 132.28, 130.88, 130.29, 128.49, 123.75, 117.34, 81.15, 66.97, 65.56, 65.44, 65.37, 52.50, 28.70, 17.96, 17.92. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₇H₃₉N₂O₈ [M+H]⁺: 639.2701; found: 639.2698.

SFC Chiralpak[®] AD-3 column (15% isopropanol, 2.0 mL/min) $t_r = 8.55 \text{ min (major)}$, 10.37 min (minor): 94:6 er.

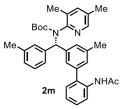
The absolute stereochemistry was assigned by analogy to compound **2ah**.


Methyl (*S*)-2-(5-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(thiophen-2-yl)methyl)thiophen -3-yl)benzoate (2k)

Substrate **1k** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), methyl 2-iodobenzoate (22 µL, 0.15 mmol, 1.5 equiv.), AgOAc (33 mg, 0.2 mmol, 2.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2k** (23.5 mg) was obtained in 44% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.13 (s, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.52 (t, J = 7.6 Hz, 1H), 7.48–6.88 (m, 6H), 7.40 (t, J = 7.5 Hz, 1H), 7.35 (s, 1H), 6.84 (s, 1H), 3.66 (s, 3H), 2.27 (s, 3H), 2.02 (s, 3H),

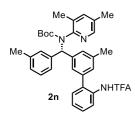
1.36 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 170.29, 154.34, 151.91, 147.28, 145.17, 141.16, 140.82, 137.02, 133.89, 132.76, 132.72, 132.21, 131.22, 130.12, 129.64, 128.67, 128.43, 127.22, 126.98, 123.79, 82.13, 59.31, 52.86, 28.67, 17.94, 17.90. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₉H₃₁N₂O₂S₂ [M+H]⁺: 535.1720; found: 535.1721.


SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 4.13 \text{ min (major)}$, 5.24 min (minor): 70:30 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

tert-Butyl (*S*)-(3,5-dimethylpyridin-2-yl)((5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)carbamate (2l) Substrate 1a was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), iodobenzene (33.6 µL, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 20:1 v/v), compound 2l (30.6 mg) was obtained in 62% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.12 (s, 1H), 7.98–6.72 (m, 11H), 7.33 (t, J = 7.5 Hz, 1H), 7.19 (s, 1H), 6.49 (s, 1H), 2.41–2.12 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 155.10, 152.06, 147.03, 142.30, 141.58, 140.46, 139.11, 138.47, 133.56, 133.07, 129.97, 128.76, 128.65, 128.42, 127.97, 127.28, 81.23, 68.10, 28.65, 21.61, 17.86. HRMS (ESI-TOF) m/z calc'd for C₃₃H₃₇N₂O₂ [M+H]⁺: 493.2850; found: 493.2848.

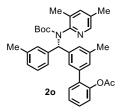
SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 3.85 \text{ min (minor)}$, 4.59 min (major): 97:3 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.


tert-Butyl (S)-((2'-acetamido-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2m)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (78.3 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 1:1 v/v), compound **2m** (41.3 mg) was obtained in 62% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.07 (s, 1H), 7.90 (s, 1H), 7.83–6.67 (m, 11H), 7.32 (t, *J* = 8.0 Hz, 1H), 6.48 (s, 1H), 2.53–2.11 (m, 6H), 2.20 (s, 3H), 1.96 (s, 3H), 1.84 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 169.63, 155.05, 151.99, 147.00, 140.49, 139.24, 138.51, 136.34, 135.56, 133.59, 133.09, 131.16, 129.31, 128.92, 128.80, 125.91, 124.89, 81.27, 68.04, 28.65, 24.29, 21.61, 17.88. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{35}H_{40}N_3O_3$ [M+H]⁺: 550.3064; found: 550.3068.

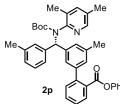
SFC Chiralpak[®] AD-3 column (15% isopropanol, 1.0 mL/min) $t_r = 11.05$ min (major), 12.83 min (major): 92:8 er.


The absolute stereochemistry was assigned by analogy to compound **2ah**.

tert-Butyl (S)-(3,5-dimethylpyridin-2-yl)((5-methyl-2'-(2,2,2-trifluoroacetamido)-[1,1'-biphenyl]-3-yl)(m-tolyl)methyl)carbamate (2n)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (94.4 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2n** (27.8 mg) was obtained in 46% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.56 (br s, 1H), 8.08 (s, 1H), 7.83–6.59 (m, 8H), 7.73 (s, 1H), 7.43 (t, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.4 Hz, 1H), 7.20 (s, 1H), 6.47 (s, 1H), 2.47–2.11 (m, 6H), 2.20 (s, 3H), 1.94 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 156.38 (q, *J* = 36.9 Hz), 151.97, 147.01, 140.49, 139.00, 138.49, 138.15, 133.58, 133.07, 133.03, 131.62, 129.41, 128.95, 128.75, 128.59, 126.19, 118.15 (q, *J* = 288.2 Hz), 81.29, 68.00, 28.63, 21.51, 17.85, 17.83. ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ -76.72, -76.82. HRMS (ESI-TOF) *m/z* calc'd for $C_{35}H_{37}F_3N_3O_3$ [M+H]⁺: 604.2782; found: 604.2779. SFC Chiralpak[®] IC column (10% isopropanol, 2.0 mL/min) t_r = 5.15 min (minor), 5.89 min (major): 90:10 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.


(S)-3'-(((*tert*-Butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(m-tolyl)methyl)-5'-methyl-[1,1'-biphenyl]-2-yl acetate (20)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (78.6 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **20** (23.1 mg) was obtained in 42% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.07 (s, 1H), 7.18 (s, 1H), 7.68–6.78 (m, 11H), 2.35 (d, *J* = 35.6 Hz, 3H), 2.22–2.09 (m, 6H), 1.93 (s, 3H), 1.90 (s, 3H), 1.25 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 170.31, 155.06, 152.01, 149.20, 146.98, 140.48, 138.55, 138.20, 136.03, 133.53, 133.04, 131.75, 129.59, 128.98, 128.84, 128.73, 127.45, 124.30, 81.25, 68.14, 28.65, 21.59, 21.09, 17.86. HRMS (ESI-TOF) *m/z* calc'd for C₃₅H₃₉N₂O₄ [M+H]⁺: 551.2904; found: 551.2900.

SFC Chiralpak[®] AD-3 column (20% isopropanol/hexane (v/v = 1/1), 2.0 mL/min) $t_r = 3.68$ min (major), 4.18 min (minor): 71:29 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

Phenyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(*m*-tolyl)methyl)-5'-methyl-[1,1'-biphenyl]-2-carboxylate (2p)

Substrate **1a** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), aryl iodide (48.6 mg, 0.15 mmol, 1.5 equiv.), AgOAc (33 mg, 0.2 mmol, 2.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2p** (39.9 mg) was obtained in 65% yield as a white solid.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.04 (s, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.79–6.66 (m, 11H), 7.62 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.34 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 7.5 Hz, 1H), 6.48 (s, 1H), 2.48–2.08 (m, 6H), 2.15 (s, 3H), 1.92 (s, 3H), 1.26 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 168.23, 155.04, 152.13, 151.99, 146.98, 143.65, 141.85, 140.48, 138.41, 133.47, 132.98, 132.88, 131.80, 131.00, 130.49, 128.99, 128.65, 128.54, 126.96, 122.63, 81.23, 68.04, 28.64, 21.56, 17.87. HRMS (ESI-TOF) m/z calc'd for C₄₀H₄₁N₂O₄ [M+H]⁺: 613.3061; found: 613.3055.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 3.53$ min (major), 5.47 min (minor): 98:2 er.

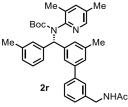
The absolute stereochemistry was assigned by analogy to compound 2ah.

(S) - (3, 5-dimethyl pyridin - 2-yl)((5-methyl - 2'-nitro - [1, 1'-biphenyl] - 3-yl)(m-1) - (1, 1'-biphenyl] - 3-yl)(m-1) - 3-yl)(m-1) - 3-yl)(m-1) - 3-yl)(m-1) - 3-yl)(m-1) - 3-yl)(m-1) -

tolyl)methyl)carbamate (2q)

Substrate **1a** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), aryl iodide (37.4 mg, 0.15 mmol, 1.5 equiv.), AgOAc (33 mg, 0.2 mmol, 2.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2q** (39.9 mg) was obtained in 62% yield as a yellow oil.

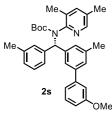
¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.08 (s, 1H), 7.96–6.69 (m, 8H), 7.84 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H), 7.20 (s, 1H), 6.45 (s, 1H), 2.45–2.10 (m, 6H), 2.20 (s, 3H), 1.96 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 154.99, 151.89, 150.64, 147.00, 140.49, 139.00, 138.47, 138.26, 137.19, 133.58, 133.52, 132.98, 131.91, 130.17, 129.58, 128.74, 128.08, 126.63, 125.09, 81.29, 67.91, 28.64, 21.49, 17.88, 17.85. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₅₃H₃₆N₃O₄ [M+H]⁺: 538.2700; found: 538.2694.


SFC Chiralpak[®] IC column (15% isopropanol, 2.0 mL/min) $t_r = 6.06 \text{ min (minor)}$, 5.87 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

(S)-3,5-Dimethyl-N-((5-methyl-2'-nitro-[1,1'-biphenyl]-3-yl)(m-tolyl)methyl)pyridin-2-amine (s4)

To a solution of 2q (27 mg, 0.05 mmol) was dissolved in dioxane (0.25 mL), HCl solution (4 N in dioxane) was added. The reaction mixture was stirred at room temperature for 3 hours. Aqueous NaHCO₃ solution was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were washed with aqueous NaCl solution, and then dried over Na₂SO₄. The organic solvent was concentrated by rotatory. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound s4 (19.1 mg) was obtained in 85% yield as a yellow liquid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.80–7.75 (m, 2H), 7.55 (td, J = 7.6, 1.3 Hz, 1H), 7.43 (td, J = 7.8, 1.4 Hz, 1H), 7.40 (dd, J = 7.7, 1.4 Hz, 1H), 7.20 (t, J = 7.5 Hz, 1H), 7.16 (s, 1H), 7.14–7.10 (m, 2H), 7.09–7.04 (m, 3H), 7.02 (s, 1H), 6.43 (d, J = 6.9 Hz, 1H), 4.49 (d, J = 6.9 Hz, 1H), 2.33 (d, J = 8.8 Hz, 6H), 2.13 (d, J = 5.8 Hz, 6H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 154.09, 149.73, 145.24, 144.43, 143.62, 138.78, 138.53, 138.44, 137.36, 136.67, 132.29, 132.12, 128.74, 128.70, 128.66, 128.14, 128.10, 127.46, 124.88, 124.33, 124.15, 121.99, 116.38, 58.64, 21.76, 17.59, 17.26. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₈H₂₈N₃O₂ [M+H]⁺: 468.2176; found: 468.2182.



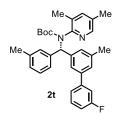
tert-Butyl (S)-((3'-(acetamidomethyl)-5-methyl-[1,1'-biphenyl]-3-yl)(m-tolyl)methyl)(3,5dimethylpyridin-2-yl)carbamate (2r)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (82.5 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 1:6 v/v), compound **2r** (39.6 mg) was obtained in 70% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.13 (s, 1H), 8.05–6.62 (m, 9H), 7.37 (t, *J* = 7.7 Hz, 1H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.19 (dd, *J* = 1.8 Hz, *J* = 0.6 Hz, 1H), 6.73 (s, 1H), 6.48 (s, 1H), 4.37 (d, *J* = 6.0 Hz, 2H), 2.47–2.13 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.92 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 170.82, 155.11, 152.03, 147.06, 142.44, 141.48, 141.39, 140.47, 139.11, 138.48, 133.56, 133.06, 130.07, 128.81, 128.67, 127.56, 127.29, 127.14, 126.64, 81.25, 68.10, 44.03, 28.67, 23.25, 21.62, 17.88. HRMS (ESI-TOF) *m/z* calc'd for C₃₆H₄₂N₃O₃ [M+H]⁺: 564.3221; found: 564.3229.

SFC Chiralpak[®] OJ column (20% isopropanol, 2.0 mL/min) $t_r = 3.17 \text{ min (minor)}$, 3.68 min (major): 95:5 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

tert-Butyl

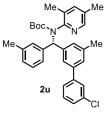

(S)-(3,5-dimethylpyridin-2-yl)((3'-methoxy-5-methyl-[1,1'-biphenyl]-3-yl)(m-

tolyl)methyl)carbamate (2s)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (70.2 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2s** (35.1 mg) was obtained in 67% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.12 (s, 1H), 7.75–6.59 (m, 9H), 7.34 (d, J = 6.3 Hz, 1H), 7.19 (s, 1H), 6.90 (d, J = 7.6 Hz, 1H), 6.49 (s, 1H), 3.84 (s, 3H), 2.45–2.07 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 161.47, 155.09, 152.07, 147.02, 143.84, 141.42, 140.47, 139.07, 138.47, 133.56, 133.07, 131.02, 128.77, 128.66, 127.31, 120.41, 114.03, 113.77, 81.21, 68.08, 56.21, 28.66, 21.60, 17.87. HRMS (ESI-TOF) *m/z* calc'd for C₃₄H₃₉N₂O₃ [M+H]⁺: 523.2955; found: 523.2956. SFC Chiralpak[®] AD-3 column (10% isopropanol, 1.5 mL/min) t_r = 8.61 min (major), 9.37 min (minor): 97:3 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

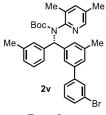

tert-Butyl tolyl)methyl)carbamate (2t)

(S)-(3,5-dimethylpyridin-2-yl)((3'-fluoro-5-methyl-[1,1'-biphenyl]-3-yl)(m-

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (70.2 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 20:1 v/v), compound **2t** (35.1 mg) was obtained in 67% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.13 (s, 1H), 8.07–6.67 (m, 9H), 7.43 (d, J = 7.5 Hz, 1H), 7.19 (s, 1H), 7.07 (t, J = 7.8 Hz, 1H), 6.49 (s, 1H), 2.47–2.10 (m, 6H), 2.19 (s, 3H), 1.96 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 164.40 (d, J = 244.4 Hz), 155.09, 152.00, 147.04, 144.82, 140.50, 140.21, 139.33, 138.49, 133.62, 133.11, 131.78, 131.72, 128.80, 127.34, 123.87, 119.02, 114.97 (d, J = 21.9 Hz), 114.60 (d, J = 21.8 Hz), 81.27, 68.01, 28.65, 21.60, 17.85. ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ - 114.97. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₆FN₂O₂ [M+H]⁺: 511.2755; found: 511.2747.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 3.33 \text{ min (minor)}$, 4.13 min (major): 97:3 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

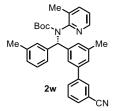


tert-Butyl (S)-((3'-chloro-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2u)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (71.8 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 20:1 v/v), compound **2u** (33.8 mg) was obtained in 64% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.13 (s, 1H), 7.80–6.66 (m, 9H), 7.40 (t, J = 7.4 Hz, 1H), 7.34 (d, J = 6.6 Hz, 1H), 7.19 (s, 1H), 6.49 (s, 1H), 2.49–2.11 (m, 6H), 2.20 (s, 3H), 1.96 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.08, 151.99, 147.03, 144.38, 140.50, 140.05, 139.36, 138.49, 135.45, 133.63, 133.12, 131.56, 129.98, 128.76, 128.26, 127.93, 127.31, 126.43, 81.28, 67.99, 28.65, 21.58, 17.87, 17.83. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₆ClN₂O₂ [M+H]⁺: 527.2460; found: 527.2462.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 3.99 \text{ min (minor)}$, 5.21 min (major): 95:5 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

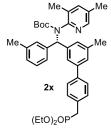


tert-Butyl (S)-((3'-bromo-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2v)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (85.0 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 20:1 v/v), compound **2v** (41.8 mg) was obtained in 73% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.13 (s, 1H), 8.05–6.64 (m, 9H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.19 (s, 1H), 6.49 (s, 1H), 2.46–2.10 (m, 6H), 2.20 (s, 3H), 1.96 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.08, 151.99, 147.02, 144.64, 140.50, 139.96, 139.36, 138.49, 133.63, 133.12, 131.81, 131.24, 130.88, 128.80, 127.32, 126.85, 123.61, 81.28, 67.98, 28.66, 21.58, 17.89, 17.83. HRMS (ESI-TOF) *m/z* calc'd for $C_{33}H_{36}BrN_2O_2 [M+H]^+$: 571.1955; found: 571.1953.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 4.42 \text{ min (minor)}$, 5.76 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.


tert-Butyl (S)-((3'-cyano-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3-methylpyridin-2-yl)carbamate (2w)

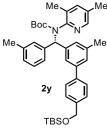
Substrate **1a'** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (91.2 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2w** (34.6 mg) was obtained in 69% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.29 (d, J = 3.3 Hz, 1H), 8.15–6.71 (m, 9H), 7.66 (d, J = 7.7 Hz, 1H), 7.57 (t, J = 7.8 Hz, 1H), 7.38 (d, J = 7.3 Hz, 1H), 7.05 (dd, J = 7.5, 4.7 Hz, 1H), 6.53 (s, 1H), 2.28 (br d, J = 53.6 Hz, 6H), 2.03 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 154.92, 154.34, 146.86, 143.41, 140.02, 139.57, 139.40, 138.54, 133.94, 132.45, 131.91, 131.61, 131.02, 128.81, 127.37, 123.79, 119.80, 113.95, 81.43, 67.97, 28.63, 21.58, 18.00. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₄N₃O₂ [M+H]⁺: 504.2646; found: 504.2658.

SFC Chiralpak[®] OJ-3 column (20% isopropanol, 2.0 mL/min) $t_r = 2.55$ min (minor), 4.11 min (major): 90:10 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

tert-Butyl (*S*)-((4'-((diethoxyphosphoryl)methyl)-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2x)

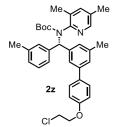

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (106.2 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/THF = 3:2 v/v), compound **2x** (44.2 mg) was obtained in 69% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.12 (s, 1H), 7.76–6.68 (m, 11H), 7.19 (s, 1H), 6.48 (s, 1H), 4.02 (p, J = 7.3 Hz, 4H), 3.17 (d, J = 21.5 Hz, 2H), 2.41–2.14 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.29 (s, 9H),

1.24 (t, J = 7.1 Hz, 6H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 155.11, 152.07, 147.04, 141.16, 140.71, 140.47, 139.12, 138.47, 133.56, 133.08, 132.90, 132.84, 131.50, 131.45, 128.79, 128.67, 127.90, 127.14, 81.24, 68.10, 63.03, 62.99, 34.31, 33.40, 28.66, 21.61, 17.86, 16.91, 16.87. HRMS (ESI-TOF) m/z calc'd for C₃₈H₄₈N₂O₅P [M+H]⁺: 634.3295; found: 634.3297.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 3.66 \text{ min (major)}, 4.71 \text{ min (minor)}: 95:5 \text{ er.}$

The absolute stereochemistry was assigned by analogy to compound 2ah.


tert-Butyl (S)-((4'-(((tert-butyldimethylsilyl)oxy)methyl)-5-methyl-[1,1'-biphenyl]-3-yl)(m-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2y)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (104 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 15:1 v/v), compound **2y** (36.2 mg) was obtained in 57% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.12 (s, 1H), 7.72–6.78 (m, 11H), 7.19 (s, 1H), 6.48 (s, 1H), 4.77 (s, 2H), 2.44–2.14 (m, 6H), 2.19 (s, 3H), 1.96 (s, 3H), 1.29 (s, 9H), 0.97 (s, 9H), 0.13 (s, 6H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 155.09, 152.08, 147.03, 142.01, 141.38, 140.98, 140.46, 139.07, 138.46, 133.55, 133.07, 128.78, 128.64, 128.00, 127.81, 127.20, 81.22, 68.11, 65.76, 28.66, 26.55, 21.62, 19.20, 17.86, -4.81. HRMS (ESI-TOF) m/z calc'd for C₄₀H₅₃N₂O₃Si [M+H]⁺: 637.3820; found: 637.3820.

SFC Chiralpak[®] AD-3 column (10% isopropanol, 2.0 mL/min) $t_r = 4.67 \text{ min (major)}$, 5.45 min (minor): 97:3 er.

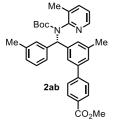
The absolute stereochemistry was assigned by analogy to compound 2ah.

tert-Butyl (S)-((4'-(2-chloroethoxy)-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2z)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (85 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2z** (38.7 mg) was obtained in 68% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.12 (s, 1H), 7.99–6.65 (m, 11H), 7.19 (s, 1H), 6.48 (s, 1H), 4.29 (t, J = 5.5 Hz, 2H), 3.87 (t, J = 5.4 Hz, 2H), 2.44–2.08 (m, 6H), 2.19 (s, 3H), 1.96 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 159.24, 155.09, 152.07, 147.02, 141.01, 140.45, 139.02, 138.43, 135.41, 133.55, 133.07, 130.33, 129.13, 128.79, 128.64, 126.87, 116.44, 81.21, 69.70, 68.11, 43.82, 28.66, 21.62, 17.86. HRMS (ESI-TOF) m/z calc'd for C₃₅H₄₀ClN₂O₃ [M+H]⁺: 571.2722; found: 571.2726. SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) t_r = 3.26 min (minor), 3.92 min (major): 96:4 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

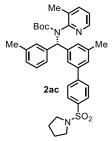


tert-Butyl (S)-((4'-formyl-5-methyl-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3-methylpyridin-2-yl)carbamate (2aa)

Substrate **1a'** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (69.6 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2aa** (38.4 mg) was obtained in 76% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 10.03 (s, 1H), 8.29 (d, J = 3.4 Hz, 1H), 7.93 (d, J = 7.8 Hz, 2H), 7.97–6.85 (m, 9H), 7.38 (d, J = 7.2 Hz, 1H), 7.04 (dd, J = 7.5, 4.7 Hz, 1H), 6.54 (s, 1H), 2.28 (br d, J = 57.8 Hz, 6H), 2.04 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 193.13, 154.92, 154.36, 148.01, 146.88, 140.22, 140.01, 139.48, 138.54, 136.80, 133.89, 131.15, 128.81, 128.60, 127.58, 123.76, 81.43, 68.00, 28.63, 21.60, 18.01. HRMS (ESI-TOF) *m/z* calc'd for C₃₃H₃₅N₂O₃ [M+H]⁺: 507.2642; found: 507.2637.

SFC Chiralpak[®] OJ-3 column (30% isopropanol, 2.5 mL/min) $t_r = 1.74 \text{ min (minor)}$, 2.51 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.



Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3-methylpyridin-2-yl)amino)(*m*-tolyl)methyl)-5'-methyl-[1,1'-biphenyl]-4-carboxylate (2ab)

Substrate **1a'** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (78 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2ab** (36.0 mg) was obtained in 67% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.31 (d, J = 4.7 Hz, 1H), 8.07 (d, J = 8.0 Hz, 2H), 7.87–6.60 (m, 9H), 7.40 (d, J = 7.5 Hz, 1H), 7.07 (dd, J = 7.5, 4.7 Hz, 1H), 6.56 (s, 1H), 3.92 (s, 3H), 2.30 (br d, J = 53.0 Hz, 6H), 2.06 (s, 3H), 1.32 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 167.75, 154.93, 154.38, 146.89, 146.66, 140.36, 140.01, 139.42, 138.54, 133.90, 131.01, 130.38, 128.78, 128.06, 127.47, 123.77, 81.42, 68.02, 52.76, 28.63, 21.60, 18.01. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₄H₃₇N₂O₄ [M+H]⁺: 537.2748; found: 537.2752. SFC Chiralpak[®] AD-3 column (15% isopropanol/hexane (v/v = 1/1), 2.0 mL/min) t_r = 8.76 min (minor), 9.38 min (major): 97:3 er.

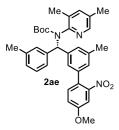
The absolute stereochemistry was assigned by analogy to compound **2ah**.

tert-Butyl (S)-((5-methyl-4'-(pyrrolidin-1-ylsulfonyl)-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)(3-methylpyridin-2-yl)carbamate (2ac)

Substrate **1a'** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (101 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **2ac** (44.6 mg) was obtained in 73% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.29 (d, J = 4.7 Hz, 1H), 7.97–6.74 (m, 9H), 7.85 (d, J = 7.9 Hz, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.04 (dd, J = 7.5, 4.7 Hz, 1H), 6.54 (s, 1H), 3.28–3.14 (m, 4H), 2.28 (br d, J = 63.2 Hz, 6H), 2.03 (s, 3H), 1.82–1.65 (m, 4H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 154.91, 154.34, 146.89, 146.42, 140.02, 139.82, 139.54, 138.54, 137.19, 133.91, 130.96, 129.17, 128.82, 128.55, 127.53, 123.78, 81.44, 67.97, 49.12, 28.63, 26.09, 21.61, 21.57, 18.01. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₆H₄₂N₃O₄S [M+H]⁺: 612.2891; found: 612.2892.

SFC Chiralpak[®] OJ-3 column (10% isopropanol, 3 min, then 40% isopropanol, 2.5 mL/min) $t_r = 3.68$ min (minor), 5.06 min (major): 92:8 er.

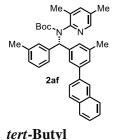

The absolute stereochemistry was assigned by analogy to compound 2ah.

Methyl (*S*)-3'-(((*tert*-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(*m*-tolyl)methyl)-5-chloro-5'methyl-[1,1'-biphenyl]-2-carboxylate (2ad)

Substrate **1a** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), aryl iodide (44.6 mg, 0.15 mmol, 1.5 equiv.), AgOAc (33 mg, 0.2 mmol, 2.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2ad** (48.4 mg) was obtained in 83% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.07 (s, 1H), 7.85–6.55 (m, 8H), 7.71 (s, 1H), 7.53 (d, J = 8.2 Hz, 1H), 7.19 (s, 1H), 6.45 (s, 1H), 3.56 (s, 3H), 2.53–2.09 (m, 6H), 2.19 (s, 3H), 1.95 (s, 3H), 1.27 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 168.63, 155.01, 151.97, 146.97, 141.81, 140.47, 138.49, 138.45, 134.14, 133.86, 133.51, 133.28, 133.04, 128.72, 128.53, 126.98, 81.25, 68.04, 52.94, 28.65, 21.56, 17.86. HRMS (ESI-TOF) *m/z* calc'd for C₃₅H₃₈ClN₂O₄ [M+H]⁺: 585.2515; found: 585.2516.

SFC Chiralpak[®] IC column (25% isopropanol, 2.0 mL/min) $t_r = 3.37 \text{ min (minor)}$, 3.69 min (major): 98:2 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.



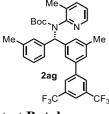
tert-Butyl (S)-(3,5-dimethylpyridin-2-yl)((4'-methoxy-5-methyl-2'-nitro-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)carbamate (2ae)

Substrate **1a** was arylated following the general procedure by using $(PhO)_2PO_2H$ (3.8 mg, 15 µmol, 15 mol%), aryl iodide (44.6 mg, 0.15 mmol, 1.5 equiv.), AgOAc (33 mg, 0.2 mmol, 2.0 equiv.), and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) at 80 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **2ae** (48.4 mg) was obtained in 83% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.11 (s, 1H), 7.90–6.54 (m, 10H), 7.41 (s, 1H), 6.46 (s, 1H), 3.92 (s, 3H), 2.51–2.14 (m, 6H), 2.23 (s, 3H), 1.98 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 160.57, 155.01, 151.91, 151.12, 147.00, 140.49, 138.94, 138.47, 138.06, 133.84, 133.52, 132.99, 129.92, 128.73, 128.21, 126.79, 119.63, 110.45, 81.29, 67.94, 57.07, 28.64, 21.56, 21.48, 17.87. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₄H₃₈N₃O₅ [M+H]⁺: 568.2806; found: 568.2805.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 4.84 \text{ min (minor)}$, 5.48 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

(S)-(3,5-dimethylpyridin-2-yl)((3-methyl-5-(naphthalen-2-yl)phenyl)(m-

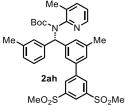

tolyl)methyl)carbamate (2af)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (76.2 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/THF = 6:1 v/v), compound **2af** (35.8 mg) was obtained in 66% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.37–6.65 (m, 12H), 8.16 (s, 1H), 7.51 (p, J = 7.0 Hz, 2H), 7.20 (s, 1H), 6.53 (s, 1H), 2.52–2.10 (m, 6H), 2.19 (s, 3H), 1.98 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 155.12, 152.09, 147.06, 141.38, 140.49, 139.65, 139.23, 138.48, 134.96, 133.89, 133.58, 133.11, 129.55, 129.25, 128.81, 128.71, 127.56, 127.18, 126.51, 126.46, 81.25, 68.13, 28.68, 21.67, 21.61, 17.88. HRMS (ESI-TOF) m/z calc'd for C₃₇H₃₉N₂O₂ [M+H]⁺: 543.3006; found: 543.3004.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 4.56$ min (major), 6.43 min (minor): 95:5 er.

The absolute stereochemistry was assigned by analogy to compound **2ah**.

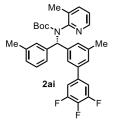

(S)-((5-methyl-3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-3-yl)(m-tolyl)methyl)(3-

methylpyridin-2-yl)carbamate (2ag)

Substrate 1a' was arylated following the general procedure by using (R)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (102 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/toluene/EtOAc = 4:2:1 v/v/v), compound 2ag (40.6 mg) was obtained in 66% yield as a white solid.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.55–6.69 (m, 9H), 8.31–8.25 (m, 1H), 7.95 (s, 1H), 7.39 (d, J = 7.7 Hz, 1H), 7.06 (ddd, J = 7.4, 4.6, 2.5 Hz, 1H), 6.55 (s, 1H), 2.29 (d, J = 74.2 Hz, 3H), 2.03 (s, 3H), 1.29 (d, J = 74.2 Hz, 3H), 2.03 (s, 3 J = 2.5 Hz, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 154.95, 154.31, 146.83, 144.70, 140.08, 139.89, 138.58, 138.49, 134.06, 133.23, 132.90 (q, J = 33.1 Hz), 128.87, 128.43, 127.59, 126.42, 124.88 (q, J = 271.9 Hz), 122.98 (hept, J = 3.8 Hz), 81.49, 67.88, 28.61, 21.54, 17.97; ¹⁹F NMR (376 MHz, Acetonitrile d_3) δ -63.57. HRMS (ESI-TOF) m/z calc'd for $C_{34}H_{33}F_6N_2O_2$ [M+H]⁺: 615.2441; found: 615.2445.

SFC Chiralpak[®] IC column (5% isopropanol, 1.0 mL/min) $t_r = 6.85 \text{ min (minor)}, 7.71 \text{ min (major)}: 99:1 \text{ er.}$ The absolute stereochemistry was assigned by analogy to compound 2ah.


tert-Butyl

(S)-((5-methyl-3',5'-bis(methylsulfonyl)-[1,1'-biphenyl]-3-yl)(m-tolyl)methyl)(3methylpyridin-2-yl)carbamate (2ah)

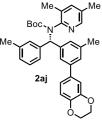
Substrate 1a' was arylated following the general procedure by using (R)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (108 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 1:1 v/v), compound **2ah** (51.0 mg) was obtained in 80% yield as a white solid.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.71–6.72 (m, 9H), 8.37–8.32 (m, 2H), 7.39 (dd, J = 7.6, 1.8 Hz, 1H), 7.07 (dd, J = 7.6, 4.7 Hz, 1H), 6.57 (s, 1H), 3.18 (s, 6H), 2.30 (br d, J = 84.6 Hz, 6H), 2.04 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-d₃, 60 °C) δ 154.93, 154.19, 146.97, 145.28, 144.38, 140.08, 140.02, 138.58, 138.13, 134.02, 131.21, 128.87, 127.62, 125.70, 123.93, 81.52, 67.85, 44.78, 28.64, 21.55, 17.99. HRMS (ESI-TOF) m/z calc'd for $C_{34}H_{39}N_2O_6S_2$ [M+H]⁺: 635.2244; found: 635.2241.

SFC Chiralpak[®] OJ-3 column (15% isopropanol, 2.0 mL/min) t_r = 4.87 min (minor), 5.65 min (major): 96:4 er. The absolute stereochemistry was determined by X-ray crystallography.

(S)-(3-methylpyridin-2-yl)(m-tolyl(3',4',5'-trifluoro-5-methyl-[1,1'-biphenyl]-3-

tert-Butyl

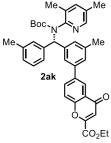

yl)methyl)carbamate (2ai) Substrate 1a' was any lated following the general procedure by using (R)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (77.4 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 12 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 20:1 v/v), compound 2ai

(40.1 mg) was obtained in 75% yield as a white solid.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.28 (d, J = 4.7 Hz, 1H), 8.13–6.62 (m, 9H), 7.38 (d, J = 7.5 Hz, 1H), 7.05 (dd, J = 7.5, 4.7 Hz, 1H), 6.52 (s, 1H), 2.27 (br d, J = 50.2 Hz, 6H), 2.03 (s, 3H), 1.29 (s, 9H); ¹³C

NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 154.92, 154.32, 152.49 (ddd, J = 247.1, 9.3, 3.4 Hz), 146.87, 140.22 (dt, J = 249.0, 15.6 Hz), 140.04, 139.64, 138.94, 138.57, 138.57, 138.45, 138.45, 133.96, 131.32, 128.85, 127.20, 126.13, 123.82, 112.14 (dd, J = 17.5, 3.8 Hz), 81.46, 67.93, 28.63, 21.56, 17.99; ¹⁹F NMR (376 MHz, Acetonitrile- d_3) δ -136.70, -136.75, -165.47, -165.51. HRMS (ESI-TOF) m/z calc'd for $C_{32}H_{32}F_{3}N_2O_2$ [M+H]⁺: 533.2410; found: 533.2407.

SFC Chiralpak[®] IC column (5% isopropanol, 1.0 mL/min) $t_r = 20.03 \text{ min (minor)}$, 21.74 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

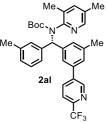

tert-Butyl (S)-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-methylphenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2aj)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (78.6 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **2aj** (38.9 mg) was obtained in 71% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.12 (s, 1H), 7.95–6.62 (m, 9H), 7.19–7.18 (m, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.46 (s, 1H), 4.26 (s, 4H), 2.47–2.11 (m, 6H), 2.19 (s, 3H), 1.96 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.09, 152.06, 147.02, 145.21, 144.65, 140.96, 140.46, 138.99, 138.44, 135.67, 133.58, 133.09, 130.33, 128.78, 128.63, 126.88, 120.84, 118.57, 116.50, 81.20, 68.09, 65.67, 28.67, 21.61, 17.86. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{35}H_{39}N_2O_4$ [M+H]⁺: 551.2904; found: 551.2909.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 1.0 mL/min) $t_r = 7.61 \text{ min (major)}$, 8.67 min (minor): 97:3 er.

The absolute stereochemistry was assigned by analogy to compound **2ah**.

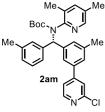

tert-Butyl (S)-((3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-methylphenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2ak)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (103 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **2ak** (48.2 mg) was obtained in 76% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.49–6.63 (m, 9H), 8.18 (s, 1H), 7.63 (d, J = 8.7 Hz, 1H), 7.21–7.17 (m, 1H), 6.99 (s, 1H), 6.51 (s, 1H), 4.44 (q, J = 7.1 Hz, 2H), 2.45–2.09 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 178.98, 161.62, 156.56, 155.08, 153.99, 151.95, 147.12, 140.51, 140.07, 139.52, 138.50, 134.56, 133.68, 133.10, 131.73, 130.04, 128.78, 127.35, 125.79, 123.80, 120.44, 115.20, 81.31, 67.98, 64.05, 28.66, 21.59, 17.86, 14.51. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₉H₄₁N₂O₆ [M+H]⁺: 633.2959; found: 633.2962.

SFC Chiralpak[®] OD-3 column (30% isopropanol, 2.0 mL/min) $t_r = 4.79$ min (minor), 5.35 min (major): 96:4 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

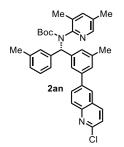

tert-Butyl (S)-(3,5-dimethylpyridin-2-yl)((3-methyl-5-(6-(trifluoromethyl)pyridin-3-yl)phenyl)(*m*-tolyl)methyl)carbamate (2al)

Substrate **1a** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), ligand (6.9 mg, 23 µmol, 23 mol%), (*R*)-BNDHP (8.0 mg, 23 µmol, 23 mol%), aryl iodide (81.9 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2al** (34.9 mg) was obtained in 62% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 9.18–6.62 (m, 9H), 8.13 (s, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.19 (s, 1H), 6.52 (s, 1H), 2.53–2.10 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.07, 151.92, 149.44, 147.28 (q, J = 34.3 Hz), 147.04, 140.78, 140.52, 139.82, 138.56, 136.91, 136.79, 133.66, 133.12, 131.46, 128.84, 127.62, 123.29 (d, J = 272.8 Hz), 121.79, 81.35, 67.95, 28.65, 21.57, 17.85; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃, 60 °C) δ -68.47. HRMS (ESI-TOF) *m/z* calc'd for C₃₃H₃₅F₃N₃O₂ [M+H]⁺: 562.2676; found: 562.2675.

SFC Chiralpak[®] AD-3 column (10% isopropanol, 2.0 mL/min) $t_r = 4.10$ min (minor), 5.02 min (major): 5:95 er.

The absolute stereochemistry was assigned by analogy to compound **2ah**.

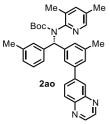

tert-Butyl (S)-((3-(2-chloropyridin-4-yl)-5-methylphenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2am)

Substrate **1a** was arylated following the general procedure by using Pd(OAc)₂ (3.3 mg, 15 μ mol, 15 mol%), ligand (6.9 mg, 23 μ mol, 23 mol%), (*R*)-BNDHP (8.0 mg, 23 μ mol, 23 mol%), aryl iodide (71.7 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 7:2 v/v), compound **2am** (34.9 mg) was obtained in 65% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.37 (s, 1H), 8.28–6.72 (m, 9H), 8.13 (s, 1H), 7.19 (s, 1H), 6.51 (s, 1H), 2.49–2.10 (m, 6H), 2.19 (s, 3H), 1.95 (s, 3H), 1.29 (d, J = 1.1 Hz, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.04, 153.02, 152.80, 151.89, 151.32, 147.03, 140.53, 139.82, 138.55, 137.25, 133.69, 133.13, 131.74, 128.84, 127.33, 122.74, 121.67, 81.36, 67.87, 28.65, 21.56, 17.87, 17.82. HRMS (ESI-TOF) *m/z* calc'd for C₃₂H₃₅ClN₃O₂ [M+H]⁺: 528.2412; found: 528.2411.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 2.67 \text{ min (minor)}$, 3.18 min (major): 89:11 er.

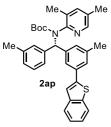
The absolute stereochemistry was assigned by analogy to compound 2ah.



tert-Butyl (S)-((3-(2-chloroquinolin-6-yl)-5-methylphenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2an)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (87 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2an** (29.5 mg) was obtained in 51% yield as a colorless oil.

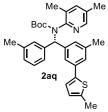
¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.38–6.84 (m, 9H), 8.26 (d, J = 8.6 Hz, 1H), 8.15 (s, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.20 (s, 1H), 6.53 (s, 1H), 2.51–2.13 (m, 6H), 2.19 (s, 3H), 1.98 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.11, 152.02, 151.49, 148.36, 147.06, 140.88, 140.71, 140.51, 140.31, 139.45, 138.51, 133.62, 133.12, 131.12, 129.83, 128.81, 128.45, 127.66, 126.43, 123.85, 81.30, 68.07, 28.67, 21.63, 17.87. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₆H₃₇ClN₃O₂ [M+H]⁺: 578.2569; found: 578.2567.


SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 7.76 \text{ min (minor)}$, 8.79 min (major): 90:10 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

tert-Butyl (S)-((3-methyl-5-(quinoxalin-6-yl)phenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2ao)

Substrate **1a** was arylated following the general procedure by using Pd(OAc)₂ (3.3 mg, 15 µmol, 15 mol%), Ligand (6.9 mg, 23 µmol, 23 mol%), (*R*)-BNDHP (8.0 mg, 23 µmol, 23 mol%), aryl iodide (76.8 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 1:1 v/v), compound **2ao** (25.5 mg) was obtained in 47% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.86 (d, *J* = 1.8 Hz, 1H), 8.83 (d, *J* = 1.8 Hz, 1H), 8.50–6.68 (m, 11H), 7.22–7.18 (m, 1H), 6.54 (s, 1H), 2.54–2.11 (m, 6H), 2.20 (s, 3H), 1.98 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.12, 152.02, 147.15, 147.08, 146.50, 144.41, 143.78, 143.52, 140.53, 140.06, 139.56, 138.54, 133.69, 133.15, 131.99, 130.99, 130.46, 128.83, 128.78, 127.81, 127.69, 81.31, 68.04, 28.66, 21.61, 17.87, 17.86. HRMS (ESI-TOF) *m/z* calc'd for $C_{35}H_{37}N_4O_2$ [M+H]⁺: 545.2911; found: 545.2919. SFC Chiralpak[®] IC column (25% isopropanol, 2.0 mL/min) t_r = 7.87 min (minor), 9.29 min (major): 84:16 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

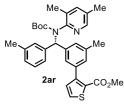

tert-Butyl (S)-((3-(benzo[b]thiophen-2-yl)-5-methylphenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2ap)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (78 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 10:1 v/v), compound **2ap** (33.4 mg) was obtained in 61% yield as a yellow solid.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.35–6.64 (m, 8H), 8.15 (s, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 1H), 7.20 (s, 1H), 6.49 (s, 1H), 2.45–2.13 (m, 6H), 2.19 (s, 3H), 1.99 (s, 3H), 1.30 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.06, 151.98, 147.11, 145.43, 142.04, 140.51, 140.47, 139.54, 138.54, 134.72, 133.60, 133.02, 131.82, 130.50, 128.82, 126.51, 125.87, 125.69, 124.81, 123.39, 120.73, 81.35, 67.91, 28.66, 21.54, 17.87. HRMS (ESI-TOF) *m/z* calc'd for C₃₅H₃₇N₂O₂S [M+H]⁺: 549.2570; found: 549.2577.

SFC Chiralpak[®] AD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 5.01$ min (major), 6.48 min (major): 97:3 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

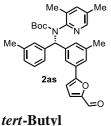


tert-Butyl (S)-(3,5-dimethylpyridin-2-yl)((3-methyl-5-(5-methylthiophen-2-yl)phenyl)(*m*-tolyl)methyl)carbamate (2aq)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (67.2 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 20:1 v/v), compound **2aq** (33.4 mg) was obtained in 65% yield as a yellow solid.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.12 (d, *J* = 2.3 Hz, 1H), 8.03–6.57 (m, 8H), 7.19 (d, *J* = 2.3 Hz, 1H), 6.73 (s, 1H), 6.43 (s, 1H), 2.47 (s, 3H), 2.38–2.10 (m, 6H), 2.19 (s, 3H), 1.97 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.05, 152.03, 147.06, 143.14, 140.72, 140.47, 139.25, 138.47, 135.21, 133.53, 132.99, 130.61, 128.72, 127.56, 125.51, 124.22, 81.26, 67.96, 28.66, 21.58, 21.52, 17.86, 15.51. HRMS (ESI-TOF) *m/z* calc'd for $C_{32}H_{37}N_2O_2S$ [M+H]⁺: 513.2570; found: 513.2566.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 4.61 \text{ min (minor)}$, 5.44 min (major): 96:4 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.

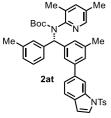

(S)-3-(3-(((tert-butoxycarbonyl)(3,5-dimethylpyridin-2-yl)amino)(m-tolyl)methyl)-5-

methylphenyl)thiophene-2-carboxylate (2ar)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (80.4 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2ar** (36.8 mg) was obtained in 66% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.07 (s, 1H), 7.85–6.52 (m, 8H), 7.61 (d, J = 5.4 Hz, 1H), 7.19 (s, 1H), 6.44 (s, 1H), 3.67 (s, 3H), 2.40–2.13 (m, 6H), 2.19 (s, 3H), 1.95 (s, 3H), 1.27 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 163.45, 155.06, 152.04, 149.34, 146.97, 140.48, 138.46, 138.04, 136.48, 133.53, 133.08, 132.57, 131.72, 129.93, 129.51, 128.72, 128.23, 81.23, 68.08, 52.57, 28.64, 21.54, 17.86. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₇N₂O₄S [M+H]⁺: 557.2469; found: 557.2467.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 6.26 \text{ min (minor)}$, 7.39 min (major): 89:11 er. The absolute stereochemistry was assigned by analogy to compound **2ah**.


tert-Butyl (S)-((3-(5-formylfuran-2-yl)-5-methylphenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2as)

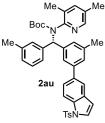
Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (66.6 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **2as** (20.4 mg) was obtained in 40% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 9.59 (s, 1H), 8.11 (s, 1H), 7.81–6.67 (m, 8H), 7.38 (s, 1H), 7.19 (s, 1H), 6.48 (s, 1H), 2.41–2.12 (m, 6H), 2.19 (s, 3H), 1.97 (d, J = 3.7 Hz, 3H), 1.29 (s, 5H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 178.42, 160.35, 155.04, 153.50, 151.92, 147.06, 140.52, 139.70, 138.58, 133.63, 133.01, 131.83, 129.91, 128.87, 125.37, 125.25, 123.64, 109.16, 81.43, 67.86, 28.64, 21.54, 17.85, 17.82. HRMS (ESI-TOF) m/z calc'd for C₃₂H₃₅N₂O₄ [M+H]⁺: 511.2591; found: 511.2586.

SFC Chiralpak[®] OJ-3 column (20% isopropanol, 2.0 mL/min) $t_r = 2.56$ min (minor), 2.99 min (major): 99.8:0.2 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

tert-Butyl (S)-((3-methyl-5-(1-tosyl-1H-indol-6-yl)phenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2at)


Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 µmol, 15 mol%), aryl iodide (119 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2at** (58.1 mg) was obtained in 70% yield as a colorless oil.

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.39–6.80 (m, 9H), 8.17 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 3.7 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 7.20 (d, J = 2.3 Hz, 1H), 6.74 (d, J = 3.7 Hz, 1H), 6.54 (s, 1H), 2.45–2.11 (m, 6H), 2.30 (s, 3H), 2.17 (s, 3H), 2.01 (s, 3H), 1.31 (s, 9H); ¹³C NMR

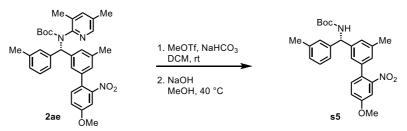
(150 MHz, Acetonitrile- d_3 , 60 °C) δ 155.10, 152.12, 147.17, 146.98, 141.59, 140.50, 139.21, 138.48, 136.61, 136.03, 133.51, 133.00, 131.40, 131.26, 128.78, 128.48, 127.95, 127.53, 124.06, 122.98, 112.67, 110.32, 81.30, 68.12, 28.70, 21.72, 21.65, 17.92, 17.89. HRMS (ESI-TOF) m/z calc'd for C₄₂H₄₄N₃O₄S [M+H]⁺: 686.3047; found: 686.3050.

SFC Chiralpak[®] OJ-3 column (15% isopropanol, 1.0 mL/min) $t_r = 23.56 \text{ min (minor)}$, 25.77 min (major): 92:8 er.

The absolute stereochemistry was assigned by analogy to compound 2ah.

tert-Butyl (S)-((3-methyl-5-(1-tosyl-1H-indol-6-yl)phenyl)(*m*-tolyl)methyl)(3,5-dimethylpyridin-2-yl)carbamate (2au)

Substrate **1a** was arylated following the general procedure by using (*R*)-BNDHP (5.2 mg, 15 μ mol, 15 mol%), aryl iodide (119 mg, 0.3 mmol, 3.0 equiv.), and (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%) at 100 °C for 18 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **2au** (40.3 mg) was obtained in 59% yield as a colorless oil.


¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.39–6.69 (m, 9H), 8.12 (s, 1H), 7.99 (d, *J* = 8.6 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.63 (d, *J* = 3.7 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 2H), 7.17 (s, 1H), 6.76 (d, *J* = 3.7 Hz, 1H), 6.48 (s, 1H), 2.52–2.09 (m, 6H), 2.31 (s, 3H), 2.17 (s, 3H), 1.96 (s, 3H), 1.28 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 155.09, 152.05, 147.03, 141.50, 140.46, 139.10, 138.44, 138.06, 136.17, 135.38, 133.54, 133.07, 132.76, 131.23, 128.76, 128.60, 127.91, 127.51, 125.07, 120.80, 114.88, 110.72, 81.23, 68.08, 28.66, 21.71, 21.61, 17.86. HRMS (ESI-TOF) *m*/*z* calc'd for C₄₂H₄₄N₃O₄S [M+H]⁺: 686.3047; found: 686.3048.

SFC Chiralpak[®] AD-3 column (30% isopropanol, 3.0 mL/min) $t_r = 2.70 \text{ min (major)}$, 3.32 min (minor): 94:6 er.

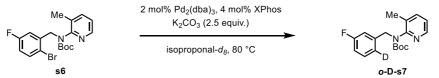
The absolute stereochemistry was assigned by analogy to compound 2ah.

D. Directing Group Cleavage of Desymmetrization Product 2ae

The directing group was removed following a modified known procedure³⁸.

tert-Butyl (S)-((4'-methoxy-5-methyl-2'-nitro-[1,1'-biphenyl]-3-yl)(*m*-tolyl)methyl)carbamate (s5)

To a solution of compound **2ae** (28.4 mg, 50 μ mol, 1 equiv.) in dry DCM (0.5 mL), NaHCO₃ (6.3 mg, 75 μ mol, 1.5 equiv.) and MeOTf (7.9 μ L, 70 μ mol, 1.4 equiv.) were added at 0 °C. The reaction mixture was stirred at room temperature for 5 hours, and then filtered through cotton. The filtrate was evaporated under reduced pressure. The residue was dissolved in MeOH (0.5 mL). Aqueous NaOH solution (6 N, 0.25 mL) was added. The reaction mixture was stirred at 40 °C for 3 hours. Aqueous NH₄Cl solution was added and extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was

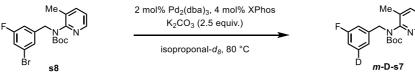

concentrated by rotary evaporation, the residue was purified by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v) to afford 20.9 mg compound **s5** as a colorless oil (90 % yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.33 (d, J = 2.7 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.22 (t, J = 7.7 Hz, 1H), 7.11 (dd, J = 8.5, 2.6 Hz, 1H), 7.08–7.01 (m, 4H), 6.97 (d, J = 14.0 Hz, 2H), 5.85 (s, 1H), 5.13 (s, 1H), 3.88 (s, 3H), 2.33 (d, J = 2.8 Hz, 6H), 1.44 (s, 9H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 159.18, 155.19, 149.80, 142.65, 141.88, 138.77, 138.51, 137.55, 132.89, 128.77, 128.68, 128.32, 128.26, 127.85, 124.49, 124.09, 118.71, 109.10, 79.94, 58.41, 56.06, 28.52, 21.60, 21.59. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₃₀NaN₂O₅ [M+Na]⁺: 485.2047; found: 485.2044.

SFC Chiralpak[®] AD-3 column (15% isopropanol, 1.5 mL/min) $t_r = 9.12 \text{ min (minor)}$, 9.74 min (major): 94:6 er.

E. Mechanistic Studies

1. Preparation of substrates

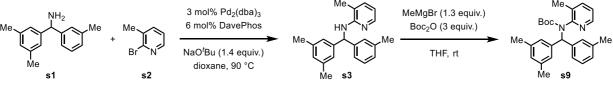


Benzylamine (s6) was synthesized following the literature procedures²⁸.

tert-Butyl 3-fluoro-6-D-benzyl(3-methylpyridin-2-yl)carbamate (o-D-s7)

Aryl bromide **s6** (1.90 g, 4.8 mmol, 1.0 equiv), $Pd_2(dba)_3$ (88 mg, 96 µmol, 2 mol%), XPhos (92 mg, 0.19 mmol, 10 mol%), and K_2CO_3 (1.66 g, 12 mmol, 2.5 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Isopropanol- d_8 (5 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 12 hours, the reaction mixture was filtered through Celite and eluted with EtOAc. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 8:1 v/v) to afford 0.456 g compound *o*-**D**-**s7** as a white solid (30% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.34 (d, J = 5.7 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.09 (t, J = 6.9 Hz, 1H), 6.99 (d, J = 10.4 Hz, 1H), 6.90 (t, J = 8.5 Hz, 1H), 5.31–4.52 (m, 2H), 2.00 (s, 3H), 1.41 (d, J = 15.4 Hz, 9H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 162.81 (d, J = 245.9 Hz), 153.91, 153.57, 146.53, 140.87, 139.44, 131.50, 129.68 (d, J = 8.3 Hz), 123.87, 122.41, 115.46, 114.18 (d, J = 20.9 Hz), 81.03, 51.84, 28.37, 17.62; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.72. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₈H₂₁DFN₂O₂ [M+H]⁺: 318.1723; found: 318.1731.



Benzylamine (s8) was synthesized following the literature procedures²⁸.

tert-Butyl 3-fluoro-5-D-benzyl(3-methylpyridin-2-yl)carbamate (m-D-s7)

Aryl bromide **s8** (1.19 g, 3.0 mmol, 1.0 equiv), $Pd_2(dba)_3$ (55 mg, 60 µmol, 2 mol%), XPhos (57 mg, 0.12 mmol, 10 mol%), and K_2CO_3 (1.04 g, 7.5 mmol, 2.5 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. Isopropanol- d_8 (5 mL) was added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 12 hours, the reaction mixture was filtered through Celite and eluted with EtOAc. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 8:1 v/v) to afford 0.59 g compound *m*-**D**-s7 as a white solid (62% yield).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.34 (dd, J = 4.8, 2.1 Hz, 1H), 7.47 (d, J = 7.7 Hz, 1H), 7.09 (dd, J = 7.6, 4.8 Hz, 1H), 7.05–6.94 (m, 2H), 6.90 (dd, J = 8.7, 2.6 Hz, 1H), 5.26–4.48 (m, 2H), 2.00 (s, 3H), 1.40 (s, 9H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 162.83 (d, J = 245.4 Hz), 153.94, 153.58, 146.54, 141.05, 139.45, 131.52, 129.53 (td, J = 24.8, 9.1 Hz), 124.10, 122.42, 115.51, 114.10 (d, J = 20.9 Hz), 81.04, 51.87, 28.38, 17.64; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -113.72. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₈H₂₁DFN₂O₂ [M+H]⁺: 318.1723; found: 318.1733.

Diarylmethyl amines (s1) was synthesized following the literature procedures³⁷.

tert-Butyl ((3,5-dimethylphenyl)(m-tolyl)methyl)(3-methylpyridin-2-yl)carbamate (s9)

Amine **s1** (0.675 g, 3.0 mmol, 1 equiv.), $Pd_2(dba)_3$ (83 mg, 90 µmol, 3 mol%), DavePhos (72 mg, 0.18 mmol, 6 mol%) and NaO'Bu (0.4 g, 4.2 mmol, 1.4 equiv.) were added to a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. 2-Bromopyridines **s2** (0.52 g, 3 mmol, 1 equiv.) and 1,4-dioxane (9 mL) were added to the mixture. The Schlenk tube was immersed into a pre-heated oil bath at 90 °C. After 2 h, the oil bath was removed, and the Schlenk tube was allowed to cool to room temperature. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 20:1 v/v) to afford compound **s3**.

To a solution of compound **s3** in dry THF (30 mL) was added MeMgBr (3.0 M, 1.3 mL, 3.9 mmol, 1.3 equiv.) at 0 °C, and the resulting mixture was allowed to warm up to room temperature and stirred for 30 min. Then Boc₂O (1.96 g, 9 mmol, 3 equiv.) was added into the mixture. The resulting mixture was allowed to warm up to room temperature and stirred for another 12 hours. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotatory evaporation, the residue was purified by silica gel chromatography (hexanes/EtOAc = 20:1 v/v) to afford 0.456 g compound **s9** as a white solid (45% yield).

¹H NMR (600 MHz, Acetonitrile- d_3 , 60 °C) δ 8.25 (dd, J = 4.8, 2.2 Hz, 1H), 7.69–6.55 (m, 7H), 7.36 (dd, J = 7.6, 2.2 Hz, 1H), 7.03 (dd, J = 7.4, 4.8 Hz, 1H), 6.38 (s, 1H), 2.39–2.02 (m, 9H), 2.00 (s, 3H), 1.26 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile- d_3 , 60 °C) δ 154.61, 154.04, 146.56, 143.55, 140.18, 139.73, 138.31, 137.95, 133.57, 131.73, 129.66, 129.33, 128.98, 128.58, 128.26, 126.80, 126.11, 123.53, 81.00, 67.69, 28.33, 21.50, 21.25, 17.82. HRMS (ESI-TOF) m/z calc'd for C₂₇H₃₃N₂O₂ [M+H]⁺: 417.2537; found: 417.2545.

2. Measurement of the kinetic isotope effect

Kinetic studies on the *meta*-arylation of s7, o-D-s7, and m-D-s7 were conducted in separate vessels.

Arene (0.05 mmol, 1.0 equiv), Pd(OAc)₂ (1.1 mg, 5 μ mol, 10 mol%), 3,5-diCF₃-pyridone (1.7 mg, 7.5 μ mol, 15 mol%), 4-iodobenzotrifluoride (14.7 μ L, 0.1 mmol, 2.0 equiv.), and AgOAc (25 mg, 0.15 mmol, 3.0 equiv.) were added into a 2-dram reaction vial. CHCl₃ (0.5 mL) and NBE-CO₂Me (11.4 mg, 75 μ mol, 1.5 equiv.) were added to the mixture. The reaction mixture was then stirred at 100 °C for given times. After cooling to room temperature, the mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. The yield was determined by ¹⁹F NMR analysis of the crude mixture using 1,2-difluorobenzene as an internal standard. All measurements were repeated once.

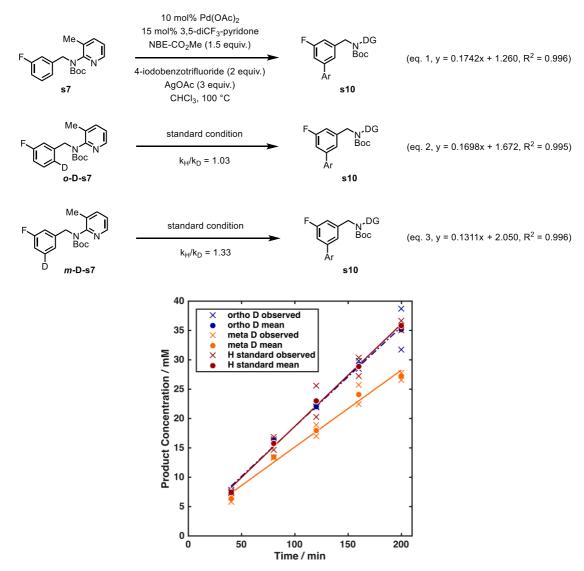


Fig. S1. Determination of the kinetic isotope effect.

3. Measurement of reaction rate dependence

Arene, $Pd(OAc)_2$, ligand (1.5 equiv. to $Pd(OAc)_2$), 4-iodobenzotrifluoride, and AgOAc were added into a 2dram reaction vial. CHCl₃ and NBE-CO₂Me were added to the mixture. The reaction mixture was then stirred at 100 °C for given times. After cooling to room temperature, the mixture was filtered through Celite and eluted with EtOAc. The filtrate was evaporated under reduced pressure. The yield was determined by ¹⁹F NMR analysis of the crude mixture using 1,2-difluorobenzene as an internal standard. All measurements were repeated once.

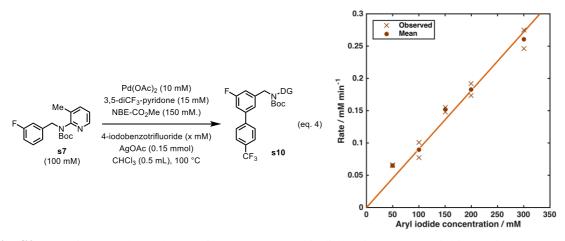


Fig. S2. Reaction rate dependence of arene s7 on aryl iodide using super-stoichiometric NBE-CO₂Me.

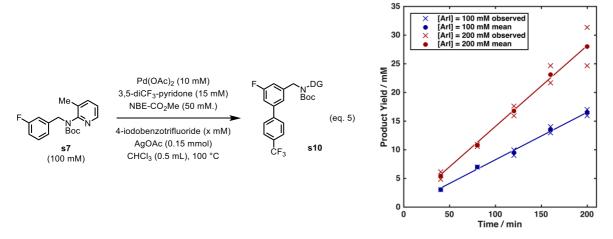


Fig. S3. Reaction rate dependence of arene s7 on aryl iodide using catalytic NBE-CO₂Me.

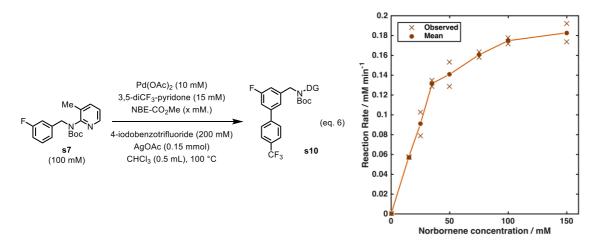


Fig. S4. Reaction rate dependence of arene s7 on NBE-CO₂Me.

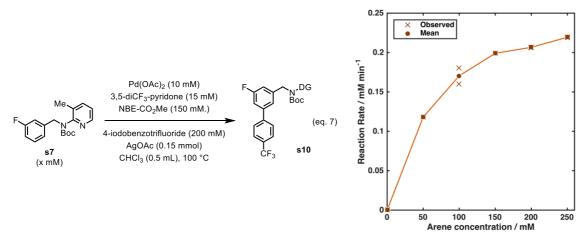


Fig. S5. Reaction rate dependence on arene s7.

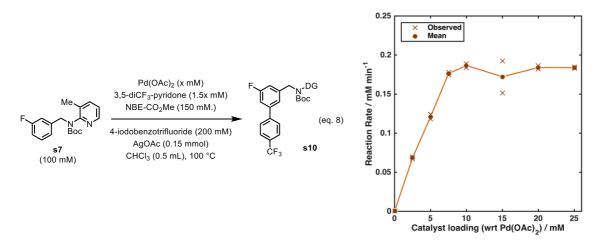


Fig. S6. Reaction rate dependence of arene s7 on catalyst.

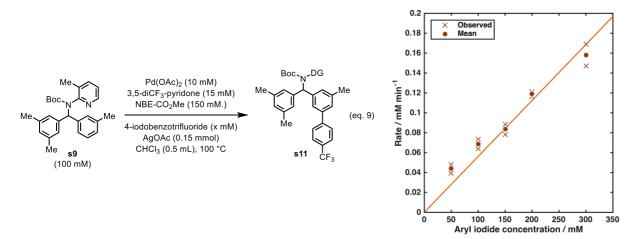
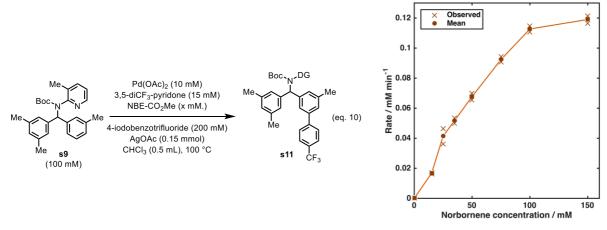
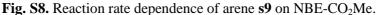




Fig. S7. Reaction rate dependence of arene s9 on aryl iodide using super-stoichiometric NBE-CO₂Me.

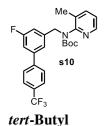
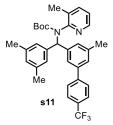



Fig. S9. Proposed catalytic cycle

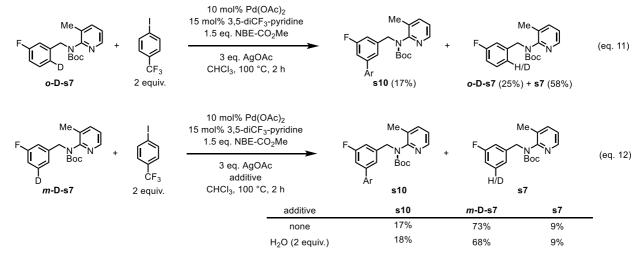


(3, 5-dimethyl pyridin - 2-yl) ((5-fluoro - 4' - (trifluoromethyl) - [1, 1' - biphenyl] - 3-yl) - (1, 1' - biphenyl) - (1, 1' - biphe

yl)methyl)carbamate (s10)

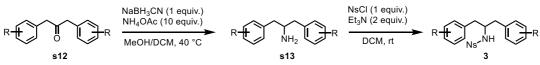
Preparative TLC chromatography eluent: hexane/EtOAc = 10:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.36 (d, J = 5.1 Hz, 1H), 7.67 (d, J = 8.1 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H), 7.50 (d, J = 7.7 Hz, 1H), 7.30 (s, 1H), 7.15 (d, J = 9.5 Hz, 1H), 7.14–7.05 (m, 2H), 4.99 (br d, J = 106.1 Hz, 2H), 2.07 (s, 3H), 1.41 (s, 9H); ¹³C NMR (150 MHz, Chloroform-*d*) δ ¹³C NMR (150 MHz, Chloroform-*d*) δ 163.21 (d, J = 246.5 Hz), 153.97, 153.59, 146.61, 143.43, 141.71 (d, J = 7.9 Hz), 139.53, 130.02 (q, J = 32.5 Hz), 129.70, 127.46, 125.96, 124.28 (q, J = 272.0 Hz), 122.51, 115.13, 113.09 (d, J = 22.6 Hz), 81.22, 51.93, 28.38, 17.73. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.80, -113.10. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{25}H_{25}F_4N_2O_2[M+H]^+$: 461.1847; found: 461.1853.


tert-Butyl ((3,5-dimethylphenyl)(5-methyl-4'-(trifluoromethyl)-[1,1'-biphenyl]-3-yl)methyl)(3-methylpyridin-2-yl)carbamate (s11)

Preparative TLC chromatography eluent: hexane/EtOAc = 20:1 v/v.

¹H NMR (600 MHz, Acetonitrile-*d*₃, 60 °C) δ 8.29 (dd, *J* = 4.9, 1.7 Hz, 1H), 8.14–6. 95 (m, 9H), 7.38 (dd, *J* = 7.5, 2.0 Hz, 1H), 7.04 (dd, *J* = 7.5, 4.7 Hz, 1H), 6.82 (br s, 1H), 6.48 (s, 1H), 2.33 (br s, 3H), 2.18 (br s, 6H), 2.03 (s, 3H), 1.29 (s, 9H); ¹³C NMR (150 MHz, Acetonitrile-*d*₃, 60 °C) δ 154.99, 154.41, 146.87, 146.18, 140.01, 139.48, 138.44, 133.93, 129.88 (q, *J* = 32.1 Hz), 129.58, 128.77, 128.58, 127.46, 126.87, 126.84, 125.83 (q, *J* = 271.1 Hz), 123.78, 81.43, 68.01, 28.63, 21.62, 21.47, 17.99; ¹⁹F NMR (376 MHz, Acetonitrile-*d*₃) δ -63.15. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{34}H_{36}F_{3}N_2O_2[M+H]^+$: 561.2723; found: 561.2720.


Hydrogen/deuterium exchange experiment

Arene (0.05 mmol, 1.0 equiv), Pd(OAc)₂ (1.1 mg, 5 μ mol, 10 mol%), 3,5-diCF₃-pyridone (1.7 mg, 7.5 μ mol, 15 mol%), 4-iodobenzotrifluoride (14.7 μ L, 0.1 mmol, 2.0 equiv.), and AgOAc (25 mg, 0.15 mmol, 3.0 equiv.) were added into a 2-dram reaction vial. CHCl₃ (0.5 mL), additive, and NBE-CO₂Me were added to the mixture. The reaction mixture was then stirred at 100 °C for 2 hours. After cooling to room temperature, the mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. The yield was determined by ¹⁹F NMR and ¹H NMR analysis of the crude product.

II. Enantioselecitve Remote C-H Activation of Homobenzylamines

A. Preparation of Substrates

Ketones (s12) were synthesized following the literature procedures³⁹.

General procedure for synthesis of substrates: to a solution of ketone **s12** (1 equiv.) in MeOH/DCM (0.15 M, v/v = 5/1), NaBH₃CN (1 equiv.) and NH₄OAc (10 equiv.) were added. The reaction flask was stirred at 40 °C overnight. Aqueous NaOH solution (10 wt%) was added into the reaction mixture, which was then extracted with DCM. The combined organic layers were washed with aqueous NaCl solution, and then dried over Na₂SO₄. The organic solvent was concentrated by rotary evaporation to afford compound **s13**.

To a solution of crude amine **s13** (1 equiv.) in DCM (0.15 M), NsCl (1.1 equiv.) was added. Then Et_3N (2.0 equiv.) was added at 0 °C. The reaction mixture was allowed to warm up to room temperature and stirred overnight. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography to afford compound **3**.

N-(1,3-Di-*o*-tolylpropan-2-yl)-4-nitrobenzenesulfonamide (3a)

Chromatography eluent: hexane/EtOAc = 8:1 v/v.

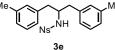
¹H NMR (600 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.9 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.10 (td, J = 7.4, 1.6 Hz, 2H), 7.04 (t, J = 7.1 Hz, 2H), 7.02–6.96 (m, 4H), 4.86 (d, J = 7.6 Hz, 1H), 3.57 (q, J = 7.2 Hz, 1H), 2.88 (d, J = 7.2 Hz, 4H), 2.10 (s, 6H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.47, 145.41, 136.26, 135.53, 130.82, 130.58, 127.59, 127.20, 126.19, 123.98, 55.50, 39.70, 19.25. HRMS (ESI-TOF) *m/z* calc'd for C₂₃H₂₃N₂O₄S[M-H]⁻: 423.1384; found: 423.1383.

N-(1,3-Bis(2-methoxyphenyl)propan-2-yl)-4-nitrobenzenesulfonamide (3b)

Chromatography eluent: hexane/EtOAc = 8:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.97 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 8.9 Hz, 2H), 7.17 (ddd, J = 8.2, 7.4, 1.8 Hz, 2H), 6.95 (dd, J = 7.4, 1.8 Hz, 2H), 6.81–6.74 (m, 4H), 5.37 (d, J = 6.6 Hz, 1H), 3.82 (s, 6H), 3.67 (dddd, J = 7.8, 6.5, 5.3, 2.4 Hz, 1H), 2.93 (dd, J = 13.7, 7.9 Hz, 2H), 2.77 (dd, J = 13.7, 5.9 Hz, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 157.42, 149.37, 145.68, 131.44, 128.19, 127.67, 126.25, 123.78, 120.95, 110.64, 56.90, 55.54, 36.25. HRMS (ESI-TOF) m/z calc'd for C₂₃H₂₅N₂O₆S[M+H]⁺: 457.1428; found: 457.1435.

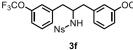
N-(1,3-Bis(2-fluorophenyl)propan-2-yl)-4-nitrobenzenesulfonamide (3c)


Chromatography eluent: hexane/EtOAc = 8:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, J = 8.9 Hz, 2H), 7.59 (d, J = 8.9 Hz, 2H), 7.15 (tdd, J = 7.6, 5.3, 1.9 Hz, 2H), 7.06 (td, J = 7.6, 1.8 Hz, 2H), 6.98 (td, J = 7.5, 1.2 Hz, 2H), 6.87 (ddd, J = 9.7, 8.2, 1.2 Hz, 2H), 4.65 (d, J = 8.5 Hz, 1H), 3.77 (dtd, J = 13.9, 7.8, 5.9 Hz, 1H), 2.93–2.77 (m, 4H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 161.23 (d, J = 244.9 Hz, 1H), 149.61, 145.74, 131.87 (d, J = 4.0 Hz, 1H), 128.98 (d, J = 8.2 Hz, 1H), 127.73, 124.26 (d, J = 3.5 Hz, 1H), 124.07, 124.05 (d, J = 15.5 Hz, 1H), 115.56 (d, J = 22.1 Hz, 1H), 56.14, 35.28; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -117.50. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₁H₁₇F₂N₂O₄S[M-H]⁻: 431.0883; found: 431.0884.

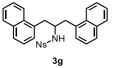
N-(1,3-Bis(2-chlorophenyl)propan-2-yl)-4-nitrobenzenesulfonamide (3d)

Chromatography eluent: hexane/EtOAc = 8:1 v/v.


¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H), 7.23–7.18 (m, 2H), 7.15–7.09 (m, 6H), 4.89 (d, J = 8.4 Hz, 1H), 3.96 (dt, J = 8.3, 7.2 Hz, 1H), 3.01 (d, J = 7.1 Hz, 4H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.54, 145.53, 135.07, 134.28, 131.88, 129.83, 128.55, 127.68, 127.09, 124.02, 55.54, 39.64. HRMS (ESI-TOF) m/z calc'd for C₂₁H₁₉Cl₂N₂O₄S[M-H]⁻: 463.0292; found: 463.0285.

N-(1,3-Di-*m*-tolylpropan-2-yl)-4-nitrobenzenesulfonamide (3e)

Chromatography eluent: hexane/EtOAc = 8:1 v/v.


¹H NMR (600 MHz, Chloroform-*d*) δ 8.01 (d, J = 8.9 Hz, 2H), 7.52 (d, J = 9.0 Hz, 2H), 7.08 (t, J = 7.5 Hz, 2H), 6.99 (d, J = 7.7 Hz, 3H), 6.84 (d, J = 7.6 Hz, 2H), 6.81 (s, 2H), 4.52 (d, J = 8.0 Hz, 1H), 3.61 (dt, J = 7.7, 5.7 Hz, 1H), 2.86 (dd, J = 13.8, 5.8 Hz, 2H), 2.69 (dd, J = 13.7, 7.3 Hz, 2H), 2.23 (s, 6H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.50, 145.73, 138.41, 136.97, 130.29, 128.70, 127.80, 127.70, 126.59, 123.90, 57.66, 41.67, 21.42. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₃H₂₃N₂O₄S[M-H]⁻: 423.1384; found: 423.1386.

N-(1, 3-Bis (3-(trifluoromethoxy) phenyl) propan-2-yl)-4-nitrobenzene sulfonamide (3f)

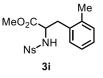
Chromatography eluent: hexane/EtOAc = 8:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (d, J = 8.9 Hz, 2H), 7.60 (d, J = 8.9 Hz, 2H), 7.22 (t, J = 7.9 Hz, 2H), 7.05 (d, J = 8.3 Hz, 2H), 6.98 (d, J = 7.6 Hz, 2H), 6.87 (s, 2H), 4.62 (d, J = 8.4 Hz, 1H), 3.68 (dtd, J = 13.5, 7.6, 5.7 Hz, 1H), 2.92 (dd, J = 13.9, 5.7 Hz, 2H), 2.76 (dd, J = 13.9, 7.4 Hz, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.81 (q, J = 1.7 Hz), 149.46, 145.51, 139.06, 130.21, 127.84, 127.71, 123.02, 121.32, 120.46 (d, J = 257.6 Hz), 119.57, 57.23, 41.42; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -58.05. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₃H₁₇F₆N₂O₆S[M-H]⁻: 563.0717; found: 563.0719.

N-(1,3-Di(naphthalen-1-yl)propan-2-yl)-4-nitrobenzenesulfonamide (3g)

Chromatography eluent: hexane/EtOAc = 6:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.70 (d, *J* = 8.2 Hz, 3H), 7.68 (d, *J* = 8.2 Hz, 3H), 7.44 (d, *J* = 8.9 Hz, 1H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.38 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 2H), 7.33 (dd, *J* = 8.2, 6.9 Hz, 2H), 7.24 (dd, *J* = 7.0, 1.2 Hz, 2H), 7.21 (ddd, *J* = 8.6, 7.0, 1.5 Hz, 2H), 7.18 (d, *J* = 9.0 Hz, 1H), 4.66 (d, *J* = 6.4 Hz, 1H), 3.90 (h, *J* = 7.0 Hz, 1H), 3.34 (dd, *J* = 14.1, 7.5 Hz, 2H), 3.27 (dd, *J* = 14.1, 6.7 Hz, 2H); ¹³C NMR (150 MHz, 150 MHz).


Chloroform-*d*) δ 148.74, 143.66, 134.07, 133.29, 131.44, 128.88, 128.14, 128.10, 126.90, 126.31, 126.05, 125.44, 123.45, 123.09, 54.78, 39.89. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₉H₂₃N₂O₄S[M-H]⁻: 495.1384; found: 495.1379.

N-(1,3-Bis(2-bromo-4-fluorophenyl)propan-2-yl)-4-nitrobenzenesulfonamide (3h)

Chromatography eluent: hexane/EtOAc = 8:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.8 Hz, 1H), 7.62 (d, J = 8.8 Hz, 2H), 7.12 (dd, J = 8.1, 2.6 Hz, 2H), 7.09 (dd, J = 8.5, 5.9 Hz, 2H), 6.87 (td, J = 8.1, 2.6 Hz, 2H), 4.76 (d, J = 8.9 Hz, 1H), 3.94 (qt, J = 8.6, 5.8 Hz, 1H), 2.99 (dd, J = 14.0, 5.8 Hz, 2H), 2.93 (dd, J = 14.1, 8.6 Hz, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 162.32 (d, J = 251.4 Hz), 149.66, 145.77, 132.61 (d, J = 3.8 Hz), 132.57 (d, J = 8.3 Hz), 127.81, 124.72 (d, J = 9.4 Hz), 124.03, 120.33 (d, J = 24.3 Hz), 114.93 (d, J = 20.9 Hz), 55.73, 41.25; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.74. HRMS (ESI-TOF) m/z calc'd for C₂₁H₁₅Br₂F₂N₂O₄S[M-H]⁻: 586.9093; found: 586.9088.

Substrates **3i**, **3j**, **3k** and **3l** were synthesized following the literature procedures²⁹.

Methyl 2-((4-nitrophenyl)sulfonamido)-3-(o-tolyl)propanoate (3i)

Chromatography eluent: hexane/EtOAc = 5:1 v/v.

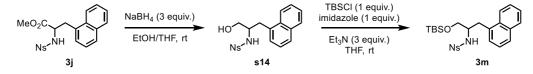
¹H NMR (600 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.9 Hz, 2H), 7.10 (td, *J* = 7.4, 1.4 Hz, 1H), 7.06–6.98 (m, 2H), 6.94 (dd, *J* = 7.6, 1.3 Hz, 1H), 5.41 (d, *J* = 7.9 Hz, 1H), 4.22 (td, *J* = 8.4, 5.3 Hz, 1H), 3.63 (s, 3H), 3.13 (dd, *J* = 14.2, 5.5 Hz, 1H), 2.89 (dd, *J* = 14.1, 8.8 Hz, 1H), 2.24 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.79, 149.97, 145.58, 136.58, 133.49, 130.84, 130.31, 128.19, 127.68, 126.31, 124.20, 56.53, 52.95, 36.81, 19.43. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₇H₁₉N₂O₆S[M+H]⁺: 379.0958; found: 379.0957.

Methyl 3-(naphthalen-1-yl)-2-((4-nitrophenyl)sulfonamido)propanoate (3j)

Chromatography eluent: hexane/EtOAc = 5:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.80 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.70 (dd, J = 8.1, 1.4 Hz, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.47 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.43 (ddd, J = 8.0, 6.8, 1.2 Hz, 1H), 7.38 (d, J = 8.8 Hz, 2H), 7.27 (dd, J = 8.2, 7.0 Hz, 1H), 7.27 (d, J = 6.6 Hz, 1H), 5.35 (d, J = 9.3 Hz, 1H), 4.33 (td, J = 9.8, 4.5 Hz, 1H), 3.76 (s, 3H), 3.65 (dd, J = 14.4, 4.5 Hz, 1H), 3.12 (dd, J = 14.3, 10.3 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.86, 149.43, 144.48, 133.95, 131.31, 131.12, 129.06, 128.46, 128.44, 127.54, 126.76, 126.17, 125.44, 123.58, 122.85, 56.42, 53.18, 36.61. HRMS (ESI-TOF) *m*/*z* calc'd for $C_{20}H_{19}N_2O_6S[M+H]^+$: 415.0958; found: 415.0952.

4-Nitro-N-(1-(o-tolyl)propan-2-yl)benzenesulfonamide (3k)

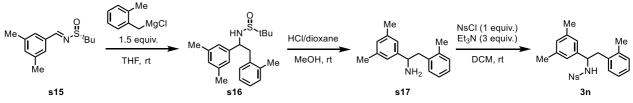

Chromatography eluent: hexane/EtOAc = 8:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.13 (d, *J* = 8.9 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.07 (td, *J* = 7.5, 1.4 Hz, 1H), 7.00 (t, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.5 Hz, 1H), 6.91 (dd, *J* = 7.5, 1.4 Hz, 1H), 4.73 (d, *J* = 7.7 Hz, 1H), 3.61–3.46 (m, 1H), 2.74 (dd, *J* = 14.1, 5.8 Hz, 1H), 2.64 (dd, *J* = 14.1, 8.7 Hz, 1H), 2.12 (s, 3H), 1.28 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.75, 146.21, 136.21, 135.49, 130.77, 130.31, 127.95, 127.21, 126.25, 124.19, 51.01, 41.19, 22.92, 19.41. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₆H₁₉N₂O₄S[M+H]⁺: 335.1060; found: 335.1055.

Methyl 3-(2-bromophenyl)-2-((4-nitrophenyl)sulfonamido)propanoate (3l)

Chromatography eluent: hexane/EtOAc = 5:1 v/v.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 8.8 Hz, 2H), 7.78 (d, *J* = 8.8 Hz, 2H), 7.38 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.14 (td, *J* = 7.4, 1.3 Hz, 1H), 7.10 (dd, *J* = 7.6, 1.9 Hz, 1H), 7.04 (td, *J* = 7.7, 1.8 Hz, 1H), 5.50 (d, *J* = 9.8 Hz, 1H), 4.37 (td, *J* = 9.8, 5.2 Hz, 1H), 3.68 (s, 3H), 3.23 (dd, *J* = 14.0, 5.3 Hz, 1H), 2.98 (dd, *J* = 13.9, 9.8 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.56, 149.98, 145.49, 134.95, 133.17, 131.95, 129.20, 128.24, 127.76, 124.80, 124.20, 55.93, 53.13, 39.36. HRMS (ESI-TOF) *m*/*z* calc'd for C₁₆H₁₆BrN₂O₆S[M+H]⁺: 442.9907; found: 442.9911.



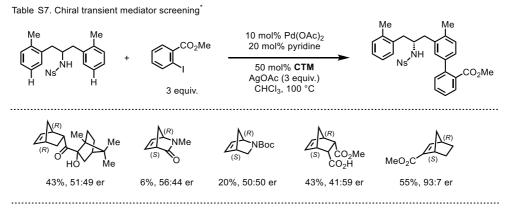
N-(1-((*tert*-Butyldimethylsilyl)oxy)-3-(naphthalen-1-yl)propan-2-yl)-4-nitrobenzenesulfonamide (3m)

To a solution of ester **3j** (1.24 g, 3 mmol, 1.0 equiv.) in EtOH/THF (15 mL/15 mL), NaBH₄ (0.34 g, 9.0 mmol, 3.0 equiv.) was added. The reaction mixture was stirred at room temperature overnight. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were washed with aqueous NaCl solution, and then dried over Na_2SO_4 . The organic solvent was concentrated by rotary evaporation to afford compound **s14**.

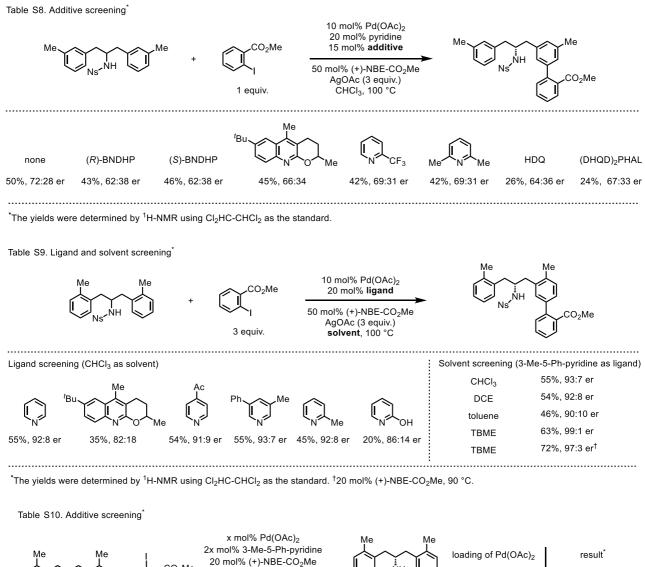
To a solution of crude alcohol **s14** in THF (20 mL), Et₃N (0.83 mL, 6.0 mmol, 2.0 equiv.), imidazole (0.204 g, 3.0 mmol, 1.0 equiv.) and TBSCl (0.45 g, 3.0 mmol, 1.0 equiv.) were added at 0 °C. The reaction mixture was stirred at room temperature overnight. Aqueous NH₄Cl solution was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography (hexane/EtOAc = 8:1 v/v) to afford 0.92 g compound **3m** as a white solid (61% yield for two steps).

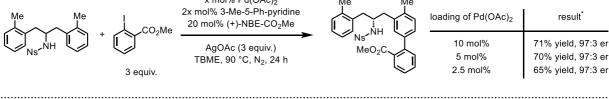
¹H NMR (600 MHz, Chloroform-*d*) δ 7.73 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 8.9 Hz, 2H), 7.63 (dd, *J* = 7.5, 1.9 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.39 (dtd, *J* = 13.7, 6.8, 1.6 Hz, 2H), 7.32 (d, *J* = 8.8 Hz, 2H), 7.25 (dd, *J* = 8.0, 6.9 Hz, 1H), 7.11 (d, *J* = 6.8 Hz, 1H), 5.02–4.73 (m, 1H), 3.92 (dd, *J* = 9.7, 2.9 Hz, 1H), 3.68 (dd, *J* = 9.7, 6.3 Hz, 1H), 3.60 (dtt, *J* = 13.7, 7.1, 3.8 Hz, 1H), 3.54 (dd, *J* = 14.3, 4.6 Hz, 1H), 2.84 (dd, *J* = 14.3, 10.1 Hz, 1H), 0.98 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.05, 144.59, 133.95, 133.24, 131.39, 128.83, 127.93, 127.88, 127.18, 126.31, 126.03, 125.42, 123.36, 123.30, 66.08, 55.79, 35.83, 26.06, 18.45, -5.19, -5.25. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₅H₃₃N₂O₅SSi[M+H]⁺: 501.1874; found: 501.1864.

N-(1-(3,5-Dimethylphenyl)-2-(o-tolyl)ethyl)-4-nitrobenzenesulfonamide~(3n)

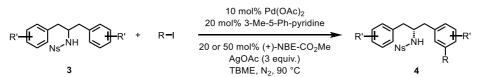

To a solution of sulfinyl imine **s15** (3.43 g, 10 mmol, 1.0 equiv.) in dry THF (30 mL), a solution of (2methylbenzyl)magnesium chloride solution (1 M in Et₂O, 15 mL, 15 mmol, 1.5 equiv.) was added at 0 °C. The reaction mixture was stirred at room temperature overnight. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography (hexane/EtOAc = 4:1 v/v) to afford 2.72 g compound **s16** as a colorless liquid (79% yield).

To a solution of compound **s16** (2.72 g, 7.9 mmol, 1 equiv.) in MeOH (30 mL), hydrochloric acid solution (4 M in dioxane, 7.9 mL) was added. The reaction mixture was stirred at room temperature overnight. Aqueous Na₂CO₃ solution was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. The organic solvent was concentrated by rotary evaporation to afford compound **s17**.


To a solution of crude amine **s17** in DCM (60 mL), NsCl (1.75 g, 7.9 mmol, 1.0 equiv.) was added. Then Et₃N (2.2 mL, 15.8 mmol, 2.0 equiv.) was added at 0 °C. The reaction mixture was allowed to warm up to room temperature and stirred overnight. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. After the organic solvent was concentrated by rotary evaporation, the residue was purified by silica gel chromatography (hexane/EtOAc = 6:1 v/v.) to afford 2.71 g compound **3n** as a white solid (81% yield for two steps).


¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.11 (td, *J* = 7.4, 1.3 Hz, 1H), 7.06–7.00 (m, 2H), 6.96 (d, *J* = 7.4 Hz, 1H), 6.80 (s, 1H), 6.66 (s, 2H), 5.20 (d, *J* = 4.0 Hz, 1H), 4.51 (dt, *J* = 9.6, 4.9 Hz, 1H), 3.01 (dd, *J* = 14.4, 5.5 Hz, 1H), 2.90 (dd, *J* = 14.4, 9.3 Hz, 1H), 2.17 (s, 9H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.57, 146.05, 140.15, 138.30, 136.51, 134.80, 130.84, 130.13, 129.53, 128.12, 127.39, 126.35, 124.48, 123.64, 58.56, 41.60, 21.27, 19.49. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₃H₂₄N₂O₄SNa[M+Na]⁺: 447.1349; found: 447.1350.

B. Optimization of the Reaction Conditions


*The yields were determined by ¹H-NMR using Cl₂HC-CHCl₂ as the standard

*Isolated yield

C. Pd/(+)-NBE-CO₂Me Catalyzed Desymmetrization of Homobenzylamines

General procedure: Arene **3** (0.10 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.2 mg, 10 µmol, 10 mol%), 3-methyl-5phenylpyridine (3.4 mg, 20 µmol, 20 mol%), iodide (0.3 mmol, 3.0 equiv.), and AgOAc (50 mg, 0.30 mmol, 3.0 equiv.) were added into a 2-dram reaction vial. TBME (1 mL) and (+)-NBE-CO₂Me (20 mol% or 50 mol%) were added to the mixture. The vial was flushed with N₂, and then capped. The reaction mixture was then stirred at 90 °C for 24 hours. After cooling to room temperature, the mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography afforded the title compound.

(R) - 4' - methyl - 3' - (2 - ((4 - nitrophenyl) sulfon a mido) - 3 - (o - tolyl) propyl) - [1, 1' - biphenyl] - 2 - (0 - tolyl) propyl] - (0 - tolyl) propyl]

carboxylate (4a)

Substrate **3a** was arylated following the general procedure by using methyl 2-iodobenzoate (44 μ L, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 μ mol, 20 mol%), and TBME (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 3:1 v/v), compound **4a** (39.7 mg) was obtained in 71% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.8 Hz, 2H), 7.87 (dd, J = 7.8, 1.4 Hz, 1H), 7.57 (d, J = 8.8 Hz, 2H), 7.53 (td, J = 7.6, 1.4 Hz, 1H), 7.41 (td, J = 7.6, 1.3 Hz, 1H), 7.30 (dd, J = 7.7, 1.2 Hz, 1H), 7.11–7.03 (m, 3H), 7.03–6.95 (m, 4H), 4.91 (d, J = 6.7 Hz, 1H), 3.72 (s, 3H), 3.56 (q, J = 7.0 Hz, 1H), 3.02–2.82 (m, 4H), 2.11 (s, 3H), 2.04 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.77, 149.51, 145.49, 142.39, 139.12, 136.29, 135.68, 135.39, 134.76, 131.71, 131.23, 130.96, 130.80, 130.70, 130.59, 130.28, 130.20, 127.98, 127.40, 127.24, 127.15, 126.17, 124.01, 54.83, 52.35, 39.76, 39.52, 19.33, 18.96. HRMS (ESI-TOF) *m/z* calc'd for C₃₁H₃₁N₂O₆S [M+H]⁺: 559.1897; found: 559.1904.

SFC Chiralpak[®] OJ-3 column (25% isopropanol, 2.0 mL/min) $t_r = 3.09 \text{ min (minor)}$, 4.57 min (major): 97:3 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

Methyl (*R*)-4'-methoxy-3'-(3-(2-methoxyphenyl)-2-((4-nitrophenyl)sulfonamido)propyl)-[1,1'-biphenyl]-2-carboxylate (4b)

Substrate **3b** was arylated following the general procedure by using methyl 2-iodobenzoate (44 μ L, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4b** (45.0 mg) was obtained in 76% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.98 (d, J = 8.7 Hz, 2H), 7.81 (dd, J = 7.8, 1.4 Hz, 1H), 7.58 (d, J = 8.7 Hz, 2H), 7.51 (td, J = 7.6, 1.4 Hz, 1H), 7.38 (td, J = 7.7, 1.3 Hz, 1H), 7.27 (dd, J = 7.8, 1.1 Hz, 1H), 7.16–7.09 (m, 2H), 7.01 (d, J = 2.3 Hz, 1H), 6.91 (dd, J = 7.4, 1.7 Hz, 1H), 6.77 (d, J = 8.3 Hz, 1H), 6.73 (t, J = 7.4 Hz, 1H), 6.70 (d, J = 8.1 Hz, 1H), 5.39 (d, J = 6.6 Hz, 1H), 3.80 (s, 3H), 3.76 (s, 3H), 3.75–3.70 (m, 1H), 3.68 (s, 3H), 2.97 (dd, J = 13.7, 7.3 Hz, 1H), 2.89–2.81 (m, 2H), 2.76 (dd, J = 13.8, 5.5 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 169.03, 157.37, 156.94, 149.38, 145.91, 142.01, 133.75, 131.78, 131.49, 131.43, 130.82, 130.53, 130.05, 128.16, 128.05, 127.88, 127.08, 126.24, 125.68, 123.78, 110.56, 110.23, 56.34, 55.54, 55.49, 52.18, 36.74, 35.77. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₁H₃₁N₂O₈S [M+H]⁺: 591.1796; found: 591.1801. SFC Chiralpak[®] AD-3 column (40% isopropanol, 3.0 mL/min) t_r = 2.84 min (minor), 4.41 min (major): 87:13

er.

The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

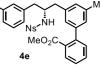
Methyl (*R*)-4'-fluoro-3'-(3-(2-fluorophenyl)-2-((4-nitrophenyl)sulfonamido)propyl)-[1,1'-biphenyl]-2-carboxylate (4c)

Substrate **3c** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), ligand (5.1 mg, 30 µmol, 30 mol%), methyl 2-iodobenzoate (44 µL, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4c** (33.8 mg) was obtained in 60% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (d, J = 8.9 Hz, 2H), 7.91 (dd, J = 7.8, 1.4 Hz, 1H), 7.66 (d, J = 8.8 Hz, 2H), 7.54 (td, J = 7.5, 1.4 Hz, 1H), 7.43 (td, J = 7.7, 1.3 Hz, 1H), 7.28 (d, J = 1.2 Hz, 1H), 7.16–7.09 (m, 3H), 7.07 (td, J = 7.5, 1.8 Hz, 1H), 6.95 (td, J = 7.4, 1.2 Hz, 1H), 6.89 (t, J = 9.4 Hz, 1H), 6.83 (ddd, J = 9.8, 8.2, 1.2 Hz, 1H), 4.96 (d, J = 8.3 Hz, 1H), 3.86–3.79 (m, 1H), 3.73 (s, 3H), 2.99–2.87 (m, 3H), 2.82 (dd, J = 14.0, 8.3 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.41, 161.21 (d, J = 244.9 Hz), 160.70 (d, J = 245.7 Hz), 149.60, 145.91, 141.71, 137.59 (d, J = 3.8 Hz), 132.45 (d, J = 4.8 Hz), 131.92 (d, J = 4.7 Hz), 131.84, 130.98, 130.46, 130.05, 128.89 (d, J = 3.7 Hz), 128.84 (d, J = 3.3 Hz), 127.92, 127.70, 124.35 (d, J = 3.5 Hz), 124.26 (d, J = 15.5 Hz), 124.08, 123.21 (d, J = 16.4 Hz), 115.46 (d, J = 22.2 Hz), 115.14 (d, J = 22.6 Hz), 55.63, 52.28, 35.46, 34.86; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -117.59, -119.70. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₉H₂₅F₂N₂O₆S [M+H]⁺: 567.1396; found: 567.1398.

SFC Chiralpak[®] OJ-3 column (25% isopropanol, 2.0 mL/min) $t_r = 3.27 \text{ min (minor)}$, 3.54 min (major): 86:14 er.

The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.


Methyl (*R*)-4'-chloro-3'-(3-(2-chlorophenyl)-2-((4-nitrophenyl)sulfonamido)propyl)-[1,1'-biphenyl]-2-carboxylate (4d)

Substrate **3d** was arylated following the general procedure by using methyl 2-iodobenzoate (44 μ L, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/Et₂O/DCM = 4:4:3 v/v/v), compound **4d** (41.6 mg) was obtained in 69% yield as a colorless oil.

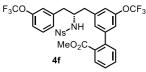
¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, J = 8.8 Hz, 2H), 7.93 (dd, J = 7.8, 1.4 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.55 (td, J = 7.6, 1.4 Hz, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 7.6 Hz, 1H), 7.20 (d, J = 8.2 Hz, 1H), 7.18 (d, J = 2.2 Hz, 1H), 7.14 (dd, J = 7.2, 2.0 Hz, 1H), 7.11–7.05 (m, 4H), 5.04 (d, J = 7.9 Hz, 1H), 4.04–3.94 (m, 1H), 3.74 (s, 3H), 3.09–2.92 (m, 4H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.33, 149.56, 145.65, 141.53, 140.32, 135.25, 134.28, 134.15, 133.38, 132.46, 131.96, 131.94, 130.94, 130.57, 129.88, 129.76, 129.44, 128.55, 128.45, 127.96, 127.90, 127.00, 124.03, 54.83, 52.38, 39.71, 39.15. HRMS (ESI-TOF) m/z calc'd for C₂₉H₂₅ClN₂O₆S [M+H]⁺: 599.0805; found: 599.0809.

SFC Chiralpak[®] AD-3 column (30% isopropanol, 3.0 mL/min) $t_r = 3.34$ min (minor), 5.65 min (major): 95:5 er.

The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.

(*R*)-3'-methyl-5'-(2-((4-nitrophenyl)sulfonamido)-3-(*m*-tolyl)propyl)-[1,1'-biphenyl]-2-

carboxylate (4e)

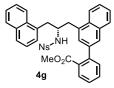

Methyl

Substrate **3e** was arylated following the general procedure by using methyl 2-iodobenzoate (20.5 μ L, 0.14 mmol, 1.4 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 μ mol, 20 mol%), and TBME (1.5 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 3:1 v/v), compound **4e** (30.5 mg) was obtained in 55% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.03 (d, J = 8.8 Hz, 2H), 7.87 (dd, J = 7.8, 1.3 Hz, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.54 (td, J = 7.6, 1.4 Hz, 1H), 7.42 (td, J = 7.6, 1.2 Hz, 1H), 7.31 (dd, J = 7.7, 1.0 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 7.00 (s, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.88 (s, 1H), 6.85 (d, J = 7.6 Hz, 1H), 6.82 (s, 1H), 6.78 (s, 1H), 4.78 (d, J = 7.6 Hz, 1H), 3.72 (s, 3H), 3.64 (q, J = 6.7, 6.0 Hz, 1H), 2.92 (dd, J = 13.7, 5.8 Hz, 1H), 2.84 (dd, J = 13.8, 5.8 Hz, 1H), 2.76 (dd, J = 13.7, 6.7 Hz, 1H), 2.69 (dd, J = 13.8, 7.6 Hz, 1H), 2.26 (s, 3H), 2.22 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.72, 149.50, 145.89, 142.64, 141.61, 138.32, 138.24, 137.23, 136.22, 131.66, 130.89, 130.28, 130.23, 129.13, 128.64, 128.04, 127.78, 127.60, 127.46, 127.42, 126.57, 123.92, 57.36, 52.27, 41.52, 41.31, 21.43, 21.40. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₁H₃₀NaN₂O₆S [M+Na]⁺: 581.1717; found: 581.1725.

SFC Chiralpak[®] OD-3 column (30% isopropanol, 2.0 mL/min) $t_r = 4.46 \text{ min (major)}$, 5.78 min (minor): 88:12 er.

The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.


Methyl (*R*)-3'-(2-((4-nitrophenyl)sulfonamido)-3-(3-(trifluoromethoxy)phenyl)propyl)-5'-(trifluoromethoxy)-[1,1'-biphenyl]-2-carboxylate (4f)

Substrate **3f** was arylated following the general procedure by using methyl 2-iodobenzoate (44 μ L, 0.30 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 μ mol, 20 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/Et₂O = 1:2 v/v), compound **4f** (40.0 mg) was obtained in 57% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.8 Hz, 2H), 7.98 (dd, J = 7.8, 1.3 Hz, 1H), 7.66 (d, J = 8.9 Hz, 2H), 7.58 (td, J = 7.5, 1.4 Hz, 1H), 7.48 (td, J = 7.7, 1.3 Hz, 1H), 7.30 (dd, J = 7.6, 1.3 Hz, 1H), 7.19 (t, J = 7.9 Hz, 1H), 7.07 (d, J = 1.6 Hz, 1H), 7.05–7.00 (m, 2H), 6.99 (d, J = 7.8 Hz, 1H), 6.89 (s, 1H), 6.82 (s, 1H), 4.94 (d, J = 8.1 Hz, 1H), 3.76 (s, 3H), 3.73 (td, J = 8.1, 4.1 Hz, 1H), 3.02 (dd, J = 13.8, 5.5 Hz, 1H), 2.90 (dd, J = 13.9, 5.6 Hz, 1H), 2.80 (dd, J = 13.9, 6.6 Hz, 1H), 2.70 (dd, J = 13.9, 8.0 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.99, 149.81, 149.38, 149.11, 145.68, 143.63, 141.31, 139.45, 137.73, 132.14, 130.90, 130.80, 130.09, 129.70, 128.98, 128.29, 127.88, 127.82, 124.15, 122.05, 120.48 (q, J = 258.1 Hz), 120.25 (q, J = 256.0 Hz), 120.44, 119.74, 119.42, 56.76, 52.38, 41.33, 40.91; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.07, -58.10. HRMS (ESI-TOF) m/z calc'd for C₃₁H₂₅F₆N₂O₈S [M+H]⁺: 699.1230; found: 699.1214.

SFC Chiralpak[®] AD-3 column (10% isopropanol, 2.0 mL/min) $t_r = 4.84 \text{ min (minor)}$, 6.02 min (major): 90:10 er.

The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.

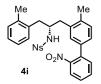
Methyl (*R*)-4'-chloro-3'-(3-(2-chlorophenyl)-2-((4-nitrophenyl)sulfonamido)propyl)-[1,1'-biphenyl]-2-carboxylate (4g)

Substrate **3g** was arylated following the general procedure by using methyl 2-iodobenzoate (44 μ L, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 μ mol, 20 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (toluene/DCM/Et₂O = 2:1:1 v/v/v), compound **4g** (44.5 mg) was obtained in 71% yield as a yellow liquid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.99 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.1 Hz, 1H), 7.68 (d, *J* = 8.2 Hz, 1H), 7.65 (d, *J* = 1.7 Hz, 1H), 7.60 (td, *J* = 7.5, 1.4 Hz, 1H), 7.51–7.41 (m, 5H), 7.36 (dd, *J* = 12.5, 8.4 Hz, 4H), 7.30 (dt, *J* = 7.5, 4.2 Hz, 2H), 7.25 (d, *J* = 1.8 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 1H), 7.30 (dt, *J* = 7.5, 4.2 Hz, 2H), 7.25 (dt, *J* = 1.8 Hz, 1H), 7.17 (dt, *J* = 8.4 Hz, 1H), 7.30 (dt, *J* = 7.5, 4.2 Hz, 2H), 7.25 (dt, *J* = 1.8 Hz, 1H), 7.17 (dt, *J* = 8.4 Hz, 1Hz, 1Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz, 2H), 7.25 (dt, *J* = 1.8 Hz, 1H), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 4.2 Hz), 7.25 (dt, *J* = 1.8 Hz), 7.17 (dt, *J* = 8.4 Hz), 7.30 (dt, *J* = 7.5, 7.5 (dt, J) = 7.5 (dt, J) =

1H), 7.08 (t, J = 7.6 Hz, 1H), 4.99 (d, J = 5.1 Hz, 1H), 3.90 (q, J = 7.1 Hz, 1H), 3.75 (s, 3H), 3.66–3.57 (m, 1H), 3.32–3.24 (m, 2H), 3.16 (dd, J = 14.3, 8.6 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.49, 148.80, 143.77, 142.62, 138.57, 134.11, 134.04, 133.69, 132.12, 131.94, 131.67, 131.42, 130.68, 130.34, 130.06, 129.84, 128.99, 128.91, 128.20, 128.03, 127.79, 127.38, 126.85, 126.31, 126.29, 126.16, 126.03, 125.48, 123.79, 123.21, 54.50, 52.58, 40.32, 39.29. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₇H₃₀NaN₂O₆S [M+Na]⁺: 653.1717; found: 653.1720.

SFC Chiralpak[®] AD-3 column (40% isopropanol, 2.0 mL/min) $t_r = 5.37$ min (minor), 8.26 min (major): 98:2 er.


The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.

Methyl (*R*)-4'-bromo-5'-(3-(2-bromo-4-fluorophenyl)-2-((4-nitrophenyl)sulfonamido)propyl)-2'-fluoro-[1,1'-biphenyl]-2-carboxylate (4h)

Substrate **3h** was arylated following the general procedure by using methyl 2-iodobenzoate (44 μ L, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (toluene/EtOAc = 6:1 v/v), compound **4h** (43.5 mg) was obtained in 60% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.10 (d, J = 8.8 Hz, 2H), 8.02 (dd, J = 7.8, 1.4 Hz, 1H), 7.68 (d, J = 8.8 Hz, 2H), 7.59 (td, J = 7.6, 1.5 Hz, 1H), 7.49 (td, J = 7.7, 1.3 Hz, 1H), 7.28 (dd, J = 7.6, 1.3 Hz, 1H), 7.16 (dd, J = 8.2, 2.0 Hz, 2H), 7.10–7.04 (m, 2H), 6.83 (td, J = 8.2, 2.7 Hz, 1H), 5.01 (d, J = 8.6 Hz, 1H), 3.99 (dt, J = 8.5, 5.7 Hz, 1H), 3.79 (s, 3H), 3.04 (ddd, J = 21.5, 14.0, 5.6 Hz, 2H), 2.98–2.89 (m, 2H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 167.52, 161.42 (d, J = 251.0 Hz), 158.19 (d, J = 250.9 Hz), 149.69, 145.76, 135.41, 133.47 (d, J = 4.0 Hz), 132.79 (d, J = 3.8 Hz), 132.62 (d, J = 8.1 Hz), 132.36, 132.79 (d, J = 3.5 Hz), 131.46, 130.65, 130.23, 128.88 (d, J = 15.9 Hz), 128.65, 128.06, 124.70 (d, J = 9.1 Hz), 124.12, 123.59 (d, J = 9.4 Hz), 120.21 (d, J = 24.2 Hz), 119.89 (d, J = 25.8 Hz), 114.80 (d, J = 20.7 Hz), 55.05, 52.42, 41.34, 40.79; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -112.99, -115.98. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₉H₂₃Br₂F₂N₂O₆S [M+H]⁺: 722.9606; found: 722.9599.

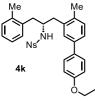
SFC Chiralpak[®] OJ-3 column (30% isopropanol, 2.0 mL/min) $t_r = 3.96 \text{ min (minor)}$, 4.40 min (major): 92:8 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

(*R*)-*N*-(1-(4-methyl-2'-nitro-[1,1'-biphenyl]-3-yl)-3-(*o*-tolyl)propan-2-yl)-4-nitrobenzenesulfonamide (4i) Substrate 3a was arylated following the general procedure by using 1-iodo-2-nitrobenzene (74.5 mg, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (3.0 mg, 20 μ mol, 20 mol%), and TBME (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound 4i (35.5 mg) was obtained in 65% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.99 (d, J = 8.9 Hz, 2H), 7.83 (d, J = 8.0 Hz, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.54 (d, J = 8.9 Hz, 2H), 7.48 (t, J = 7.7 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.11 (d, J = 1.1 Hz, 2H), 7.07 (s, 1H), 7.03 (t, J = 7.3 Hz, 1H), 6.96 (t, J = 7.3 Hz, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.89 (d, J = 7.4 Hz, 1H), 4.82 (d, J = 7.4 Hz, 1H), 3.55 (h, J = 7.2 Hz, 1H), 3.06 (dd, J = 13.8, 6.4 Hz, 1H), 2.94–2.82 (m, 2H), 2.68 (dd, J = 14.1, 9.1 Hz, 1H), 2.22 (s, 3H), 1.99 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.55, 149.41, 145.33, 136.69, 136.25, 136.05, 135.79, 135.41, 135.32, 132.48, 131.87, 131.29, 130.79, 130.47, 130.20,

128.33, 127.78, 127.19, 126.69, 126.20, 124.22, 124.04, 55.34, 40.38, 38.76, 19.29, 19.11. HRMS (ESI-TOF) m/z calc'd for C₂₉H₂₈N₃O₆S [M+H]⁺: 546.1693; found: 546.1694.

SFC Chiralpak[®] OJ-3 column (10% isopropanol, 2.0 mL/min) $t_r = 23.64$ min (minor), 24.81 min (major): 99:1 er.


The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.

(R) - N - (1 - (4' - (2 - chloroethoxy) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - nitrobenzenesulfonamide (4j)

Substrate **3a** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), 4acetylpyridine as ligand (3.3 µL, 30 µmol, 30 mol%), diethyl (4-iodobenzyl)phosphonate (106 mg, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and TBME (0.3 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 1:6 v/v), compound **4j** (39.0 mg) was obtained in 60% yield as a yellow solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 8.8 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.35 (dd, *J* = 8.3, 2.5 Hz, 2H), 7.22 (dd, *J* = 7.9, 2.0 Hz, 1H), 7.17 (d, *J* = 2.0 Hz, 1H), 7.11–6.98 (m, 4H), 6.96 (d, *J* = 7.9 Hz, 1H), 5.57 (d, *J* = 8.1 Hz, 1H), 4.14–3.98 (m, 4H), 3.61 (q, *J* = 7.3 Hz, 1H), 3.21 (s, 1H), 3.18 (s, 1H), 2.95 (dd, *J* = 13.7, 7.2 Hz, 1H), 2.91–2.74 (m, 3H), 2.15 (s, 3H), 2.05 (s, 3H), 1.34–1.17 (m, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 149.25, 145.88, 138.96 (d, *J* = 3.8 Hz), 138.24 (d, *J* = 1.4 Hz), 136.35, 136.28, 135.72, 135.34, 131.16, 130.79, 130.74 (d, *J* = 11.4 Hz), 130.73, 130.38 (d, *J* = 6.2 Hz), 129.08, 127.36, 127.15, 126.85, 126.83, 126.14, 125.33, 123.82, 62.40 (dd, *J* = 6.8, 1.6 Hz), 55.56, 40.24, 39.47, 33.41 (d, *J* = 138.3 Hz), 19.38, 18.80, 16.55 (d, *J* = 6.0 Hz). HRMS (ESI-TOF) *m*/*z* calc'd for C₃₄H₄₀N₂O₇PS [M+H]⁺: 651.2288; found: 651.2285.

SFC Chiralpak[®] OJ-3 column (20% isopropanol, 2.0 mL/min) $t_r = 6.51 \text{ min (major)}$, 8.58 min (minor): 96:4 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

(R) - N - (1 - (4' - (2 - chloroethoxy) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - methyl - [1, 1' - biphenyl] - 3 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl) propan - 2 - yl) - (o - tolyl) propan - 2 - yl) - 3 - (o - tolyl)

Substrate **3a** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), 4-acetylpyridine as ligand (3.3 µL, 30 µmol, 30 mol%), 1-(2-chloroethoxy)-4-iodobenzene (85 mg, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **4k** (33.6 mg) was obtained in 58% yield as a yellow solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.41 (d, J = 8.9 Hz, 2H), 7.22 (dd, J = 7.8, 2.0 Hz, 1H), 7.15–7.08 (m, 2H), 7.08–7.01 (m, 3H), 6.95 (dd, J = 15.1, 8.4 Hz, 3H), 4.96 (d, J = 8.0 Hz, 1H), 4.26 (t, J = 5.8 Hz, 2H), 3.84 (t, J = 5.9 Hz, 2H), 3.62 (td, J = 7.9, 5.7 Hz, 1H), 2.99 (dd, J = 13.8, 7.0 Hz, 1H), 2.95–2.86 (m, 2H), 2.80 (dd, J = 14.1, 8.5 Hz, 1H), 2.18 (s, 3H), 2.04 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 157.88, 149.37, 145.43, 138.24, 136.36, 136.00, 135.51, 134.75, 133.45, 131.25, 130.86, 130.69, 128.61, 127.79, 127.41, 127.26, 126.23, 125.12, 123.90, 115.23, 68.25, 55.61, 42.02,

40.33, 39.48, 19.43, 18.78. HRMS (ESI-TOF) m/z calc'd for $C_{31}H_{30}ClN_2O_5S$ [M-H]⁻: 577.1569; found: 577.1561.

SFC Chiralpak[®] OJ-3 column (40% isopropanol, 2.5 mL/min) $t_r = 6.01 \text{ min (minor)}$, 7.36 min (major): 91:9 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

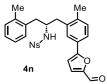
(*R*)-*N*-(1-(4-methyl-3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-3-yl)-3-(*o*-tolyl)propan-2-yl)-4-nitrobenzenesulfonamide (4l)

Substrate **3a** was arylated following the general procedure by using 1-iodo-3,5-bis(trifluoromethyl)benzene (53 μ L, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **4l** (40.0 mg) was obtained in 63% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.96–7.89 (m, 4H), 7.84 (s, 1H), 7.49 (d, J = 8.8 Hz, 2H), 7.36 (dd, J = 7.8, 2.1 Hz, 1H), 7.27 (d, J = 2.1 Hz, 1H), 7.19 (d, J = 7.9 Hz, 1H), 7.07 (td, J = 7.4, 1.5 Hz, 1H), 7.00 (t, J = 7.7 Hz, 1H), 6.96–6.92 (m, 2H), 4.75 (d, J = 8.1 Hz, 1H), 3.69 (td, J = 7.8, 5.8 Hz, 1H), 3.06 (dd, J = 13.9, 7.3 Hz, 1H), 2.97 (dd, J = 13.9, 6.9 Hz, 1H), 2.90 (dd, J = 14.0, 5.8 Hz, 1H), 2.77 (dd, J = 14.0, 8.6 Hz, 1H), 2.26 (s, 3H), 2.05 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.51, 145.65, 142.60, 137.54, 136.87, 136.14, 135.97, 135.23, 132.34 (q, J = 33.2 Hz), 131.83, 130.93, 130.53, 129.35, 127.50, 127.40, 126.88, 126.35, 125.83, 123.48 (q, J = 272.9 Hz), 123.97, 121.03 (hept, J = 3.7 Hz), 55.49, 40.50, 39.52, 19.23; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.08. HRMS (ESI-TOF) m/z calc'd for C₃₁H₂₅F₆N₂O₄S [M-H]⁻: 635.1445; found: 635.1439.

SFC Chiralpak[®] OD-3 column (20% isopropanol, 2.0 mL/min) $t_r = 3.17$ min (minor), 4.38 min (major): 95:5 er.

The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.


$(R) \cdot N \cdot (1 - (5 - (2 - chloropyridin - 4 - yl) - 2 - methylphenyl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - nitrobenzene sulfonamide (4m)$

Substrate **3a** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), 4-acetylpyridine as ligand (3.3 µL, 30 µmol, 30 mol%), 2-chloro-4-iodopyridine (50 mg, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and TBME (0.5 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4m** (24.1 mg) was obtained in 45% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.40 (d, J = 5.1 Hz, 1H), 7.92 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 8.9 Hz, 2H), 7.45 (d, J = 1.2 Hz, 1H), 7.38–7.32 (m, 2H), 7.28 (d, J = 2.0 Hz, 1H), 7.14 (d, J = 7.8 Hz, 1H), 7.07 (t, J = 7.4 Hz, 1H), 7.01 (t, J = 7.3 Hz, 1H), 6.97 (t, J = 7.1 Hz, 2H), 5.13 (d, J = 8.2 Hz, 1H), 3.67 (h, J = 7.4 Hz, 1H), 3.03–2.92 (m, 2H), 2.89 (dd, J = 13.9, 6.2 Hz, 1H), 2.83 (dd, J = 13.9, 8.2 Hz, 1H), 2.21 (s, 3H), 2.08 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 152.22, 150.71, 150.08, 149.29, 145.56, 138.36, 136.74, 136.00, 135.13, 134.26, 131.59, 130.73, 130.40, 129.09, 127.27, 127.19, 126.15, 125.39, 123.80, 121.49, 119.98, 55.36, 40.02, 39.56, 19.13, 19.07. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₈H₂₇ClN₃O₄S [M+H]⁺: 536.1405; found: 536.1408.

SFC Chiralpak[®] OJ-3 column (30% isopropanol, 2.0 mL/min) $t_r = 4.68 \text{ min (major)}$, 10.34 min (minor): 92:8 er.

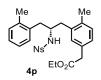
The absolute stereochemistry was determined by X-ray crystallography.

(R) - N - (1 - (5 - (5 - formylfuran - 2 - yl) - 2 - methylphenyl) - 3 - (o - tolyl) propan - 2 - yl) - 4 - nitrobenzenesulfonamide (4n)

Substrate **3a** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), 4-acetylpyridine as ligand (3.3 µL, 30 µmol, 30 mol%), 5-iodofuran-2-carbaldehyde (66.6 mg, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and TBME (0.3 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4n** (27.4 mg) was obtained in 53% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 9.62 (s, 1H), 7.84 (d, *J* = 8.8 Hz, 2H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.41 (d, *J* = 1.9 Hz, 1H), 7.37 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.30 (d, *J* = 3.7 Hz, 1H), 7.13–7.09 (m, 1H), 7.08–7.05 (m, 2H), 7.04 (d, *J* = 7.7 Hz, 2H), 6.70 (d, *J* = 3.7 Hz, 1H), 5.25 (d, *J* = 8.5 Hz, 1H), 3.73–3.65 (m, 1H), 2.99 (dd, *J* = 13.7, 7.0 Hz, 1H), 2.89 (dd, *J* = 13.8, 6.4 Hz, 2H), 2.77 (dd, *J* = 14.1, 8.9 Hz, 1H), 2.19 (s, 3H), 2.08 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 177.20, 159.16, 151.82, 149.23, 146.14, 138.44, 136.95, 136.40, 135.47, 131.23, 130.88, 130.74, 127.34, 127.32, 127.28, 126.68, 126.26, 123.92, 123.83, 107.43, 55.83, 40.64, 39.10, 19.45, 19.14. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₈H₂₇N₂O₆S [M+H]⁺: 519.1584; found: 519.1590. SFC Chiralpak[®] OD-3 column (30% isopropanol, 3.0 mL/min) t_r = 3.74 min (minor), 4.41 min (major): 96:4

er.

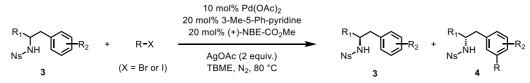

The absolute stereochemistry was determined by X-ray crystallography.

(R) - N - (1 - (2 - methyl-5 - (5 - methylthiophen-2 - yl)phenyl) - 3 - (o - tolyl)propan-2 - yl) - 4 - nitrobenzenesulfonamide (4o)

Substrate **3a** was arylated following the general procedure by using $Pd(OAc)_2$ (3.3 mg, 15 µmol, 15 mol%), 4-acetylpyridine as ligand (3.3 µL, 30 µmol, 30 mol%), 2-iodo-5-methylthiophene (67.2 mg, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and TBME (0.3 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4o** (22.5 mg) was obtained in 43% yield as a yellow solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.8 Hz, 2H), 7.17 (dd, J = 7.8, 2.0 Hz, 1H), 7.12 (td, J = 7.1, 2.1 Hz, 1H), 7.10 – 7.04 (m, 3H), 7.00 (d, J = 2.0 Hz, 1H), 6.96 (d, J = 3.5 Hz, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.72 – 6.66 (m, 1H), 4.66 (d, J = 7.9 Hz, 1H), 3.65 – 3.55 (m, 1H), 3.03 (dd, J = 13.8, 6.7 Hz, 1H), 2.91 (dd, J = 13.8, 7.4 Hz, 1H), 2.86 (dd, J = 14.1, 5.3 Hz, 1H), 2.68 (dd, J = 14.1, 8.9 Hz, 1H), 2.50 (s, 3H), 2.21 (s, 3H), 2.00 (d, J = 2.1 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 149.40, 145.42, 141.19, 139.57, 136.47, 136.09, 135.44, 134.90, 132.63, 131.22, 130.93, 130.73, 127.41, 127.33, 127.26, 126.44, 126.26, 123.98, 123.84, 122.63, 55.79, 40.60, 39.04, 19.51, 18.85, 15.60. HRMS (ESI-TOF) *m/z* calc'd for C₂₈H₂₉N₂O₄S₂ [M+H]⁺: 521.1563; found: 521.1572.

SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 5.08 \text{ min (major)}$, 5.82 min (minor): 88:12 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.


$Ethyl\ (R) - 2 - (4 - methyl - 3 - (2 - ((4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (o - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) sulfonamido) - 3 - (0 - tolyl) propyl) phenyl) acetate\ (4p) - 2 - (4 - nitrophenyl) acetate\ (4p) - (4 - nitrophenyl) acetate\ (4p)$

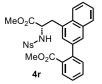
Substrate **3a** was alkylated following the general procedure by using Pd(OAc)₂ (3.3 mg, 15 µmol, 15 mol%), 4-acetylpyridine as ligand (3.3 µL, 30 µmol, 30 mol%), ethyl 2-iodoacetate (35 µL, 0.3 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 µmol, 50 mol%), and DCM (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4p** (24.5 mg) was obtained in 48% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.96 (d, *J* = 8.9 Hz, 2H), 7.50 (d, *J* = 8.9 Hz, 2H), 7.08 (td, *J* = 7.4, 1.7 Hz, 1H), 7.04–6.95 (m, 4H), 6.93 (d, *J* = 1.9 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 4.89 (d, *J* = 7.5 Hz, 1H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.55–3.41 (m, 3H), 2.91 (dd, *J* = 13.9, 7.3 Hz, 1H), 2.87–2.80 (m, 2H), 2.77 (dd, *J* = 13.9, 8.2 Hz, 1H), 2.10 (s, 3H), 1.96 (s, 3H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.80, 149.44, 145.26, 136.30, 135.74, 135.54, 134.94, 131.98, 131.63, 130.96, 130.81, 130.61, 128.08, 127.70, 127.18, 126.17, 123.95, 61.12, 55.19, 40.79, 39.86, 39.52, 19.29, 18.76, 14.35. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₇H₃₁N₂O₆S [M+H]⁺: 511.1897; found: 511.1899.

SFC Chiralpak[®] OJ-3 column (20% isopropanol, 2.0 mL/min) $t_r = 3.87 \text{ min (minor)}$, 4.18 min (major): 92:8 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

D. Pd/(+)-NBE-CO₂Me Catalyzed Kinetic Resolution of Homobenzylamines

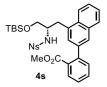
General procedure: Arene **3** (0.10 mmol, 1.0 equiv), $Pd(OAc)_2$ (2.2 mg, 10 µmol, 10 mol%), 3-methyl-5phenylpyridine (3.4 mg, 20 µmol, 20 mol%), coupling partner, and AgOAc (33 mg, 0.20 mmol, 2.0 equiv.) were added into a 2-dram reaction vial. TBME (1 mL) and (+)-NBE-CO₂Me (3.0 mg, 20 µmol, 20 mol%) were added to the mixture. The vial was flushed with N₂, and then capped. The reaction mixture was then stirred at 80 °C for 24 hours. After cooling to room temperature, the mixture was filtered through Celite and eluted with EtOAc (3 × 2 mL). The filtrate was evaporated under reduced pressure. Purification by preparative TLC chromatography afforded product **4**.


Methyl (S)-3'-(3-methoxy-2-((4-nitrophenyl)sulfonamido)-3-oxopropyl)-4'-methyl-[1,1'-biphenyl]-2-carboxylate (4q)

Substrate **3i** was arylated following the general procedure by using methyl 2-bromobenzoate (7.1 μ L, 0.05 mmol, 0.5 equiv.) and TBME (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4q** (24.4 mg) was obtained in 47% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.17 (d, J = 8.8 Hz, 2H), 7.92–7.79 (m, 3H), 7.52 (td, J = 7.5, 1.4 Hz, 1H), 7.41 (td, J = 7.6, 1.3 Hz, 1H), 7.28–7.23 (m, 1H), 7.09 (dd, J = 7.7, 1.9 Hz, 1H), 7.06 (d, J = 7.8 Hz, 1H), 6.98 (d, J = 1.8 Hz, 1H), 5.60 (br s, 1H), 4.23 (dd, J = 8.4, 5.5 Hz, 1H), 3.76 (s, 3H), 3.62 (s, 3H), 3.17 (dd, J = 14.3, 5.5 Hz, 1H), 2.97 (dd, J = 14.2, 8.4 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.68, 168.76, 149.98, 145.69, 142.25, 139.28, 135.58, 132.81, 131.68, 130.90, 130.67, 130.65, 130.25, 130.21, 128.42, 127.73, 127.44, 124.19, 56.12, 52.89, 52.41, 36.58, 19.08. HRMS (ESI-TOF) m/z calc'd for C₂₅H₂₅N₂O₈S [M+H]⁺: 513.1326; found: 513.1331.

SFC Chiralpak[®] AD-3 column (30% isopropanol, 2.0 mL/min) $t_r = 4.31$ min (minor), 6.64 min (major): 88:12 er.


The absolute stereochemistry was assigned by analogy to compounds 4m and 4n.

Methyl (*S*)-2-(4-(3-methoxy-2-((4-nitrophenyl)sulfonamido)-3-oxopropyl)naphthalen-2-yl)benzoate (4r) Substrate 3j was arylated following the general procedure by using methyl 2-bromobenzoate (7.1 μ L, 0.05 mmol, 0.5 equiv.) and TBME (1 mL). After purification by preparative TLC chromatography (toluene/EtOAc = 5:1 v/v), compound 4r (25.8 mg) was obtained in 47% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.06 (dd, J = 7.9, 1.4 Hz, 1H), 7.75–7.69 (m, 3H), 7.69–7.65 (m, 2H), 7.62 (td, J = 7.5, 1.4 Hz, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.50 (td, J = 7.7, 1.3 Hz, 1H), 7.43 (dd, J = 7.6, 1.2 Hz, 1H), 7.39–7.33 (m, 2H), 7.23 (d, J = 1.7 Hz, 1H), 5.53 (d, J = 6.5 Hz, 1H), 4.21 (ddd, J = 10.8, 6.4, 4.4 Hz, 1H), 3.88 (s, 3H), 3.78 (s, 3H), 3.71 (dd, J = 14.3, 4.4 Hz, 1H), 3.12 (dd, J = 14.4, 10.7 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.84, 168.24, 149.35, 144.20, 142.75, 138.73, 134.04, 132.36, 131.47, 130.94, 130.56, 130.06, 129.41, 129.34, 129.20, 127.96, 127.93, 127.26, 126.71, 126.32, 123.56, 122.68, 56.01, 53.07, 52.83, 35.93. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₈H₂₅N₂O₈S [M+H]⁺: 549.1326; found: 549.1328.

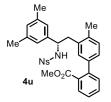
SFC Chiralpak[®] IC column (40% isopropanol, 2.0 mL/min) $t_r = 5.86 \text{ min (major)}$, 8.90 min (minor): 93:7 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

Methyl (S)-2-(4-(3-((*tert*-butyldimethylsilyl)oxy)-2-((4-nitrophenyl)sulfonamido)propyl)naphthalen-2-yl)benzoate (4s)

Substrate **3m** was arylated following the general procedure by using methyl 2-bromobenzoate (7.1 μ L, 0.05 mmol, 0.5 equiv.) and TBME (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **4s** (29.8 mg) was obtained in 47% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.02 (dd, J = 7.8, 1.4 Hz, 1H), 7.67–7.59 (m, 6H), 7.52–7.46 (m, 3H), 7.44 (d, J = 7.7 Hz, 1H), 7.34–7.27 (m, 2H), 7.17 (d, J = 1.7 Hz, 1H), 4.91 (d, J = 5.1 Hz, 1H), 4.08 (dd, J = 9.8, 3.2 Hz, 1H), 3.87 (s, 3H), 3.80–3.65 (m, 2H), 3.58–3.43 (m, 1H), 2.75 (dd, J = 14.5, 10.9 Hz, 1H), 0.98 (s, 9H), 0.16 (d, J = 8.3 Hz, 6H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.36, 149.05, 144.19, 142.69, 138.57, 134.08, 132.25, 131.74, 131.50, 130.78, 130.32, 130.17, 129.60, 129.00, 127.85, 127.79, 126.76, 126.32, 126.16, 123.41, 123.22, 66.62, 55.40, 52.72, 35.83, 26.08, 18.45, -5.12, -5.16. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₃H₃₉N₂O₇SSi [M+H]⁺: 635.2242; found: 635.2242.

SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 3.05 \text{ min (major)}$, 3.96 min (minor): 92:8 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

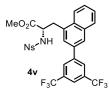

Methyl (R)-4'-methyl-3'-(2-((4-nitrophenyl)sulfonamido)propyl)-[1,1'-biphenyl]-2-carboxylate (4t)

Substrate **3k** was arylated following the general procedure by using methyl 2-bromobenzoate (21.1 μ L, 0.15 mmol, 1.5 equiv.) and TBME (1 mL) at 80 °C for 48 hours. After purification by preparative TLC chromatography (hexane/EtOAc = 4:1 v/v), compound **4t** (17.8 mg) was obtained in 38% yield as a colorless

oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.4 Hz, 2H), 7.89 (d, J = 7.8 Hz, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.54 (t, J = 7.7 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.28 (d, J = 7.7 Hz, 1H), 7.10 (d, J = 7.7 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 6.95 (s, 1H), 4.82 (d, J = 6.4 Hz, 1H), 3.78 (s, 3H), 3.52 (p, J = 6.6 Hz, 1H), 2.82 (dd, J = 14.1, 5.6 Hz, 1H), 2.65 (dd, J = 14.2, 8.8 Hz, 1H), 2.06 (s, 3H), 1.31 (d, J = 6.4 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.69, 149.78, 146.24, 142.41, 139.20, 135.38, 134.53, 131.78, 131.01, 130.98, 130.73, 130.35, 130.07, 128.40, 127.47, 127.27, 124.20, 52.48, 50.24, 41.20, 22.85, 19.06. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₄H₂₅N₂O₆S [M+H]⁺: 469.1428; found: 469.1426.

SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 5.09 \text{ min (minor)}$, 6.50 min (major): 93:7 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

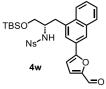


Methyl (*S*)-3'-(2-(3,5-dimethylphenyl)-2-((4-nitrophenyl)sulfonamido)ethyl)-4'-methyl-[1,1'-biphenyl]-2-carboxylate (4u)

Substrate **3n** was arylated following the general procedure by using methyl 2-bromobenzoate (14.1 μ L, 0.10 mmol, 1.0 equiv.) and TBME (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4u** (27.4 mg) was obtained in 49% yield as a colorless oil.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.8 Hz, 2H), 7.91 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.53 (td, *J* = 7.6, 1.5 Hz, 1H), 7.42 (td, *J* = 7.6, 1.3 Hz, 1H), 7.24 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.09 (dd, *J* = 7.7, 2.0 Hz, 1H), 7.07–6.98 (m, 2H), 6.79 (s, 1H), 6.64 (d, *J* = 1.4 Hz, 2H), 5.48 (d, *J* = 6.2 Hz, 1H), 4.57–4.46 (m, 1H), 3.81 (s, 2H), 3.08 (dd, *J* = 14.2, 5.2 Hz, 1H), 2.91 (dd, *J* = 14.3, 8.9 Hz, 1H), 2.16 (s, 6H), 2.02 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 168.81, 149.53, 146.17, 142.57, 140.24, 139.13, 138.12, 135.83, 133.89, 131.75, 131.08, 131.00, 130.54, 130.36, 129.98, 129.33, 128.41, 127.40, 127.39, 124.58, 123.58, 58.21, 52.50, 41.80, 21.26, 19.03. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₁H₃₀NaN₂O₆S [M+Na]⁺: 581.1717; found: 581.1714.

SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 5.18 \text{ min (minor)}$, 5.90 min (major): 90:10 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.


Methyl (*S*)-3'-(2-(3,5-dimethylphenyl)-2-((4-nitrophenyl)sulfonamido)ethyl)-4'-methyl-[1,1'-biphenyl]-2-carboxylate (4v)

Substrate **3j** was arylated following the general procedure by using 1-iodo-3,5-bis(trifluoromethyl)benzene (53.1 μ L, 0.30 mmol, 3.0 equiv.), AgOAc (50 mg, 0.30 mmol, 3.0 equiv.), and TBME (0.5 mL). After purification by preparative TLC chromatography (toluene/EtOAc = 5:1 v/v), compound **4v** (26.4 mg) was obtained in 42% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.07 (d, *J* = 1.5 Hz, 2H), 7.95–7.90 (m, 2H), 7.89 (d, *J* = 1.8 Hz, 1H), 7.85 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 2H), 7.62–7.53 (m, 2H), 7.50–7.44 (m, 3H), 4.47 (dd, *J* = 9.8, 4.6 Hz, 1H), 3.81–3.69 (m, 4H), 3.30 (dd, *J* = 14.4, 9.8 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.72, 149.63, 144.96, 142.33, 134.89, 134.13, 133.04, 132.63 (q, *J* = 33.2 Hz), 131.34, 129.63, 127.83, 127.60, 127.25, 127.22, 127.05, 126.66, 123.45 (q, *J* = 272.7 Hz), 123.68, 123.05, 121.50 (hept, *J* = 3.6 Hz),

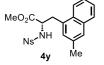
56.66, 53.26, 36.69; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.00. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₈H₂₁F₆N₂O₆S [M+H]⁺: 627.1019; found: 581.1048.

SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 3.17 \text{ min (major)}$, 4.20 min (minor): 92:8 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

(S)-N-(1-((*tert*-butyldimethylsilyl)oxy)-3-(3-(5-formylfuran-2-yl)naphthalen-1-yl)propan-2-yl)-4-nitrobenzenesulfonamide (4w)

Substrate **3m** was arylated following the general procedure by using 5-iodofuran-2-carbaldehyde (22.2 mg, 0.10 mmol, 1.0 equiv.) and TBME (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4w** (23.4 mg) was obtained in 39% yield as an orange solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 9.71 (s, 1H), 7.98 (s, 1H), 7.83 (d, J = 9.1 Hz, 1H), 7.77–7.70 (m, 1H), 7.64 (d, J = 8.5 Hz, 2H), 7.55–7.44 (m, 3H), 7.38 (d, J = 3.9 Hz, 1H), 7.33 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 3.9 Hz, 1H), 5.16 (d, J = 7.8 Hz, 1H), 3.92 (d, J = 6.9 Hz, 1H), 3.70 (d, J = 6.2 Hz, 2H), 3.52 (dd, J = 14.4, 4.0 Hz, 1H), 2.95 (dd, J = 14.4, 9.6 Hz, 1H), 1.00 (s, 9H), 0.16 (d, J = 12.2 Hz, 6H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 177.38, 158.76, 152.39, 149.14, 145.38, 135.00, 133.74, 131.88, 129.50, 127.67, 127.19, 127.13, 125.84, 124.44, 124.11, 123.52, 123.43, 108.36, 66.27, 56.29, 35.74, 26.09, 18.51, -5.19, -5.24. HRMS (ESI-TOF) *m*/*z* calc'd for C₃₀H₃₅N₂O₇SSi [M+H]⁺: 595.1929; found: 595.1927.


SFC Chiralpak[®] IC column (20% isopropanol, 2.0 mL/min) $t_r = 9.35 \text{ min (major)}$, 10.69 min (minor): 90:10 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

Methyl (*S*)-3-(3-(2-ethoxy-2-oxoethyl)naphthalen-1-yl)-2-((4-nitrophenyl)sulfonamido)propanoate (4x) Substrate 3j was alkylated following the general procedure by using 4-acetylpyridine as ligand (2.2 μ L, 20 μ mol, 20 mol%), ethyl 2-iodoacetate (35.5 μ L, 0.30 mmol, 3.0 equiv.), AgOAc (50 mg, 0.30 mmol, 3.0 equiv.), (+)-NBE-CO₂Me (7.5 mg, 50 μ mol, 50 mol%), and DCM (1 mL) at 80 °C for 48 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 5:1 v/v), compound 4x (20.1 mg) was obtained in 40% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.74 (d, J = 8.3 Hz, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.59 (dd, J = 8.0, 1.4 Hz, 1H), 7.50 (s, 1H), 7.42 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 7.38 (td, J = 7.5, 7.0, 1.6 Hz, 3H), 7.15 (d, J = 1.7 Hz, 1H), 5.53 (d, J = 9.3 Hz, 1H), 4.29 (ddd, J = 10.7, 9.2, 4.2 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.80 (s, 3H), 3.71 (s, 2H), 3.63 (dd, J = 14.3, 4.2 Hz, 1H), 3.07 (dd, J = 14.3, 10.7 Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.92, 171.62, 149.25, 144.26, 133.97, 131.53, 131.38, 130.19, 130.18, 128.69, 128.47, 127.57, 126.60, 126.47, 123.43, 122.73, 61.39, 56.23, 53.23, 41.17, 36.43, 14.43. HRMS (ESI-TOF) m/z calc'd for C₂₄H₂₅N₂O₈S [M+H]⁺: 501.1326; found: 501.1323.

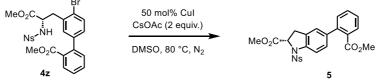
SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 6.10 \text{ min (major)}$, 17.17 min (minor): 90:10 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

Methyl (S)-3-(3-methylnaphthalen-1-yl)-2-((4-nitrophenyl)sulfonamido)propanoate (4y)

Substrate **3j** was alkylated following the general procedure by using 4-acetylpyridine as ligand (2.2 μ L, 20 μ mol, 20 mol%), iodomethane (18.7 μ L, 0.30 mmol, 3.0 equiv.), AgOAc (50 mg, 0.30 mmol, 3.0 equiv.), and DCM (1 mL). After purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v), compound **4y** (15.4 mg) was obtained in 36% yield as yellow solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 7.80–7.69 (m, 3H), 7.60 (d, J = 7.1 Hz, 1H), 7.44–7.31 (m, 5H), 6.98 (s, 1H), 5.34 (d, J = 9.3 Hz, 1H), 4.40–4.25 (m, 1H), 3.78 (s, 3H), 3.62 (d, J = 14.7 Hz, 1H), 3.12–2.98 (m, 1H), 2.40 (s, 3H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.90, 149.42, 144.55, 135.00, 134.27, 130.98, 130.69, 129.58, 128.39, 127.40, 127.30, 126.25, 125.88, 123.49, 122.64, 56.54, 53.17, 36.51, 21.54. HRMS (ESI-TOF) m/z calc'd for C₂₁H₂₁N₂O₆S [M+H]⁺: 429.1115; found: 429.1119.

SFC Chiralpak[®] IC column (40% isopropanol, 2.0 mL/min) $t_r = 3.70 \text{ min (major)}$, 6.83 min (minor): 92:8 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.



Methyl (S)-4'-bromo-3'-(3-methoxy-2-((4-nitrophenyl)sulfonamido)-3-oxopropyl)-[1,1'-biphenyl]-2-carboxylate (4z)

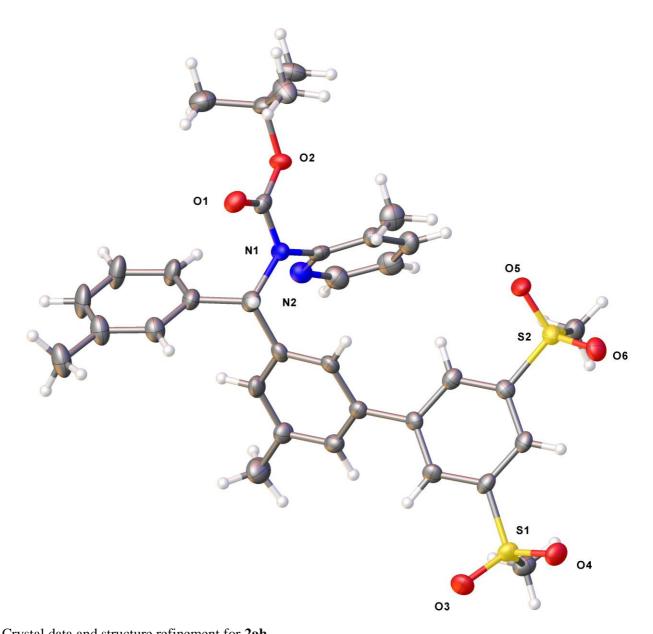
Substrate **31** was arylated following the general procedure by using methyl 2-bromobenzoate (21.2 μ L, 0.15 mmol, 1.5 equiv.) and TBME (1 mL) at 80 °C for 48 hours. After purification by preparative TLC chromatography (toluene/EtOAc = 5:1 v/v), compound **4z** (23.7 mg) was obtained in 41% yield as a white solid.

¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.4 Hz, 2H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.42 (d, *J* = 8.1 Hz, 1H), 7.28 (d, *J* = 9.8 Hz, 1H), 7.15 (s, 1H), 7.06 (d, *J* = 8.2 Hz, 1H), 5.55 (d, *J* = 9.1 Hz, 1H), 4.42 (q, *J* = 8.6, 8.2 Hz, 1H), 3.81 (s, 3H), 3.69 (s, 3H), 3.29 (dd, *J* = 14.1, 5.3 Hz, 1H), 3.08 (dd, *J* = 14.1, 9.3 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.42, 168.22, 150.05, 145.56, 141.32, 141.17, 134.08, 132.79, 132.32, 132.00, 130.86, 130.63, 129.84, 129.31, 128.57, 128.04, 124.24, 123.57, 55.53, 53.08, 52.51, 39.13. HRMS (ESI-TOF) *m*/*z* calc'd for C₂₄H₂₂BrN₂O₈S [M+H]⁺: 577.0275; found: 577.0277.

SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 6.16 \text{ min (major)}$, 8.91 min (minor): 92:8 er. The absolute stereochemistry was assigned by analogy to compounds **4m** and **4n**.

Methyl (S)-5-(2-(methoxycarbonyl)phenyl)-1-((4-nitrophenyl)sulfonyl)indoline-2-carboxylate (5)

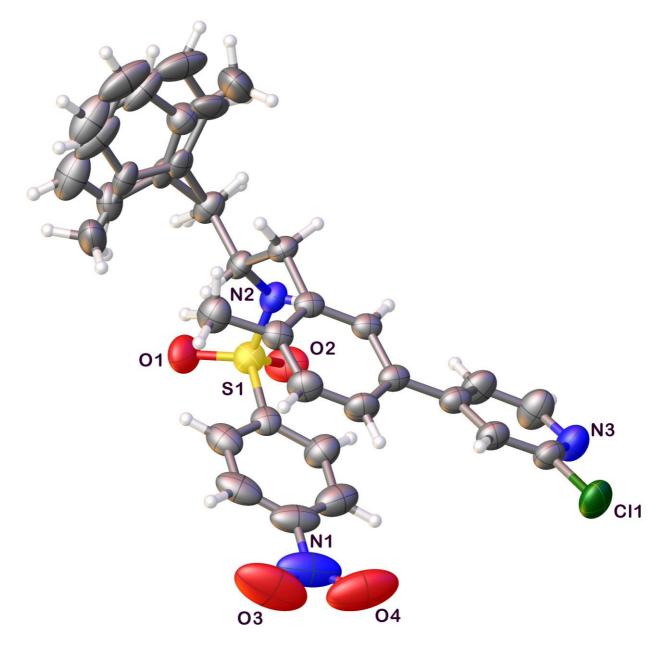
Compound **4z** (17.3 mg, 30 µmol, 1.0 equiv), CuI (2.9 mg, 15 µmol, 50 mol%) and CsOAc (11.5 mg, 60 µmol, 2.0 equiv.) were added into a flame-dried Schlenk tube. The Schlenk tube was evacuated and back-filled with nitrogen. DMSO (0.5 mL) was added to the reaction mixture. The Schlenk tube was immersed into a pre-heated oil bath at 80 °C. After 2.5 hours, the oil bath was removed, and the Schlenk tube was cooled to room temperature. Water was added into the reaction mixture, which was then extracted with EtOAc. The combined organic layers were dried with Na₂SO₄. The solvent was removed by evaporation under reduced pressure. Purification by preparative TLC chromatography (hexane/EtOAc = 2:1 v/v) afforded the 11.2 mg compound **5** as a yellow solid (75% yield).


¹H NMR (600 MHz, Chloroform-*d*) δ 8.33 (d, *J* = 8.9 Hz, 2H), 8.05 (d, *J* = 8.9 Hz, 2H), 7.83 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.40 (td, *J* = 7.6, 1.5 Hz, 1H), 7.28 (dd, *J* = 7.8, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 7.51 (td, J = 7.6, 1L), 7.51 (td, J = 7.6, 1L), 7.51 (td, J = 7.6, 1L), 7.51

7.6, 1.5 Hz, 1H), 7.17 (dd, J = 8.3, 2.1 Hz, 1H), 7.05 (d, J = 1.7 Hz, 1H), 4.90 (dd, J = 10.5, 4.9 Hz, 1H), 3.82 (s, 3H), 3.68 (s, 3H), 3.27 (dd, J = 16.4, 10.5 Hz, 1H), 3.18 (dd, J = 16.6, 4.8 Hz, 1H); ¹³C NMR (150 MHz, Chloroform-*d*) δ 171.11, 168.61, 150.68, 143.49, 141.73, 139.91, 138.74, 131.58, 130.81, 130.60, 130.17, 129.63, 128.85, 128.79, 127.58, 125.40, 124.54, 114.94, 62.70, 53.23, 52.15, 33.03. HRMS (ESI-TOF) m/z calc'd for C₂₄H₂₁N₂O₈S [M+H]⁺: 497.1013; found: 497.1014.

SFC Chiralpak[®] IC column (30% isopropanol, 2.0 mL/min) $t_r = 7.72 \text{ min (major)}, 9.73 \text{ min (minor)}: 91:9 \text{ er}.$

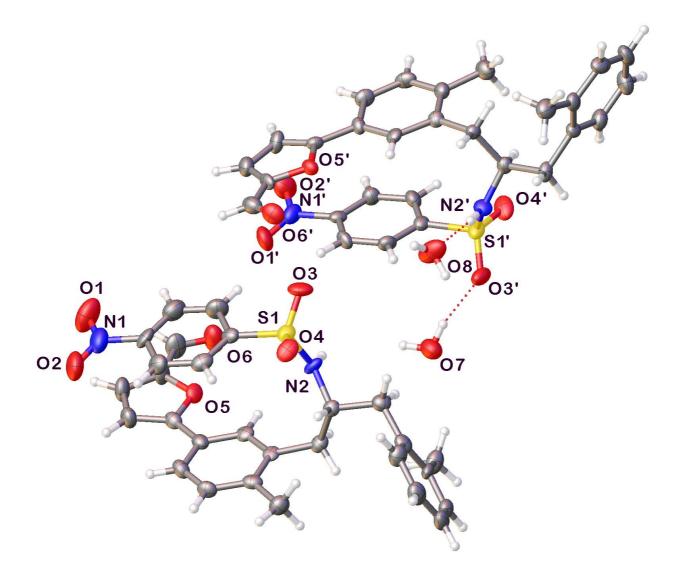
X-RAY CRYSTALLOGRAPHIC DATA


X-ray structure of **2ah**:

Crystal data and structure refinement for 2ah	
Report date	2017-09-22
Identification code	IV-38-5
Empirical formula	C34 H38 N2 O6 S2
Molecular formula	C34 H38 N2 O6 S2
Formula weight	634.78
Temperature	100.0 K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P 1 21 1
	S58

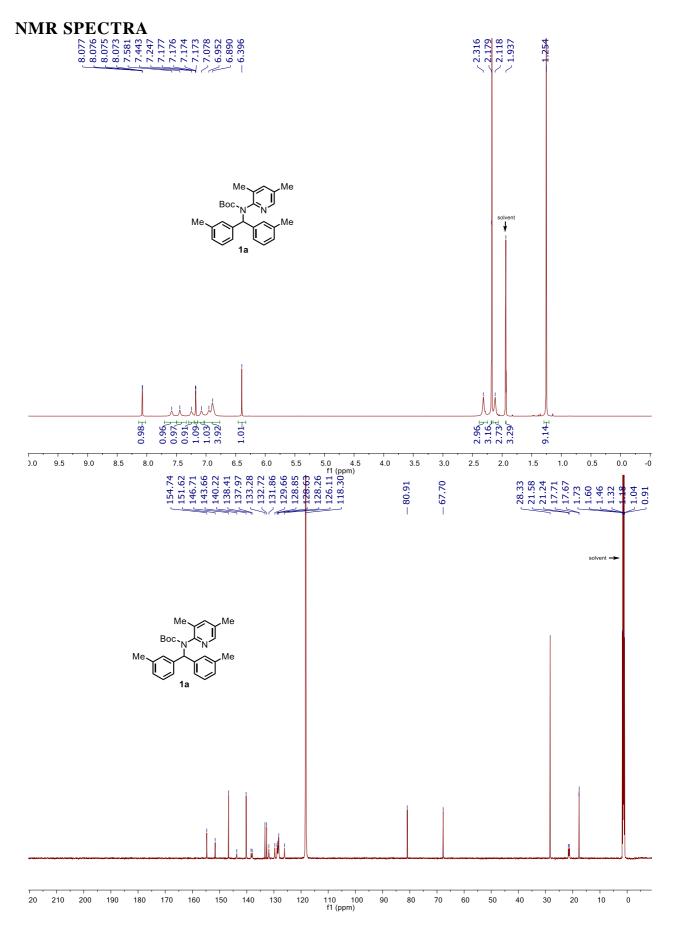
Unit cell dimensions	a = 10.2520(4) Å	<i>α</i> = 90°.
	b = 7.9470(3) Å	$\beta = 104.098(2)^{\circ}.$
	c = 20.6363(9) Å	$\gamma = 90^{\circ}.$
Volume	1630.65(11) Å ³	
Z	2	
Density (calculated)	1.293 Mg/m ³	
Absorption coefficient	1.863 mm ⁻¹	
F(000)	672	
Crystal size	0.075 x 0.011 x 0.004 mm ³	i
Crystal color, habit	Colorless Needle	
Theta range for data collection	2.207 to 54.261°.	
Index ranges	-10<=h<=10, -8<=k<=8, -2	0<=l<=21
Reflections collected	14459	
Independent reflections	3998 [R(int) = 0.0954, R(si	gma) = 0.0872]
Completeness to theta = 54.261°	100.0 %	
Absorption correction	Semi-empirical from equiva	alents
Max. and min. transmission	0.3017 and 0.2076	
Refinement method	Full-matrix least-squares or	n F ²
Data / restraints / parameters	3998 / 90 / 425	
Goodness-of-fit on F ²	1.014	
Final R indices [I>2sigma(I)]	R1 = 0.0459, wR2 = 0.0838	
R indices (all data)	R1 = 0.0719, wR2 = 0.0929)
Absolute structure parameter	0.03(2)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.187 and -0.192 e.Å ⁻³	

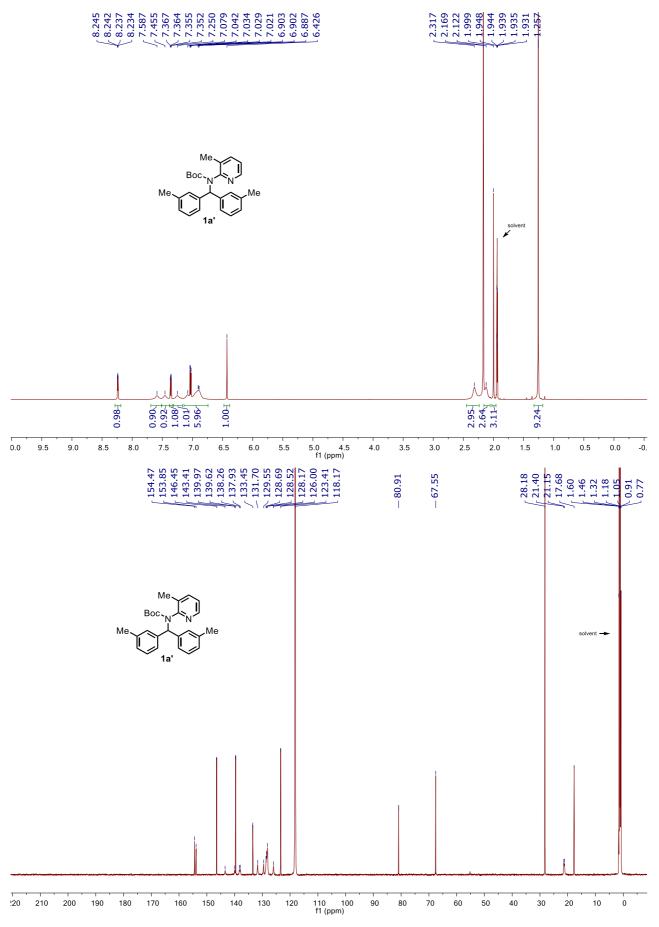
X-ray structure of **4m**:

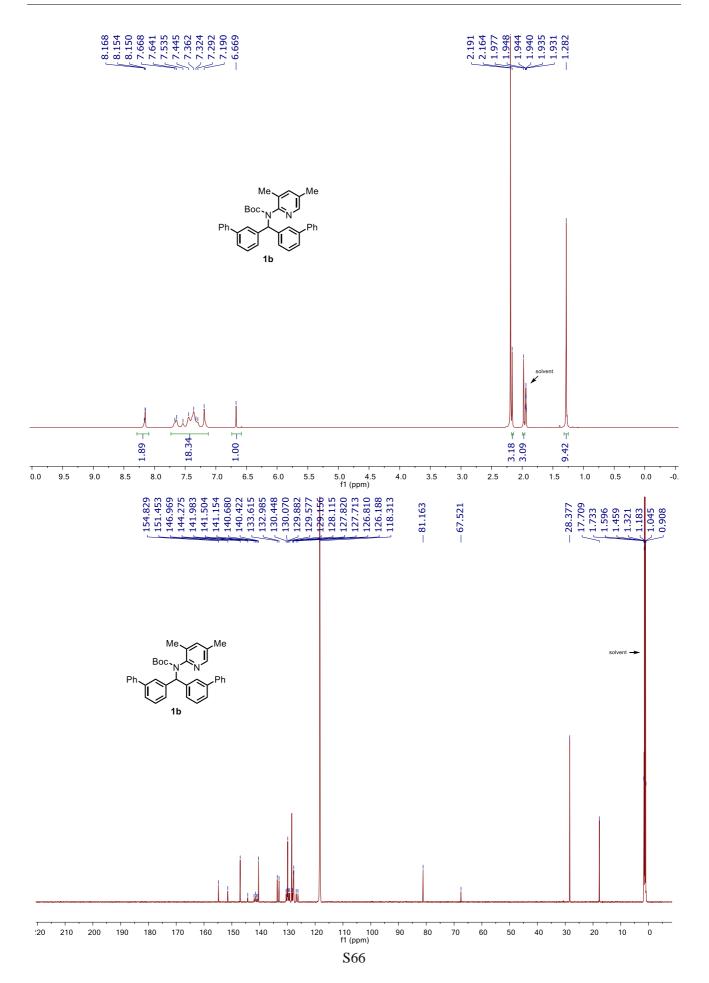


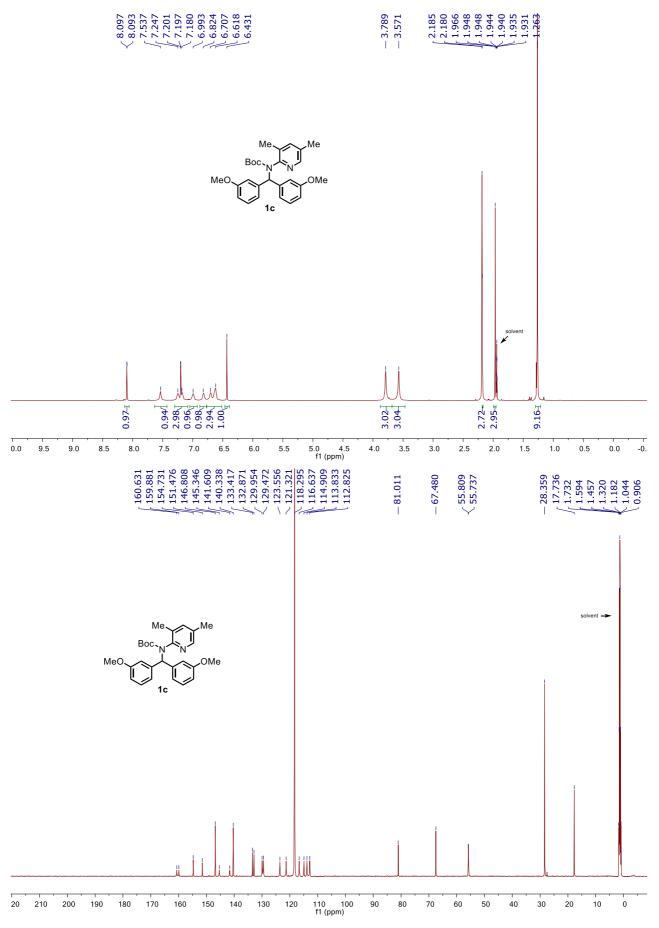
Crystal data and structure refinement for ${\bf 4m}$

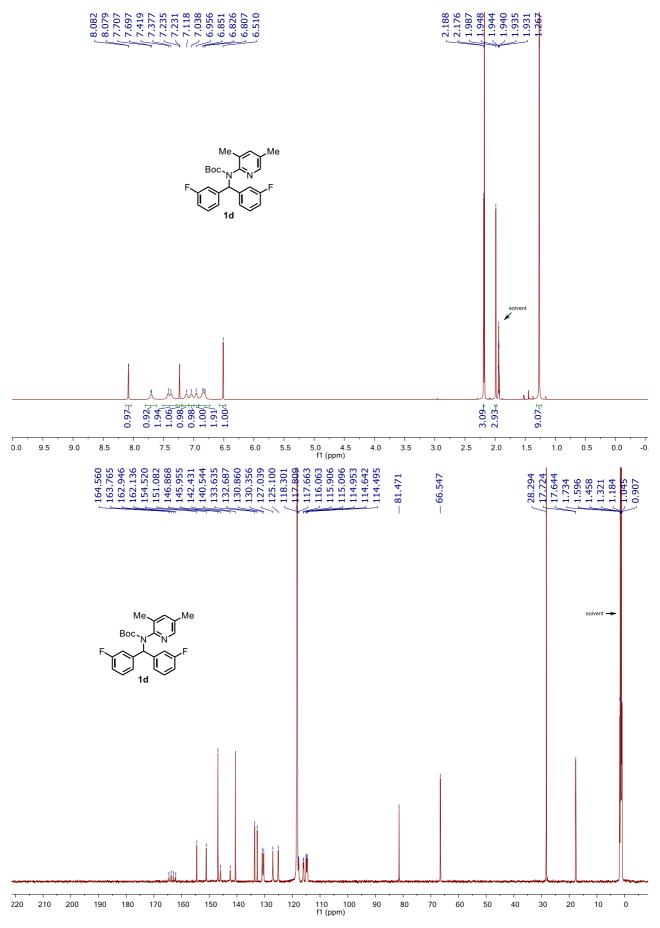
Identification code	yu95_0m_a	
Empirical formula	C28 H26 Cl N3 O4 S	
Formula weight	536.03	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁	
Unit cell dimensions	a = 7.5065(6) Å	α= 90°.
	b = 17.3919(13) Å	β= 90°.

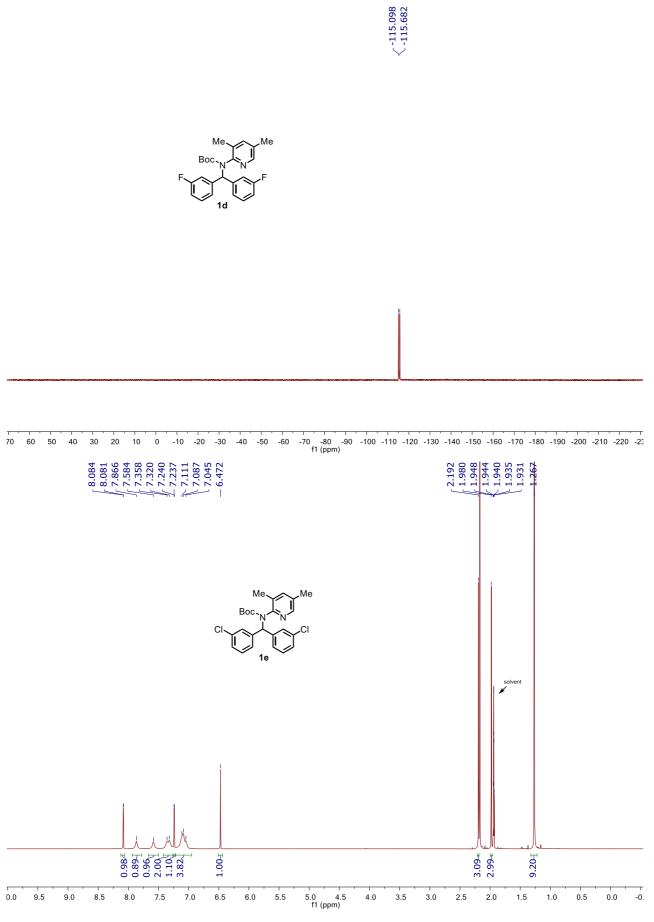

	$c = 20.3819(11) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	2660.9(3) Å ³
Z	4
Density (calculated)	1.338 Mg/m ³
Absorption coefficient	0.261 mm ⁻¹
F(000)	1120
Crystal size	0.28 x 0.2 x 0.14 mm ³
Theta range for data collection	2.892 to 24.998°.
Index ranges	-7<=h<=8, -20<=k<=14, -24<=l<=24
Reflections collected	7623
Independent reflections	4527 [R(int) = 0.0247]
Completeness to theta = 24.998°	99.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.8012 and 0.7059
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4527 / 348 / 377
Goodness-of-fit on F ²	1.037
Final R indices [I>2sigma(I)]	R1 = 0.0490, wR2 = 0.1009
R indices (all data)	R1 = 0.0772, wR2 = 0.1147
Absolute structure parameter	0.03(5) [abs stereochem determined]
Extinction coefficient	n/a
Largest diff. peak and hole	0.214 and -0.231 e.Å ⁻³

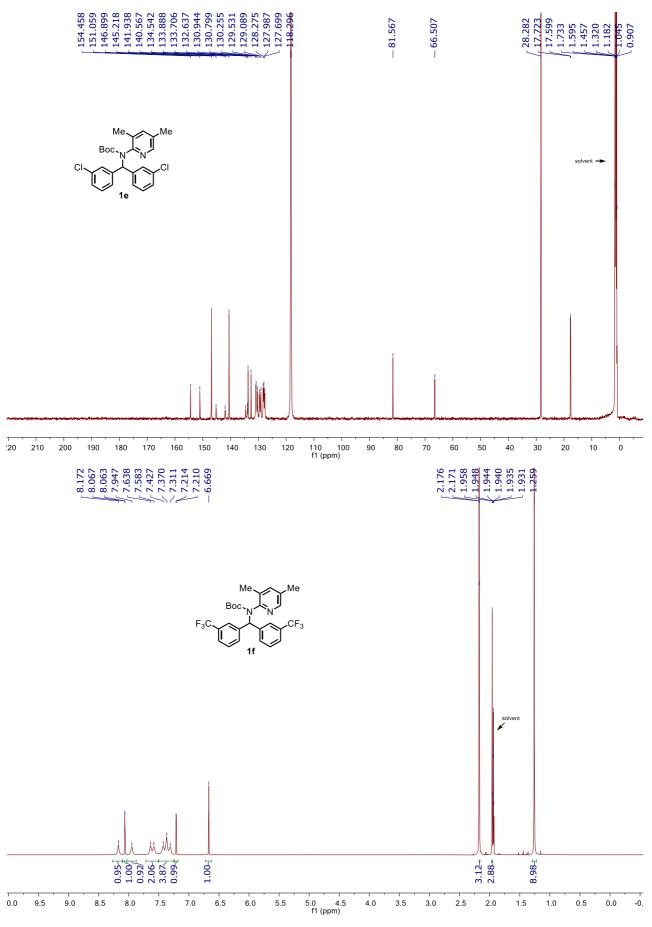

X-ray structure of **4n**:

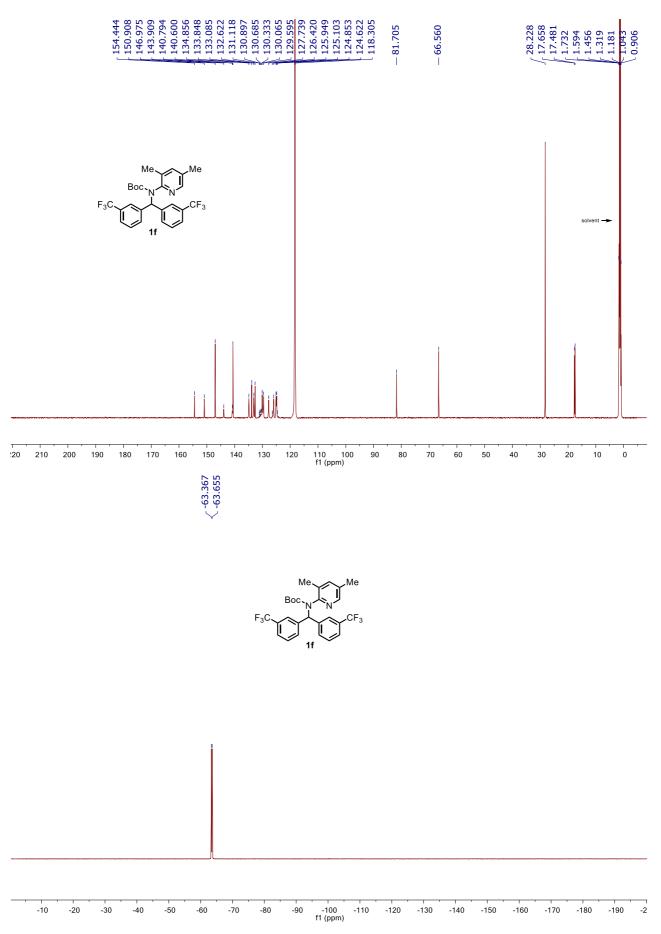

Crystal data and structure refinement for 4n		
Identification code	III-152-3	
Empirical formula	C28 H28 N2 O7 S	
Formula weight	536.58	
Temperature	100.0 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 12.891(9) Å	<i>α</i> = 90°.
	b = 7.214(5) Å	$\beta = 97.295(15)^{\circ}.$
	c = 28.37(2) Å	γ= 90°.
Volume	2617(3) Å ³	
Ζ	4	

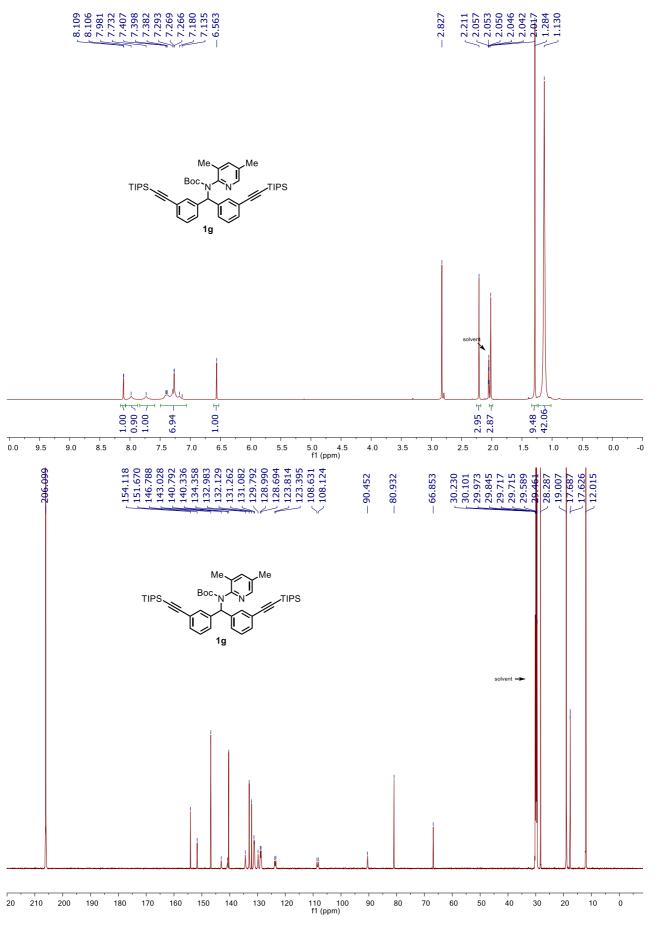

Density (calculated)	1.362 Mg/m ³
Absorption coefficient	0.174 mm ⁻¹
F(000)	1128
Crystal size	0.28 x 0.2 x 0.1 mm ³
Theta range for data collection	1.447 to 25.778°.
Index ranges	-15<=h<=15, -8<=k<=8, -34<=l<=31
Reflections collected	18746
Independent reflections	18746 [R(int) = ?]
Completeness to theta = 25.242°	91.2 %
Absorption correction	None
Max. and min. transmission	0.2589 and 0.2069
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	18746 / 3 / 702
Goodness-of-fit on F ²	1.000
Final R indices [I>2sigma(I)]	R1 = 0.0507, wR2 = 0.1279
R indices (all data)	R1 = 0.0618, wR2 = 0.1330
Absolute structure parameter	0.08(6)
Extinction coefficient	n/a
Largest diff. peak and hole	0.359 and -0.287 e.Å ⁻³

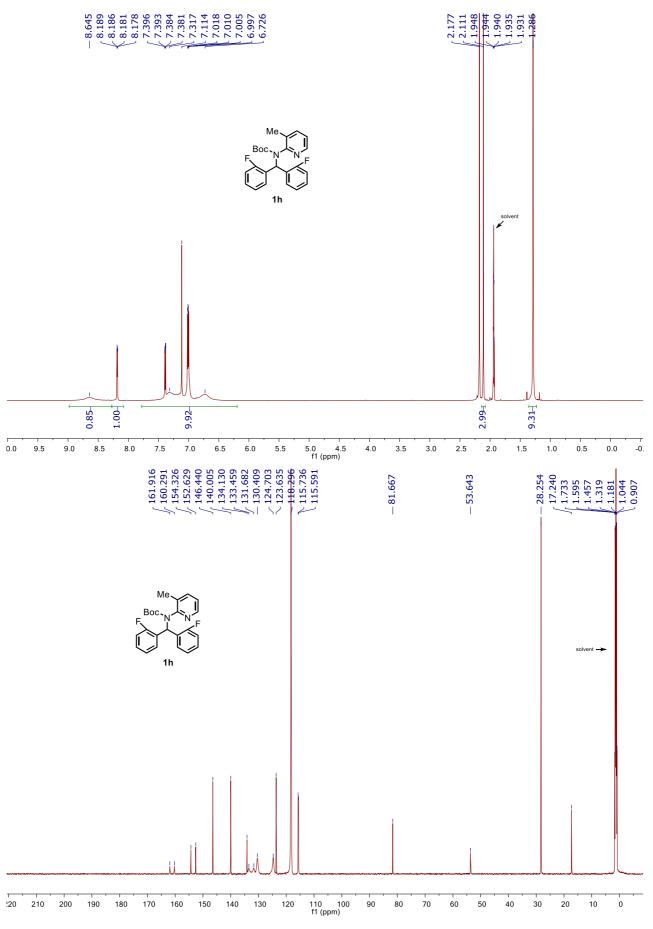


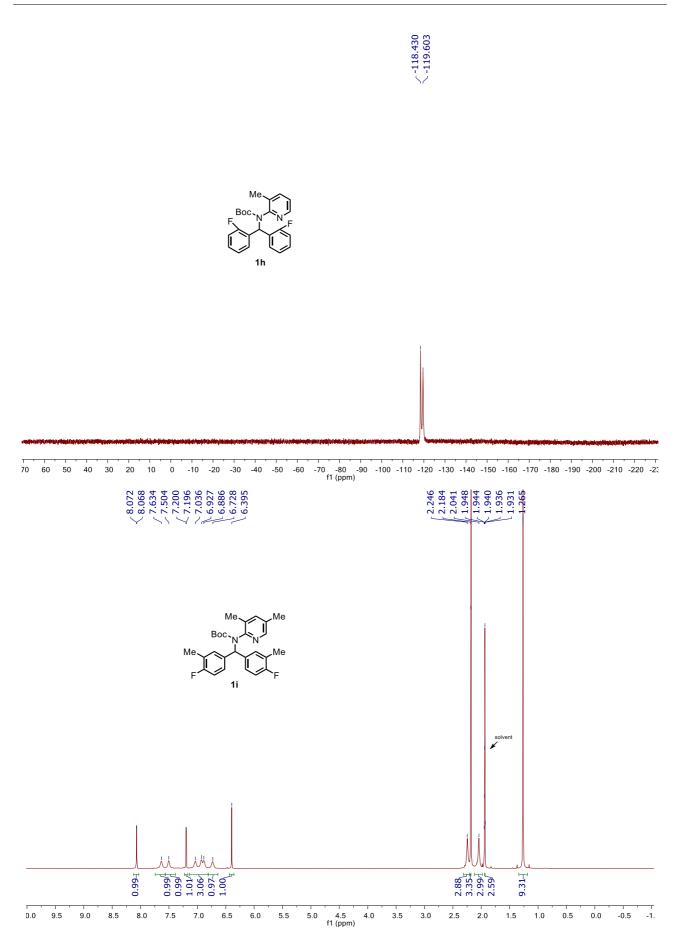

S65

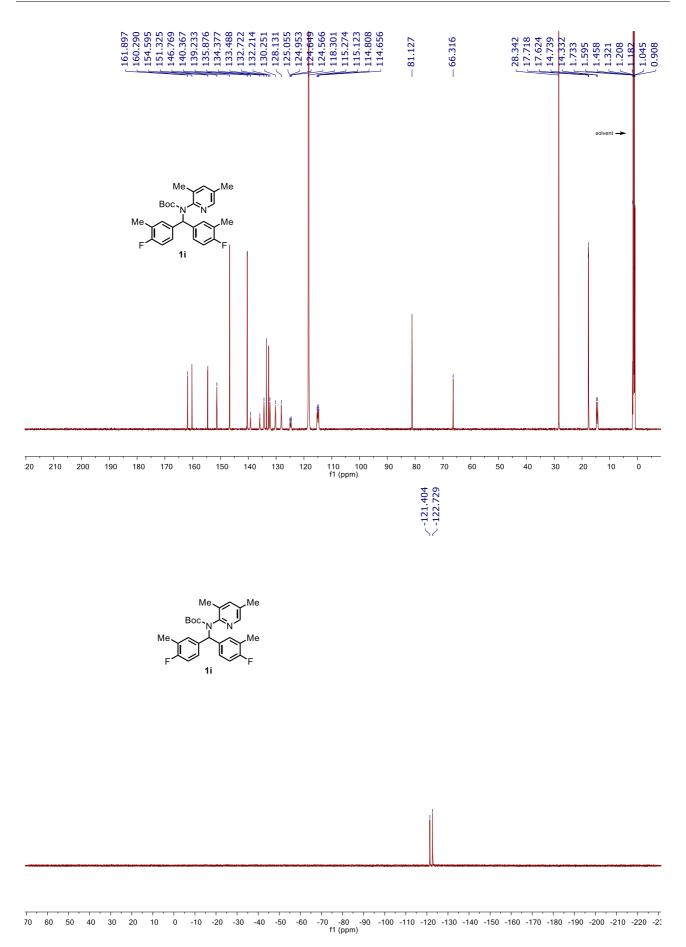


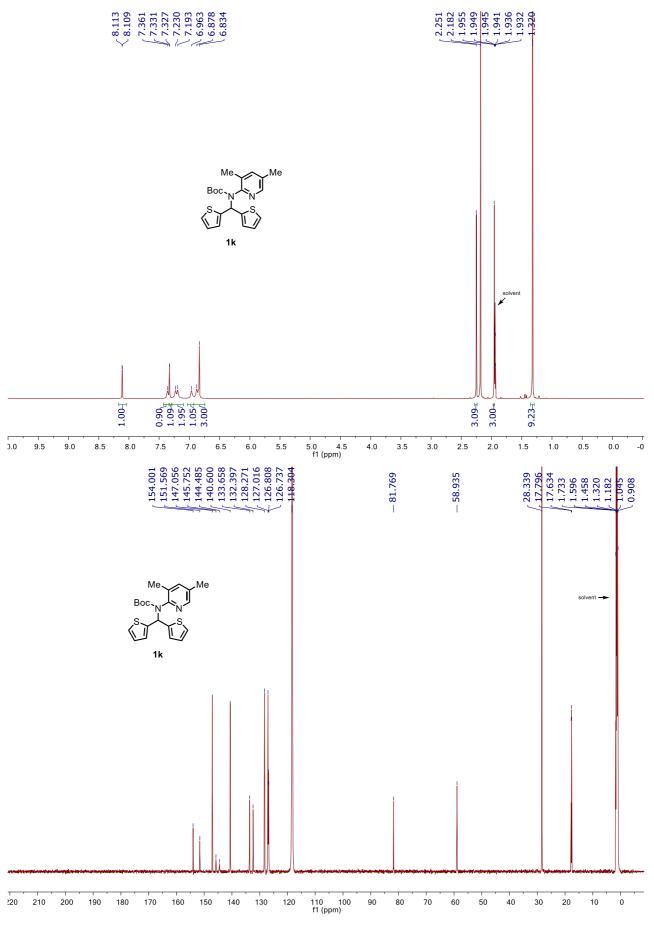


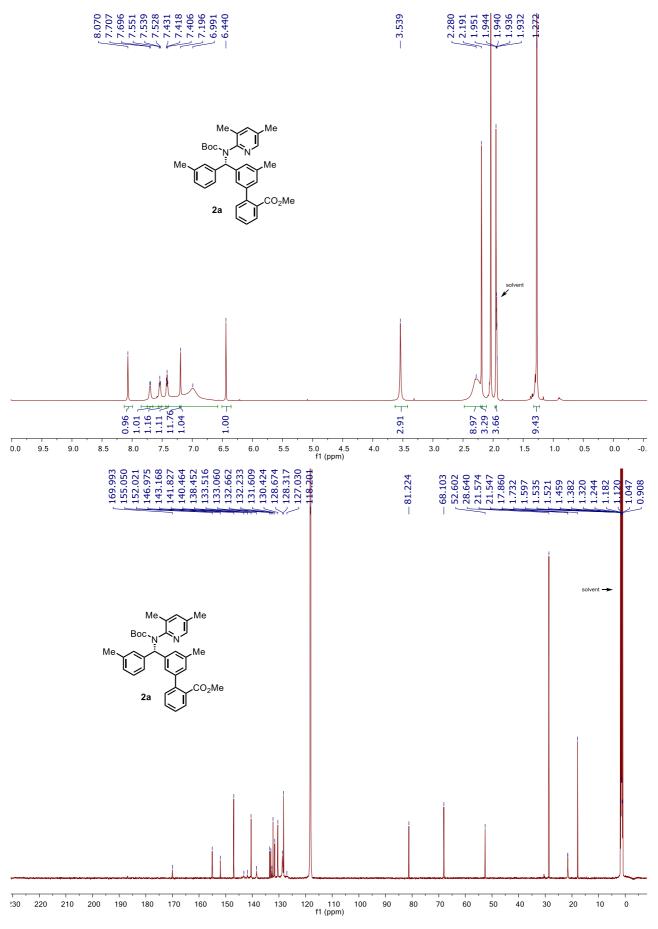

S67

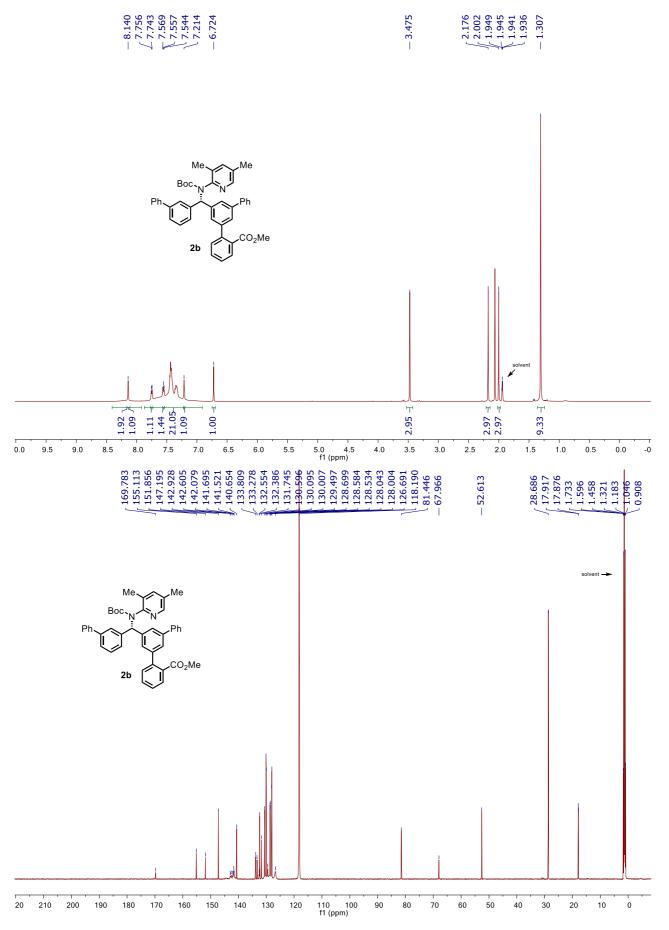


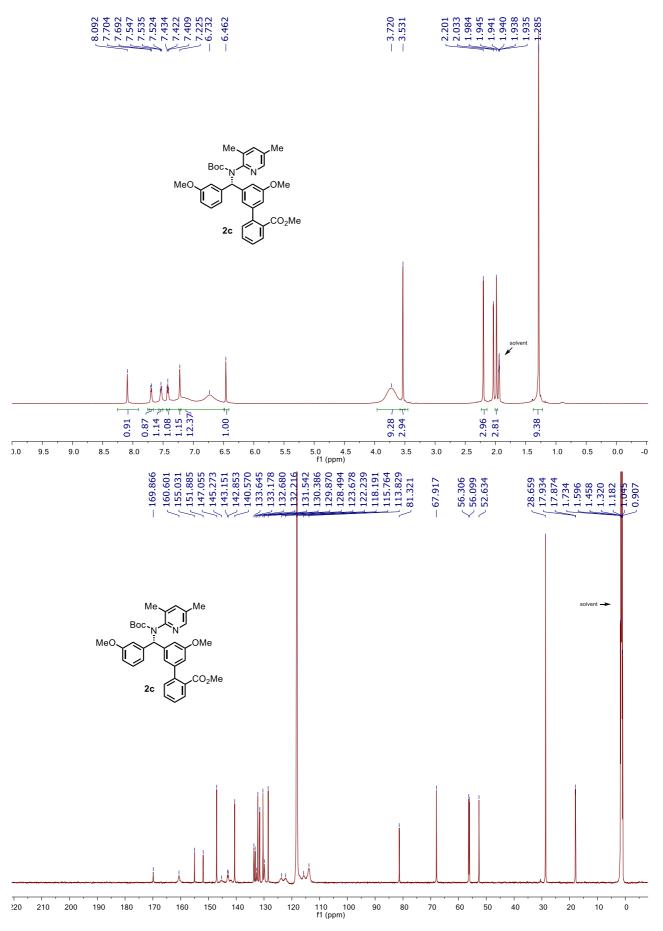


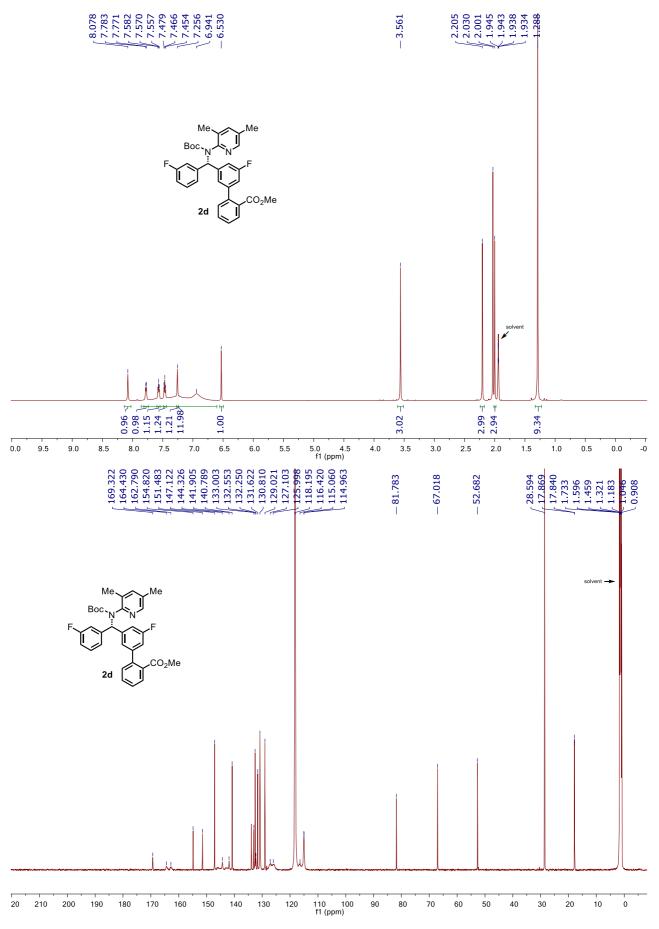




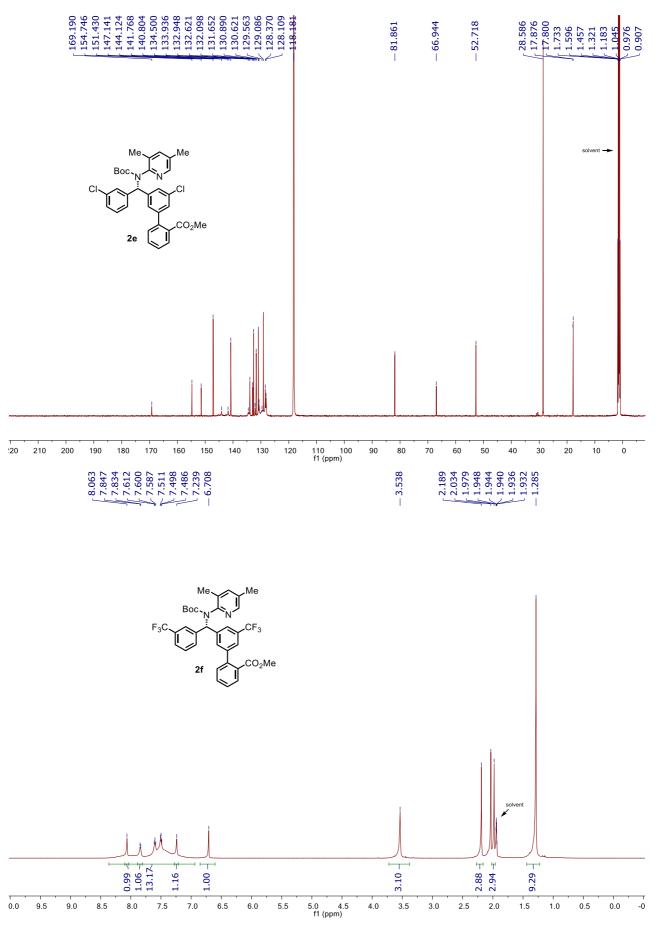


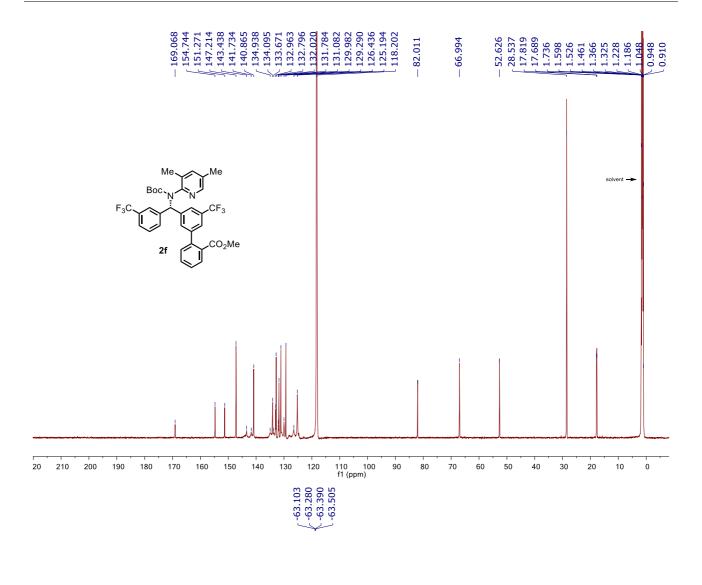


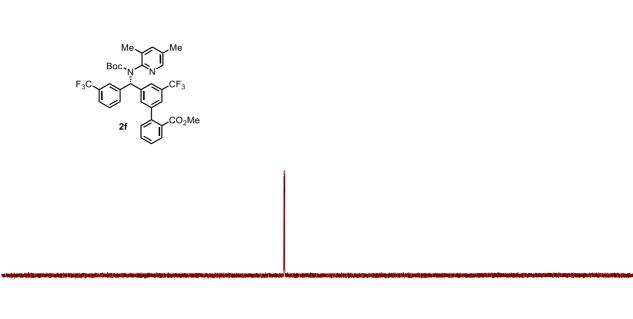


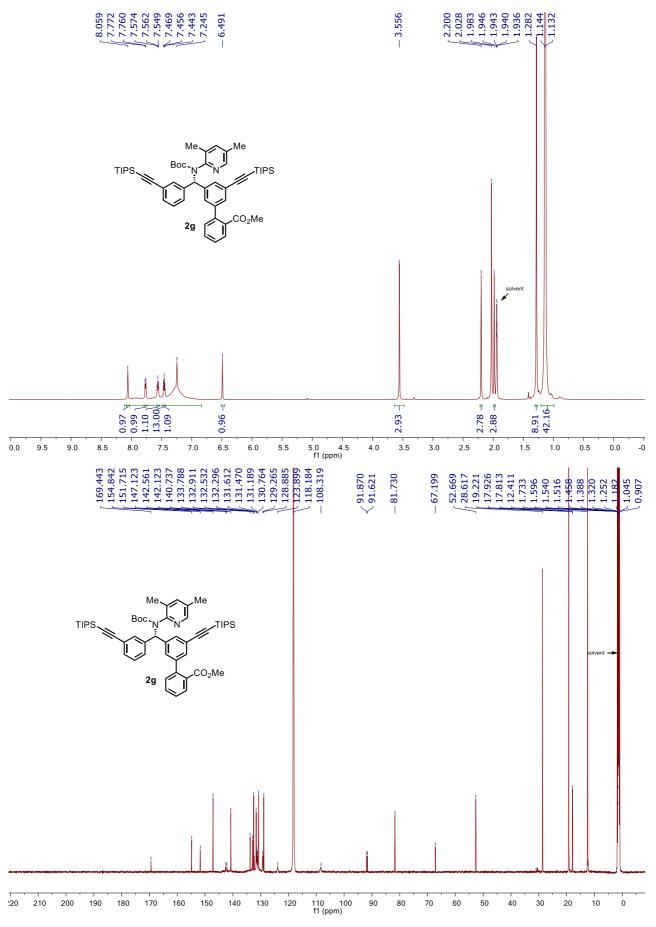


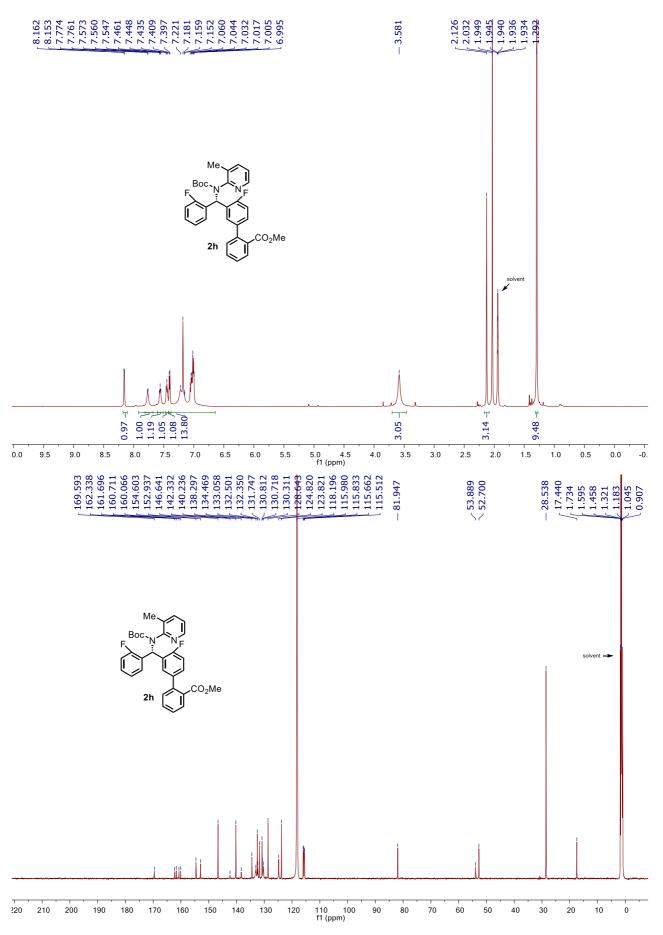


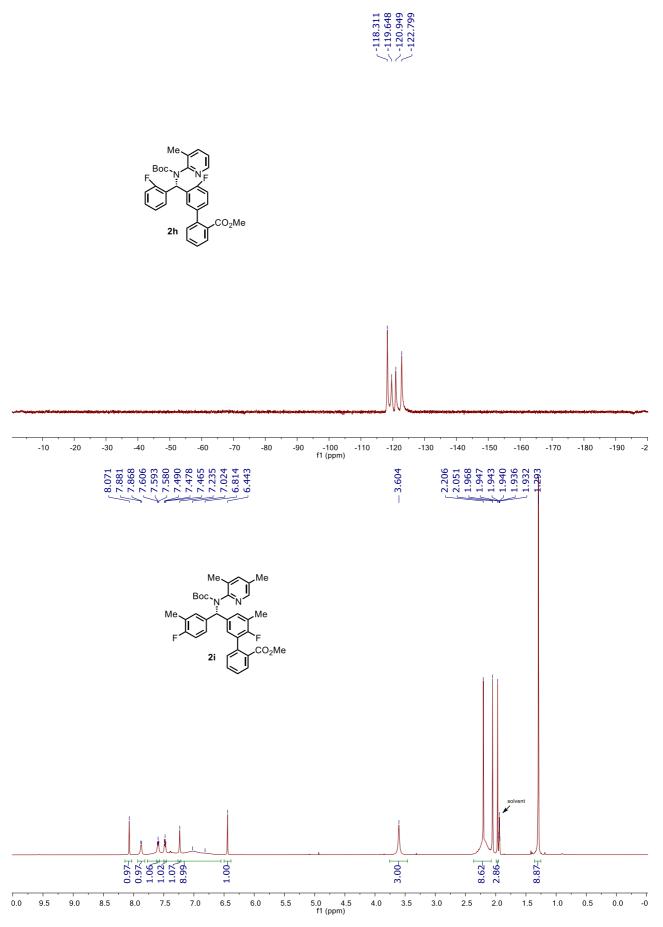


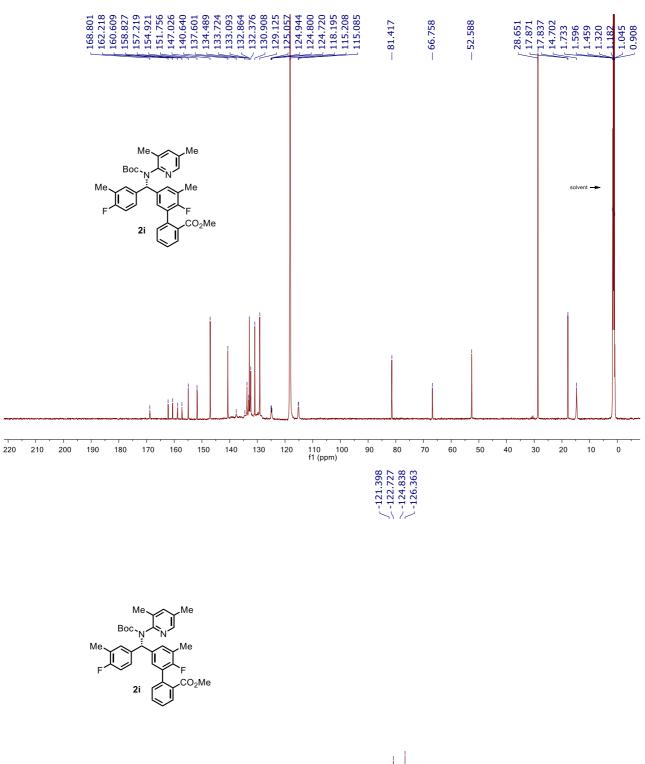


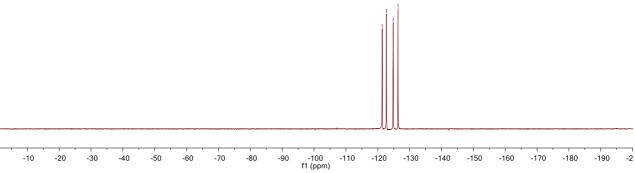


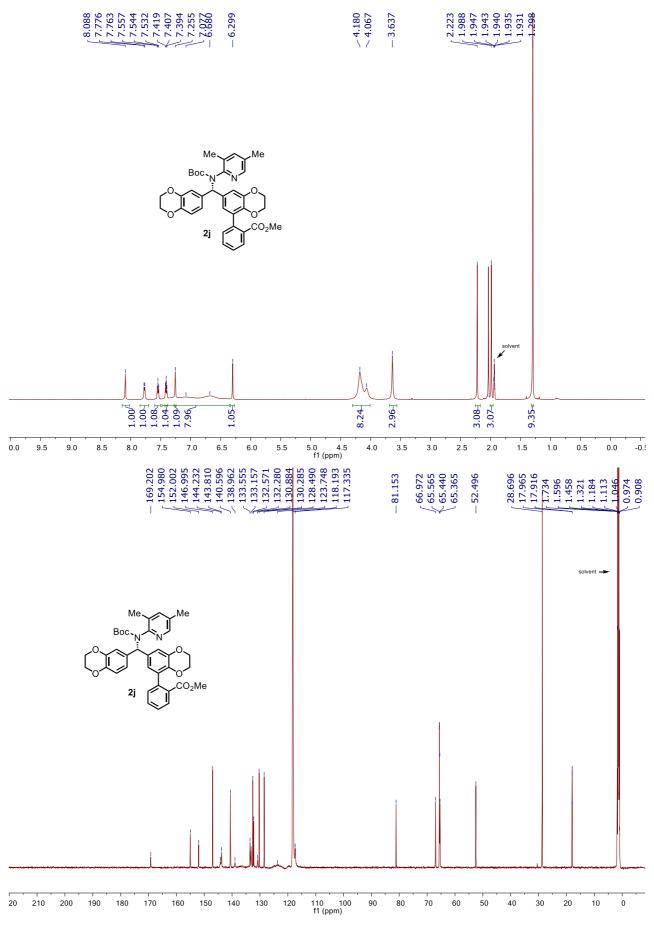


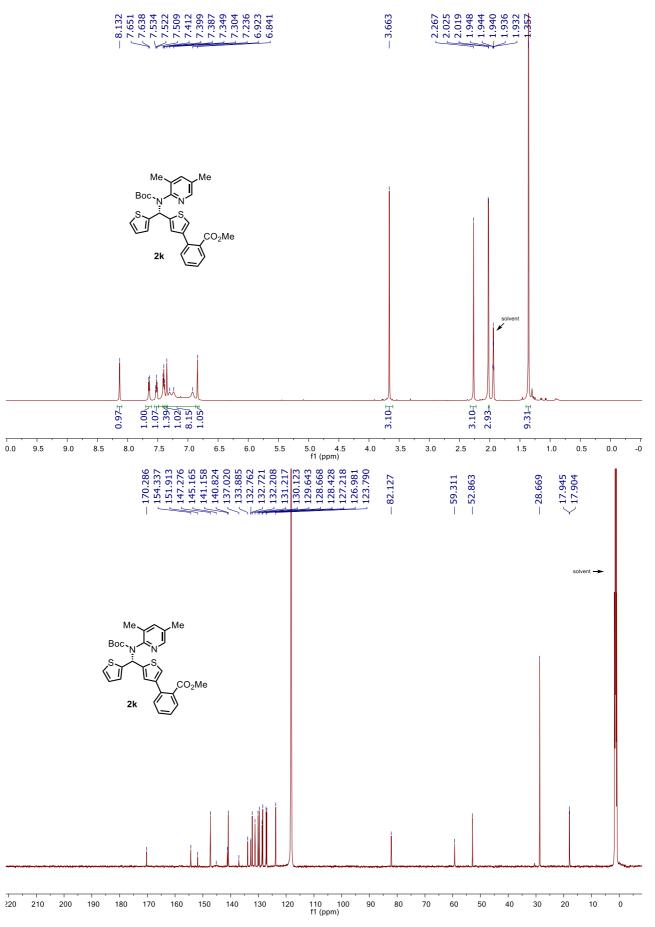


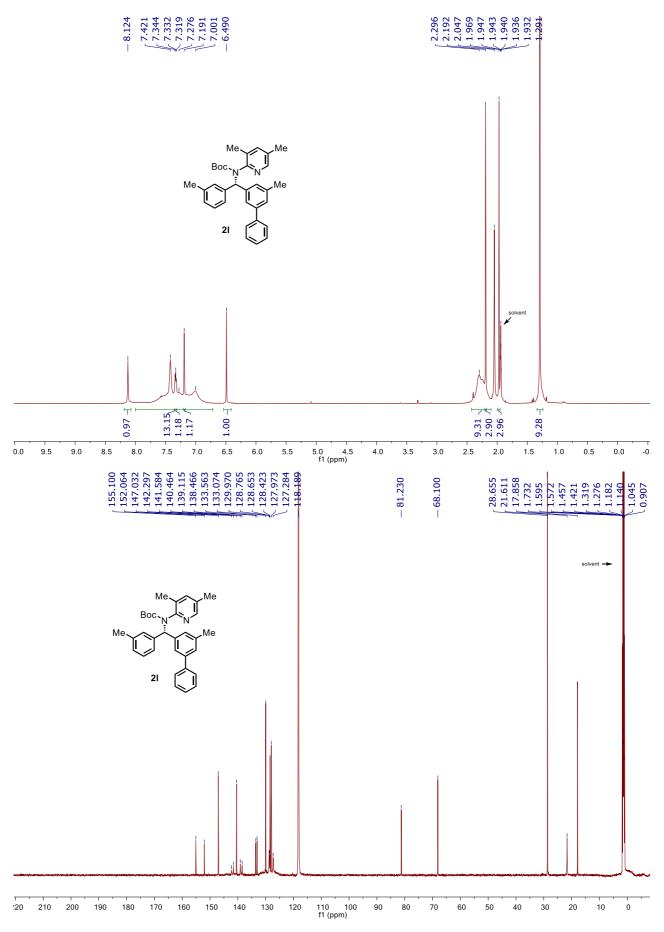


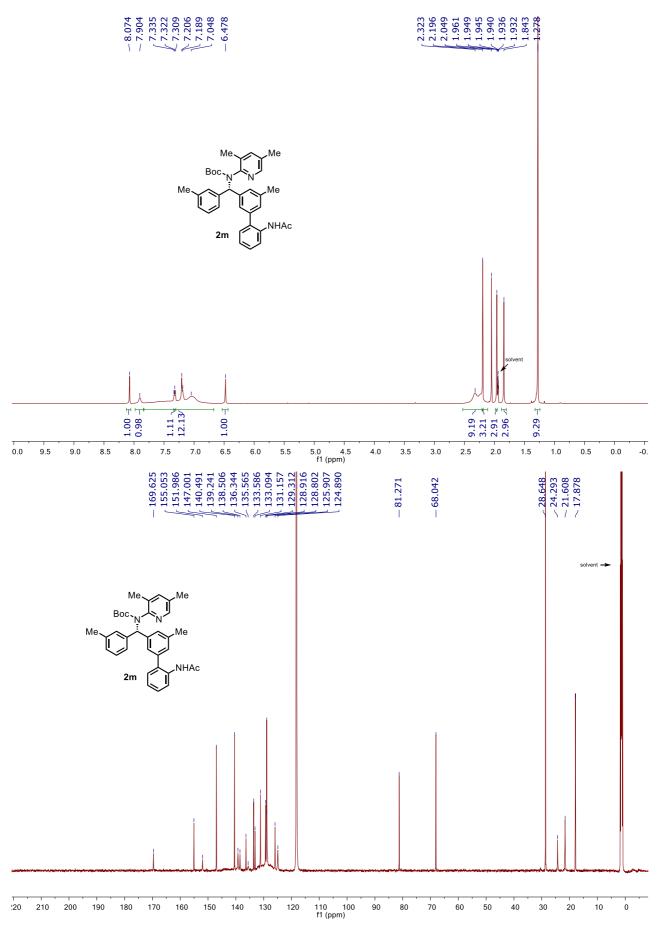


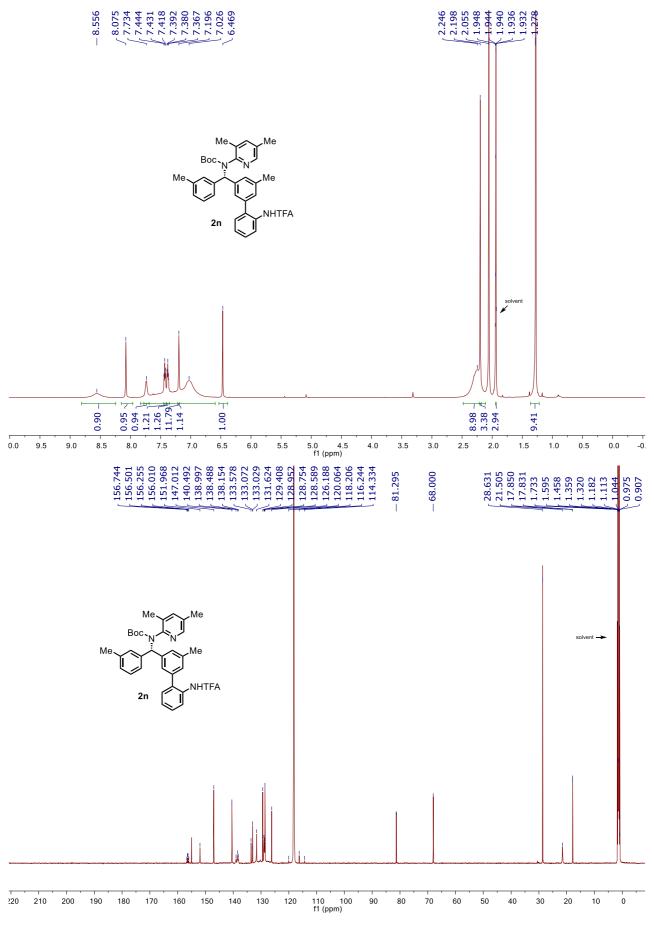

70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -25 f1 (ppm)



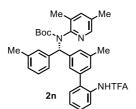


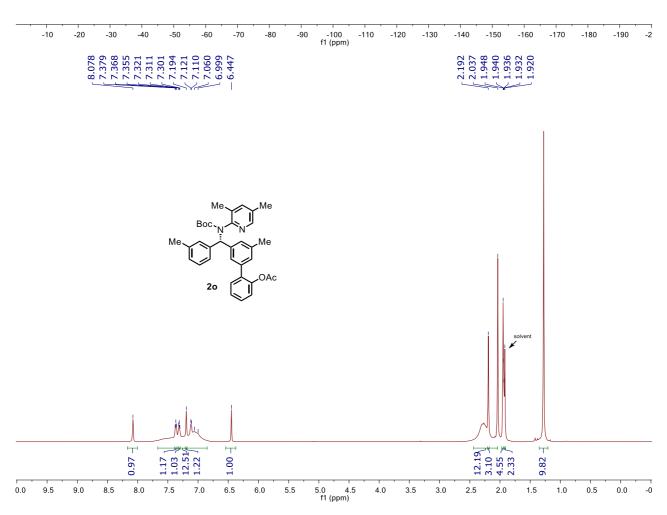


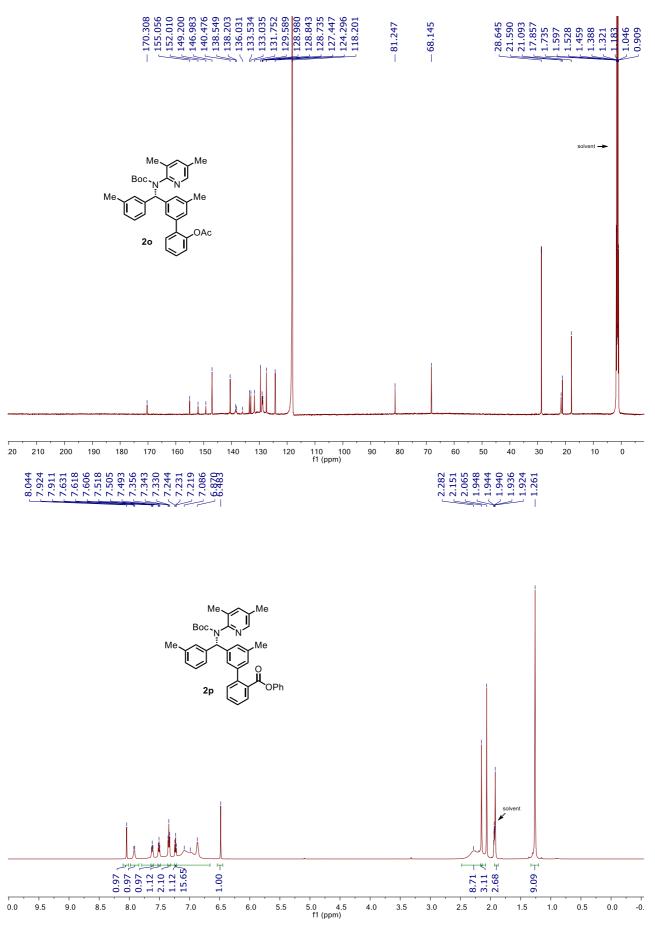


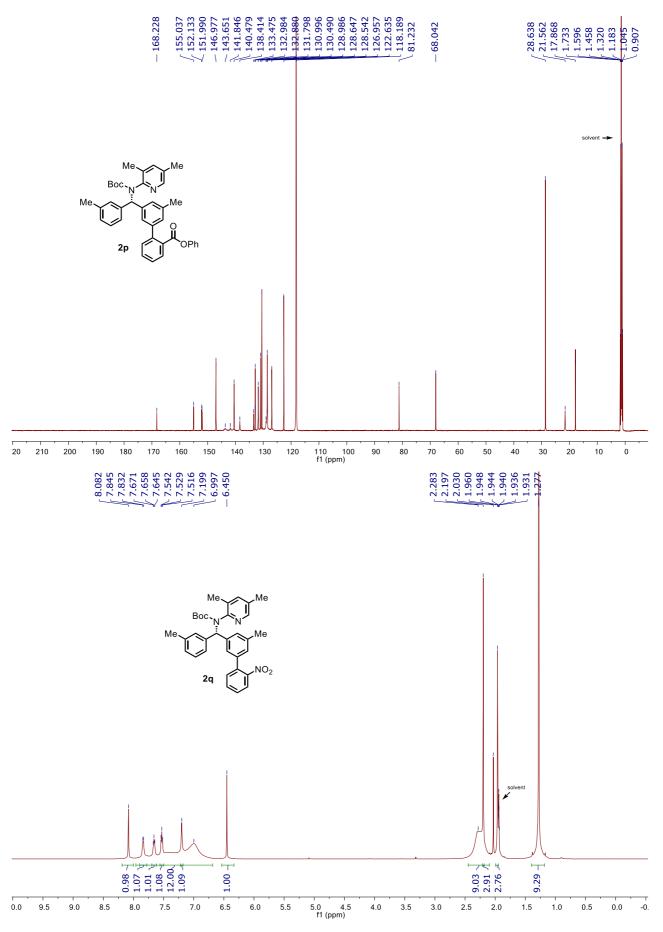


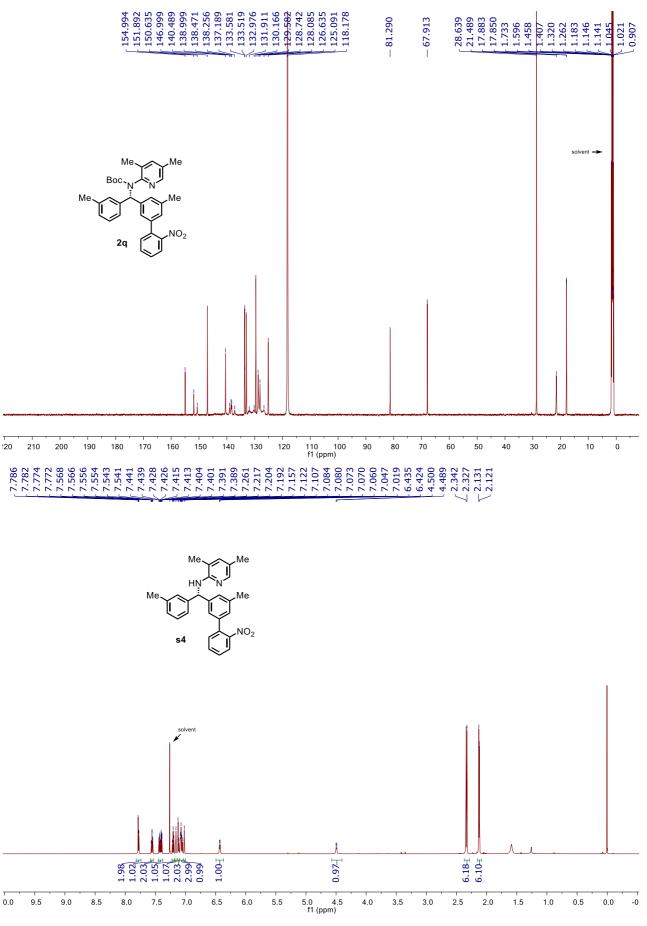
S89

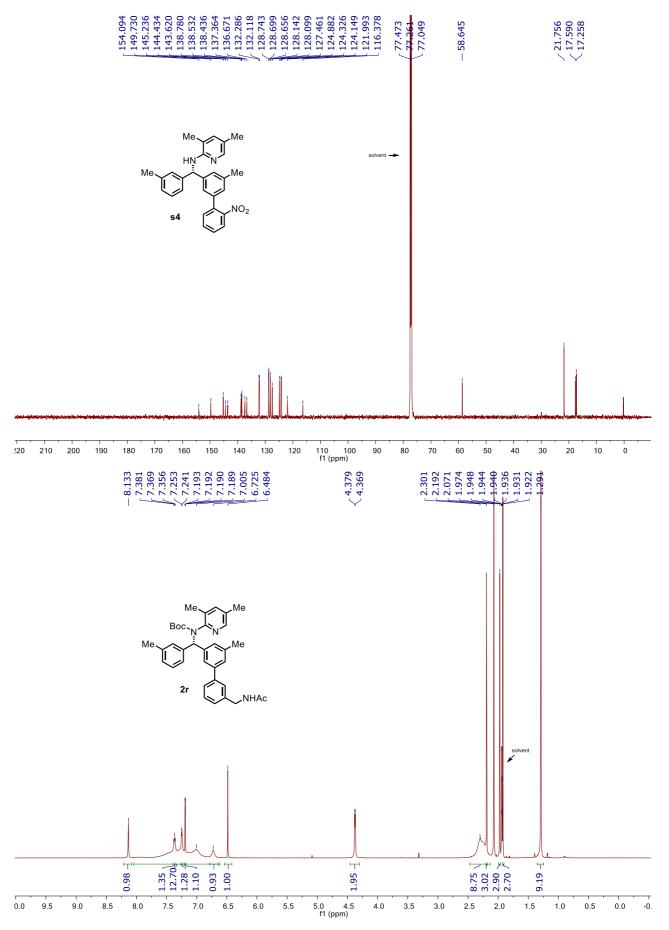


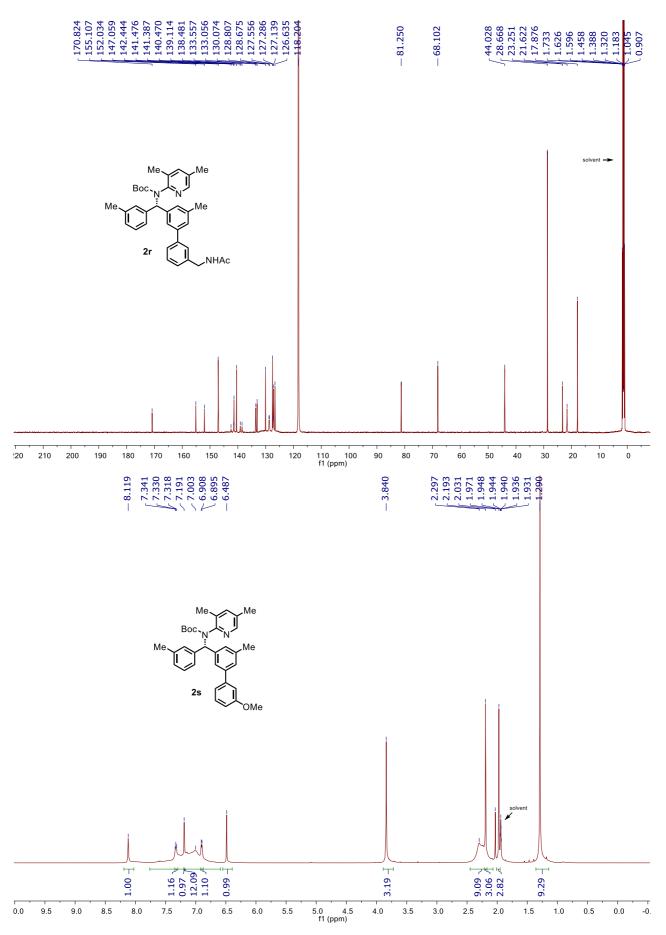


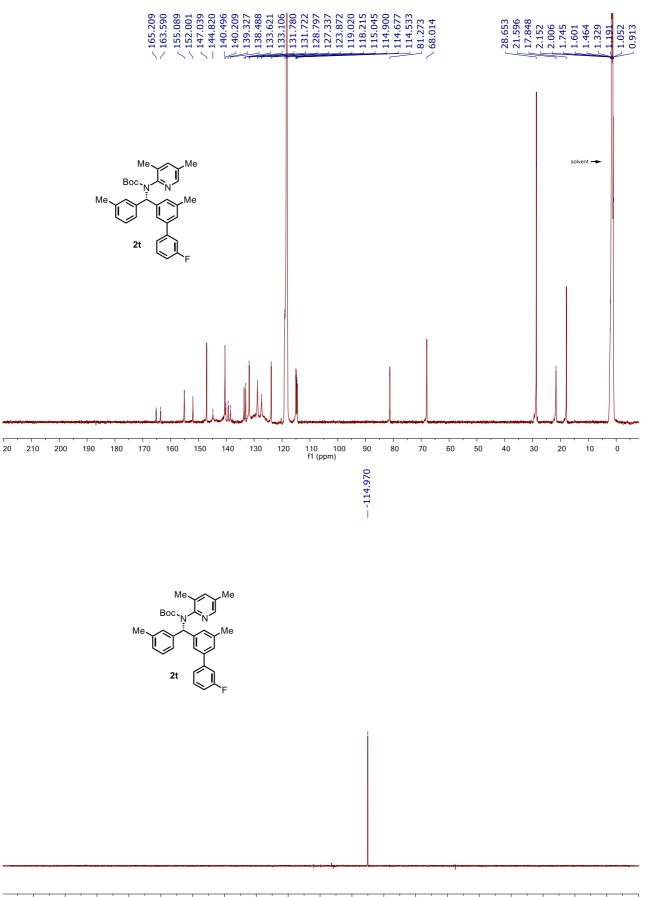


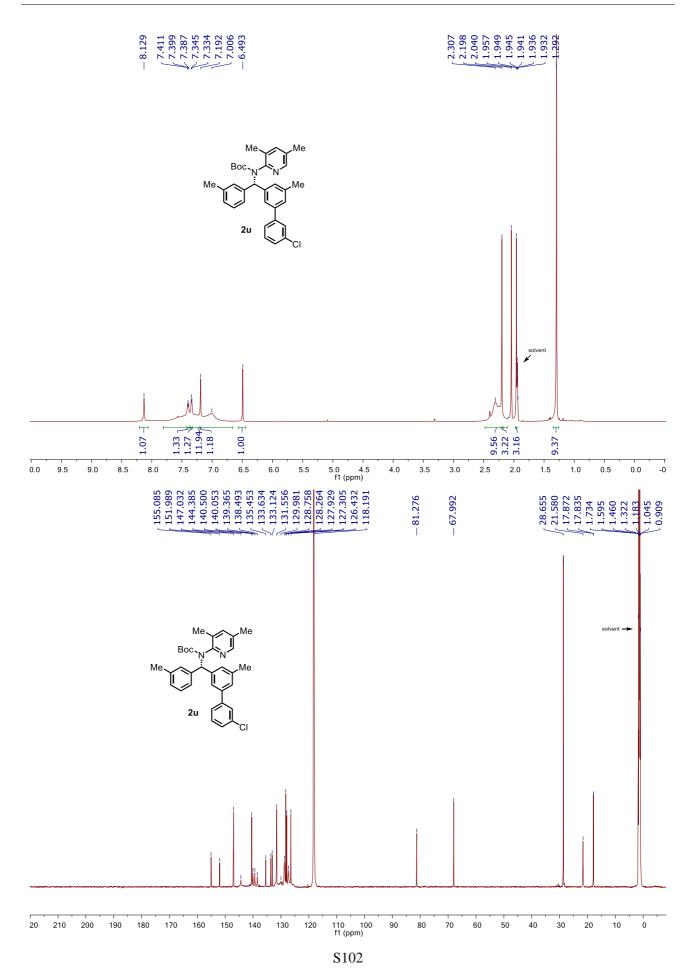

S93

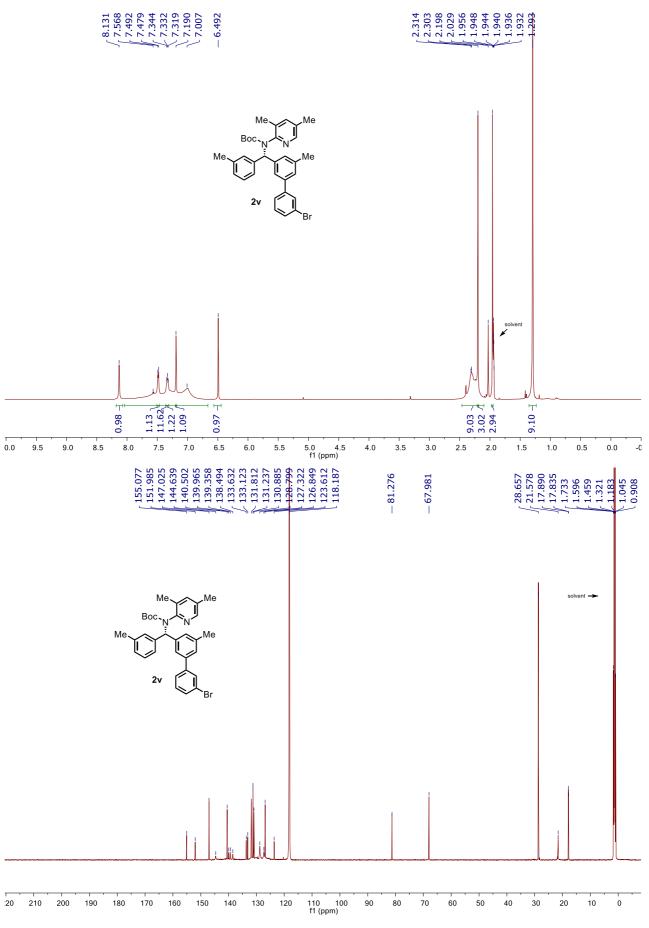

< -76.718 < -76.818

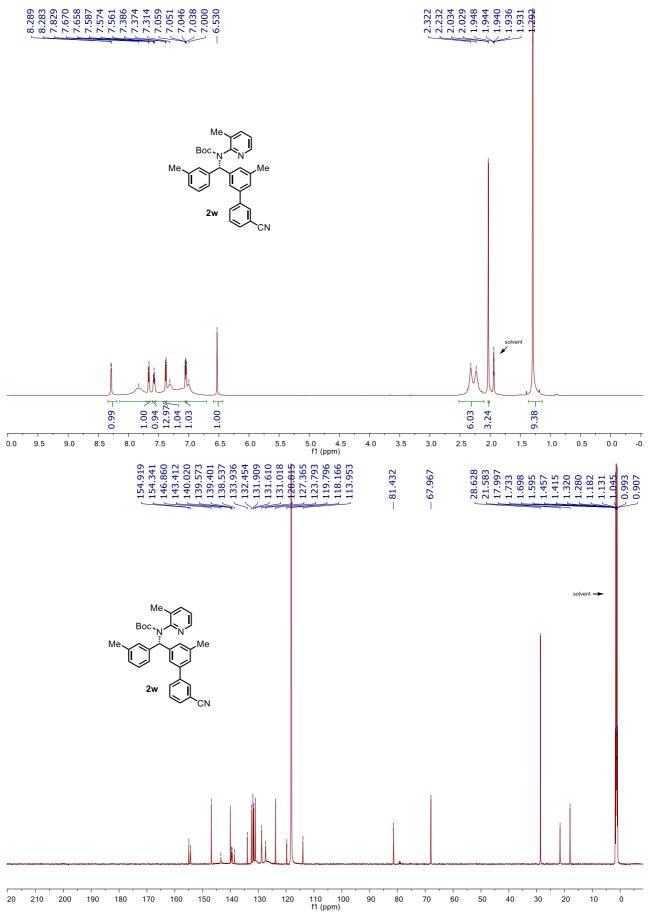


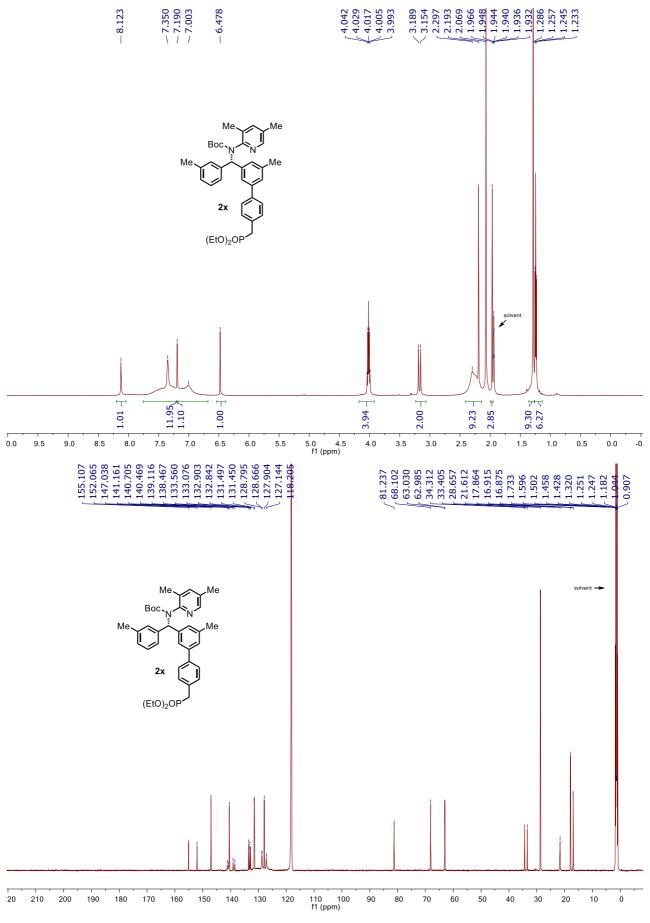




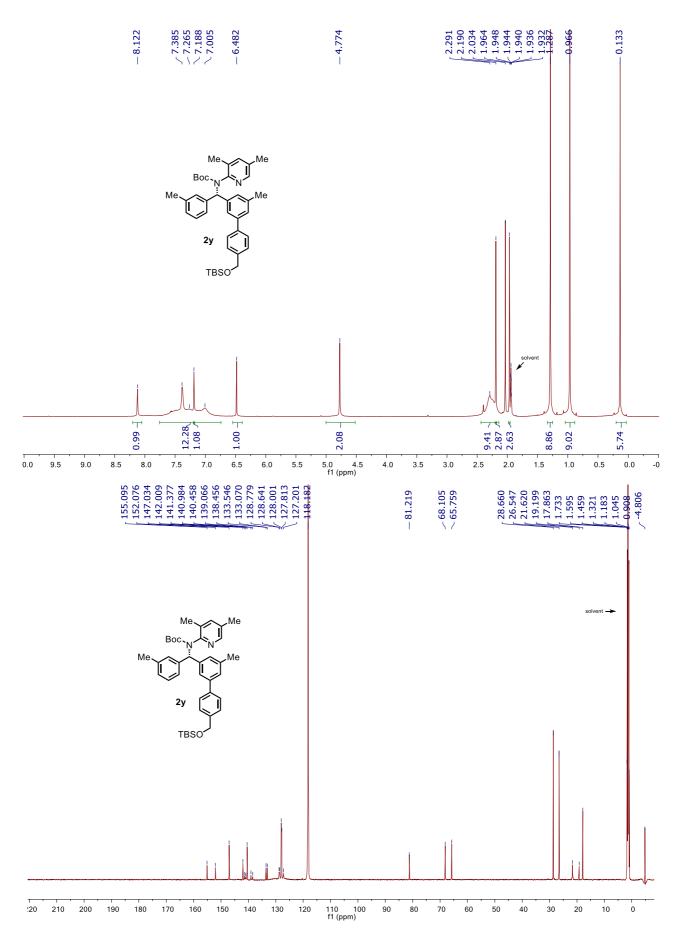


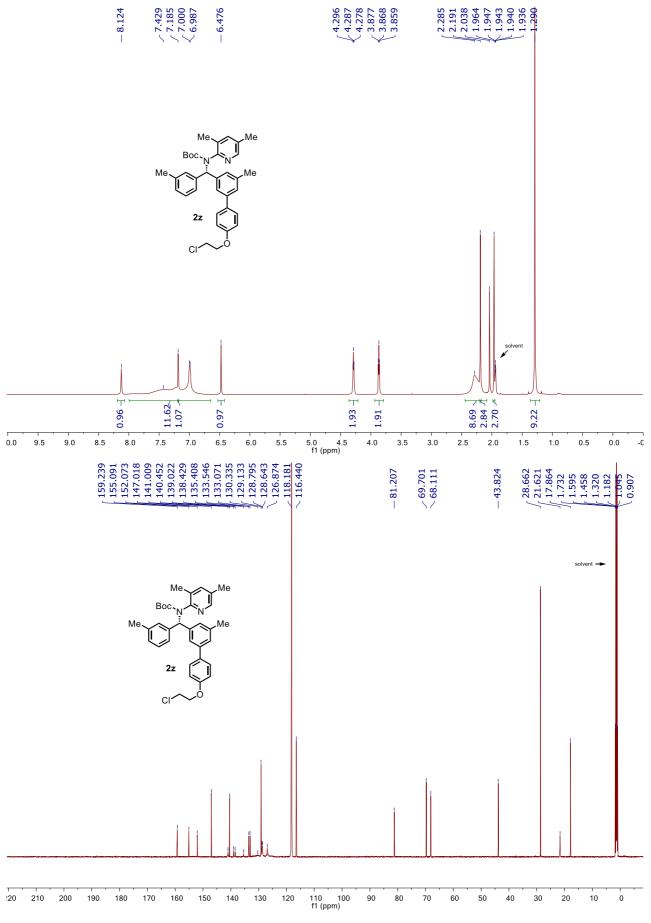


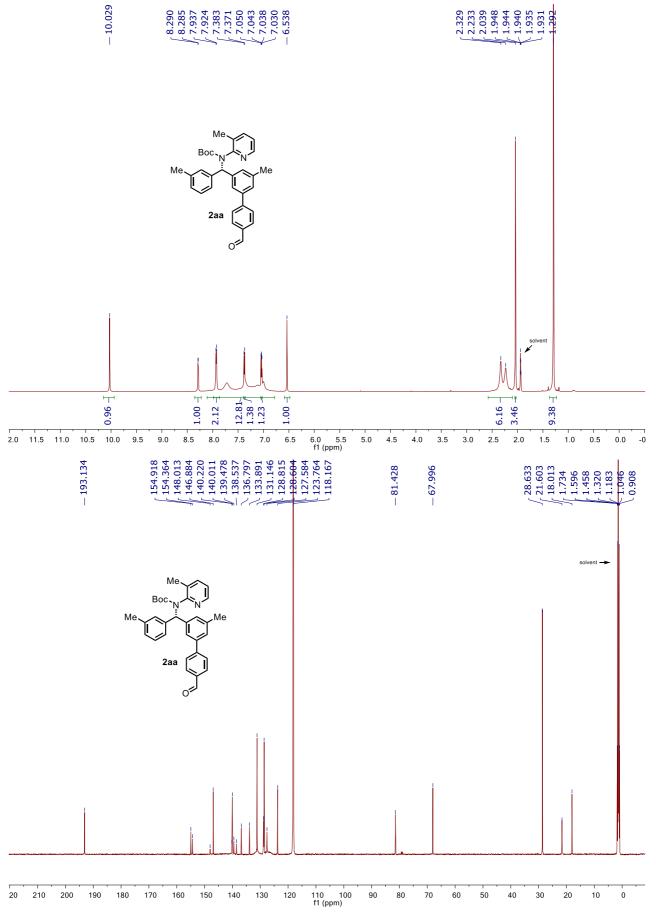


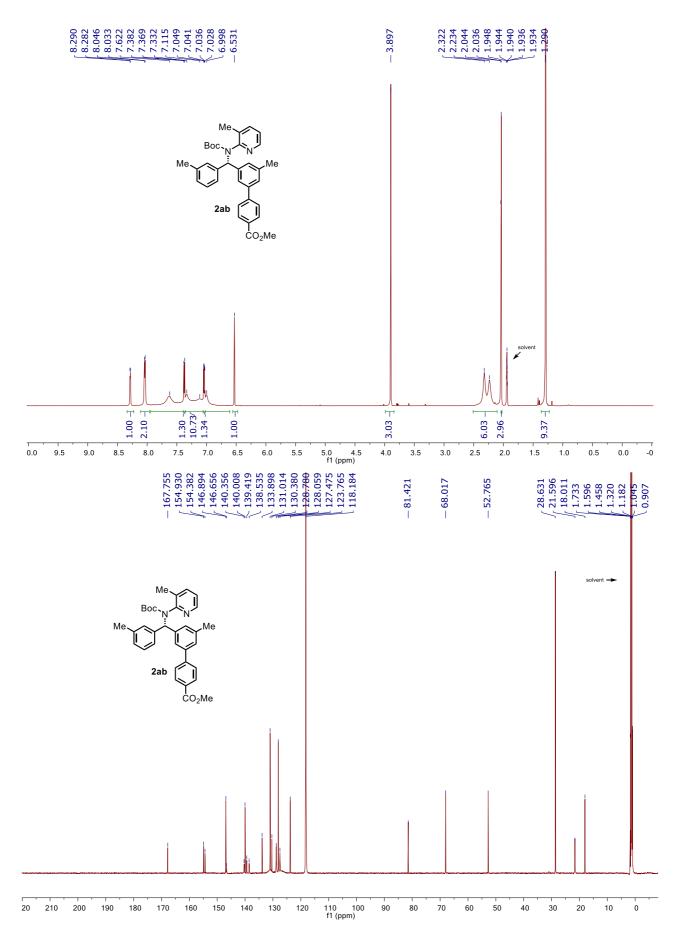


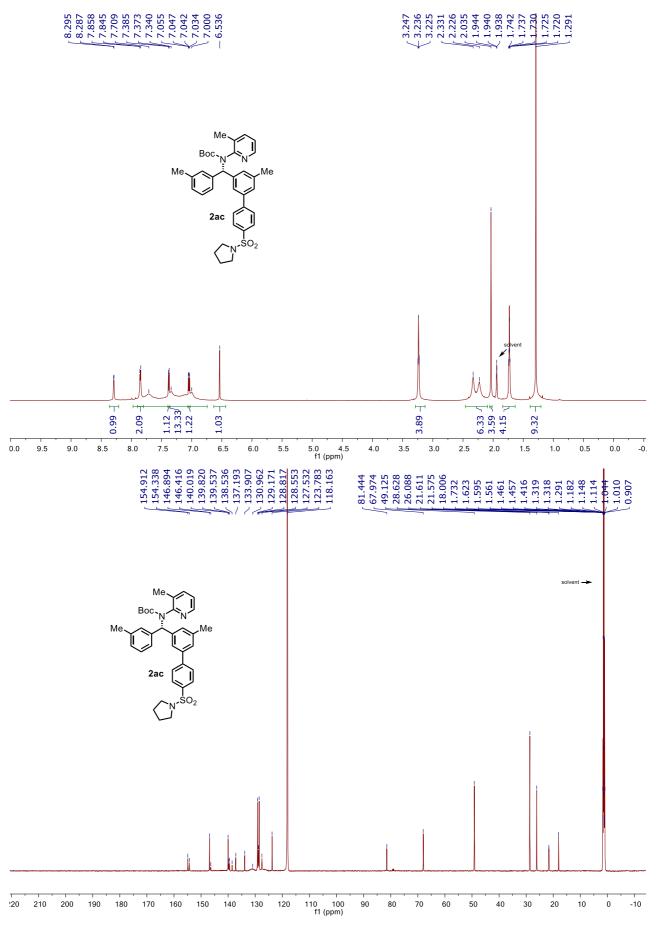
-100 f1 (ppm) -10 -20 -30 -40 -50 -60 -70 -80 -120 -130 -140 -150 -160 -170 -180 -190 -2 -90 -110

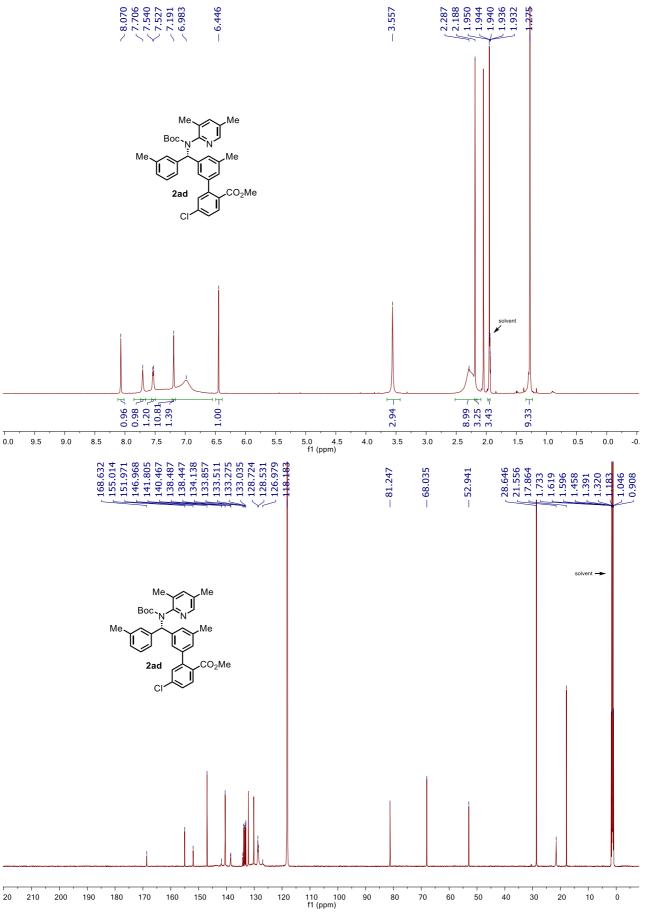




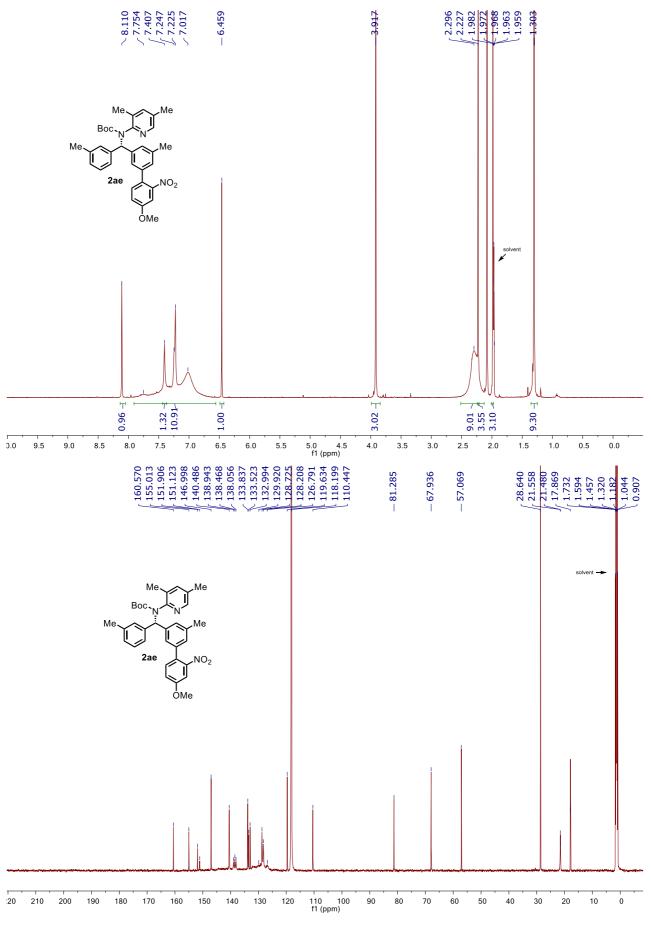


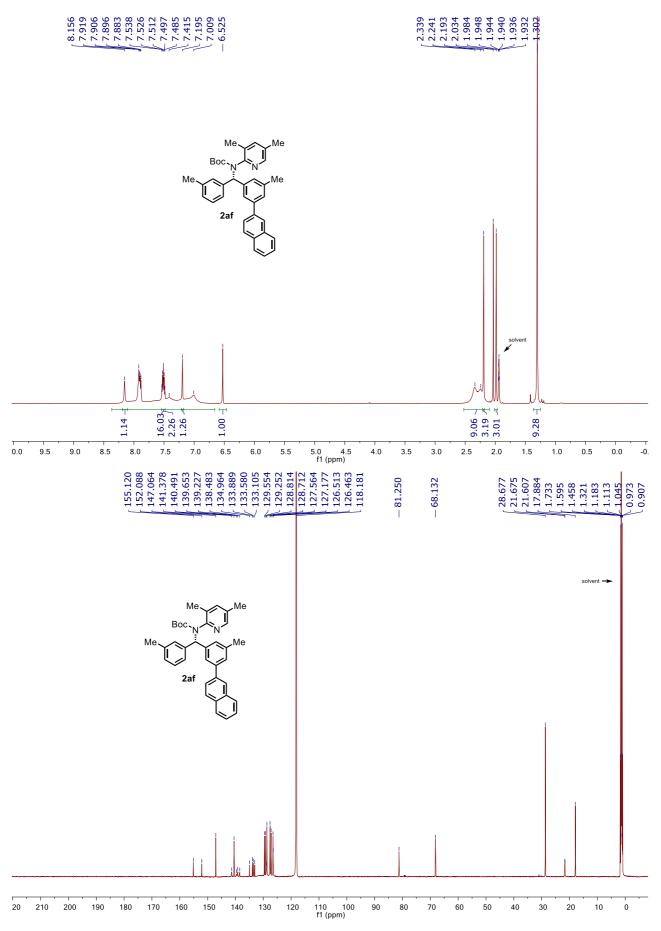

S105

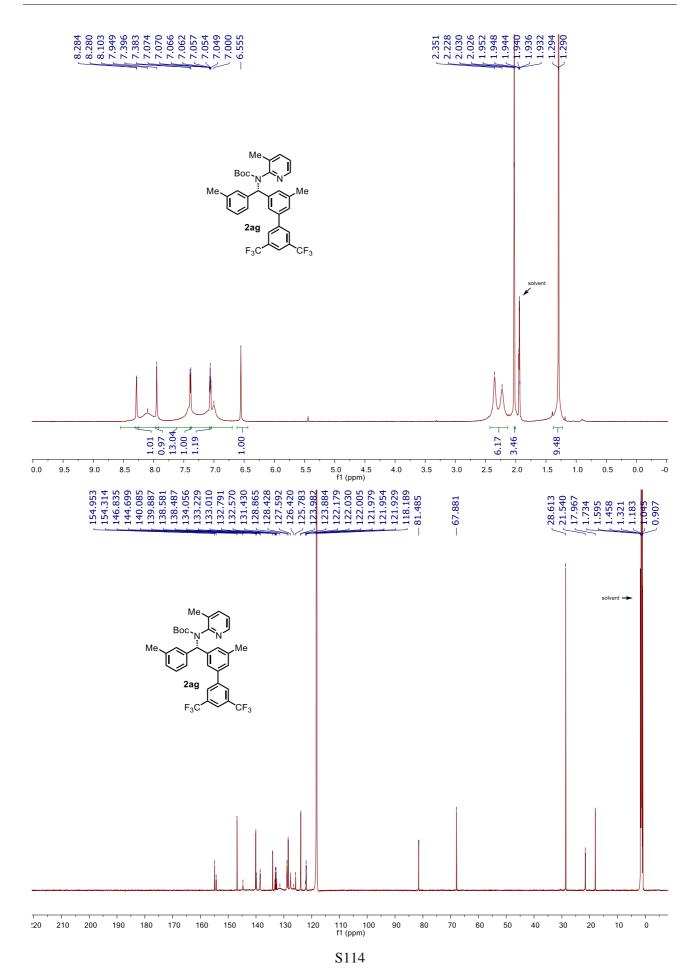


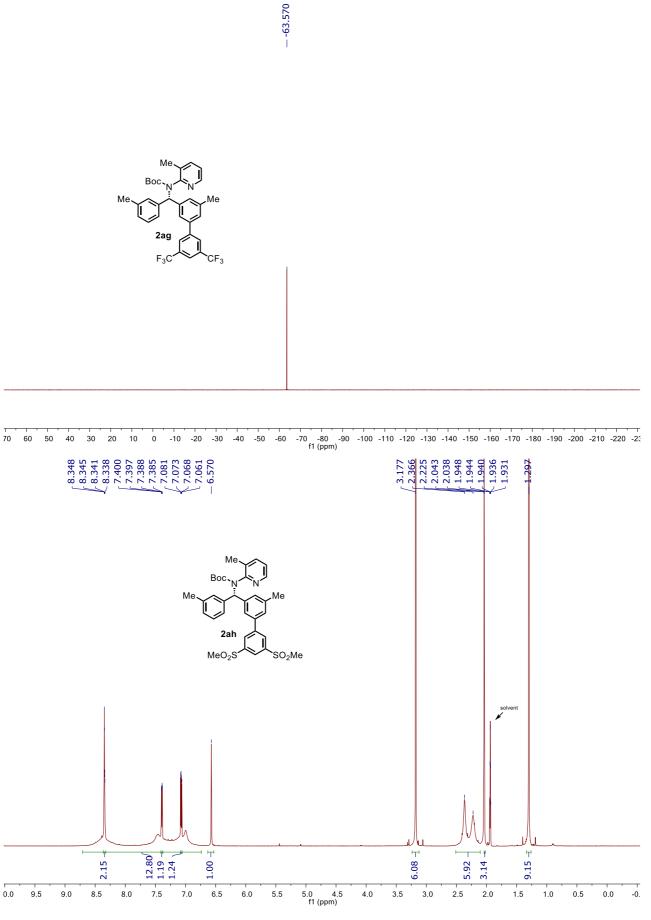


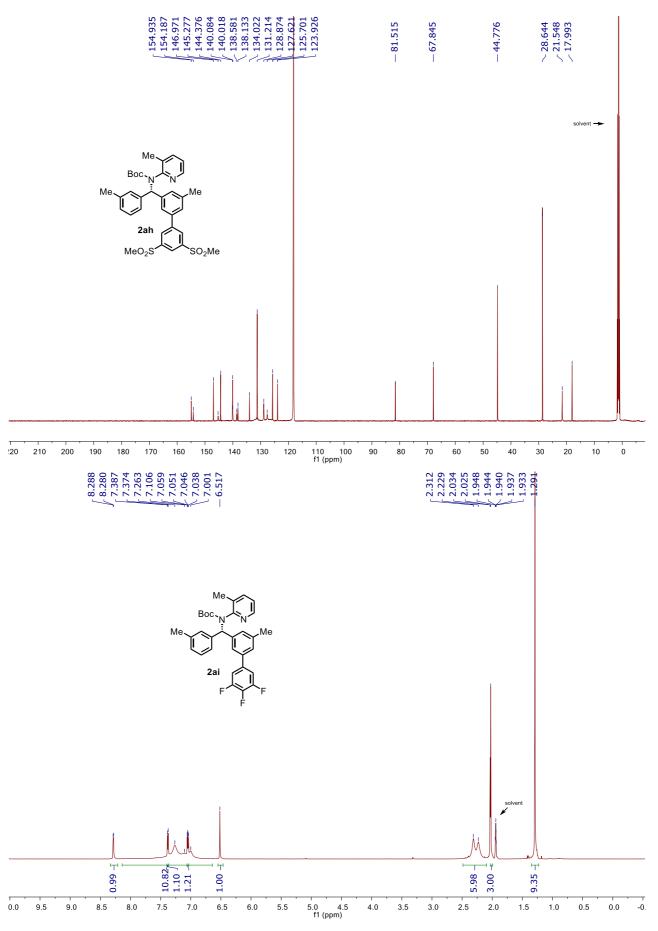
S107

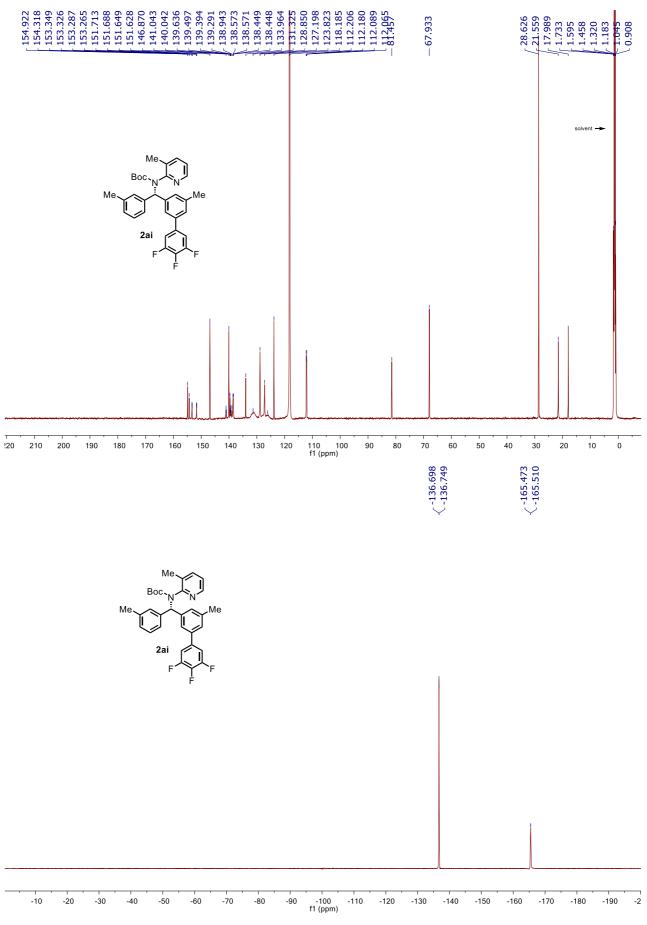


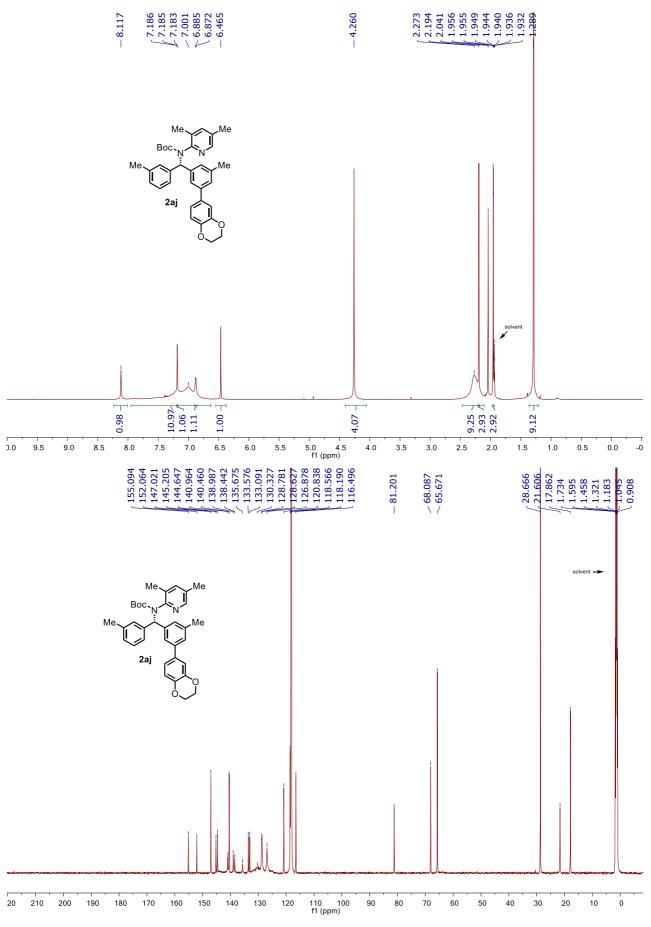


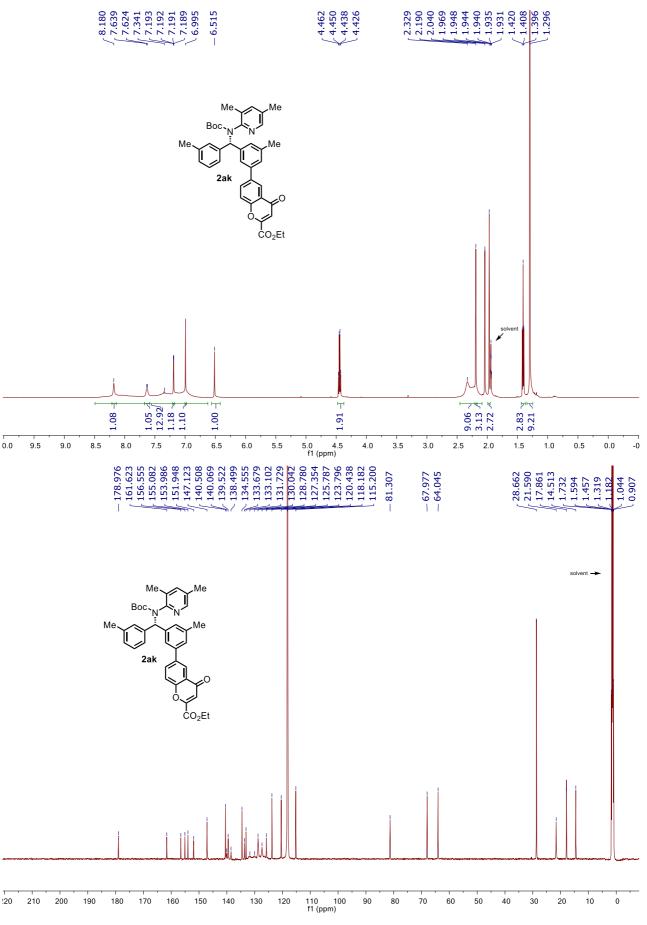


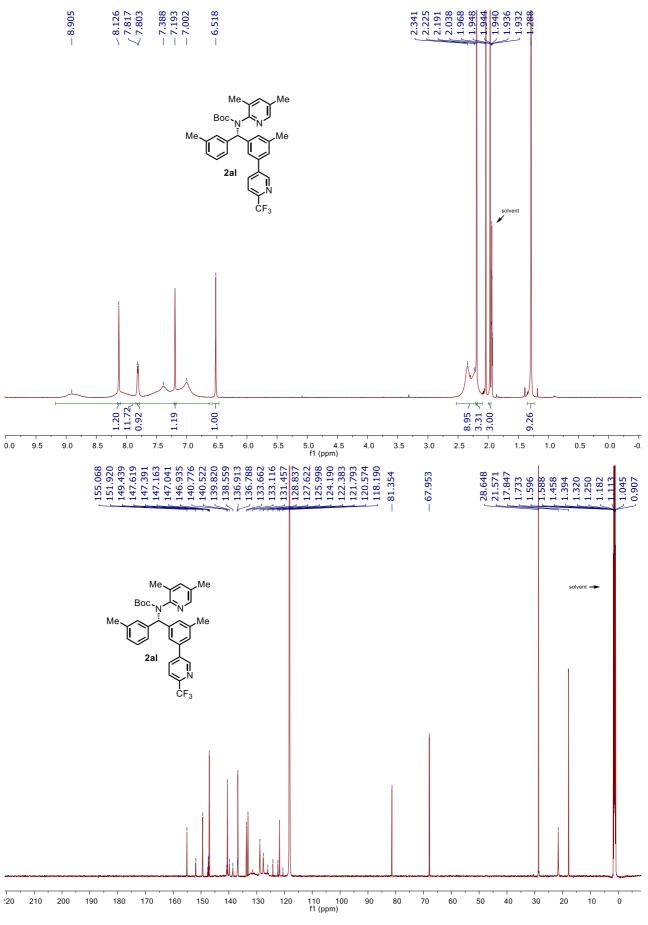

S111

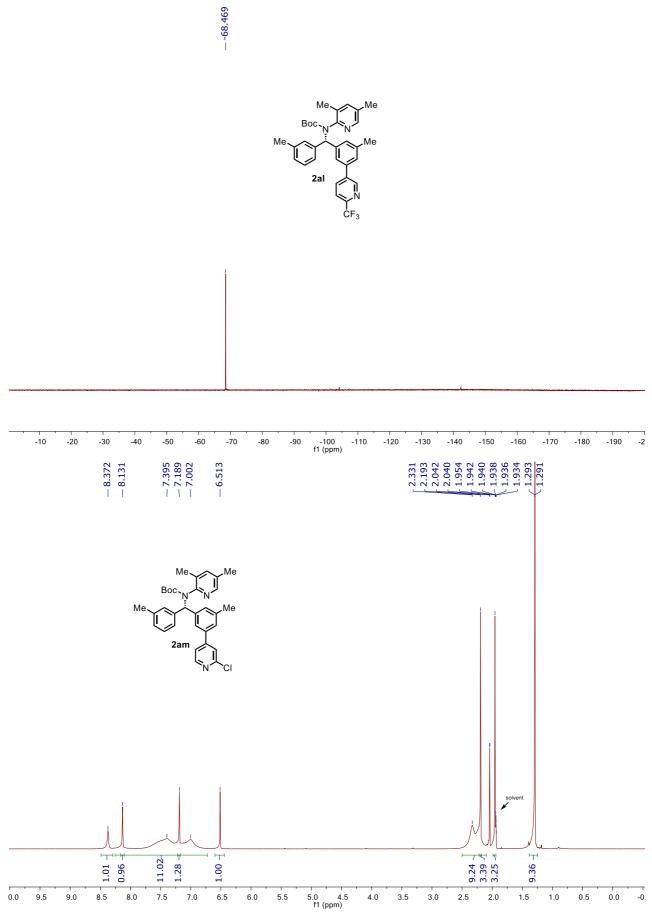


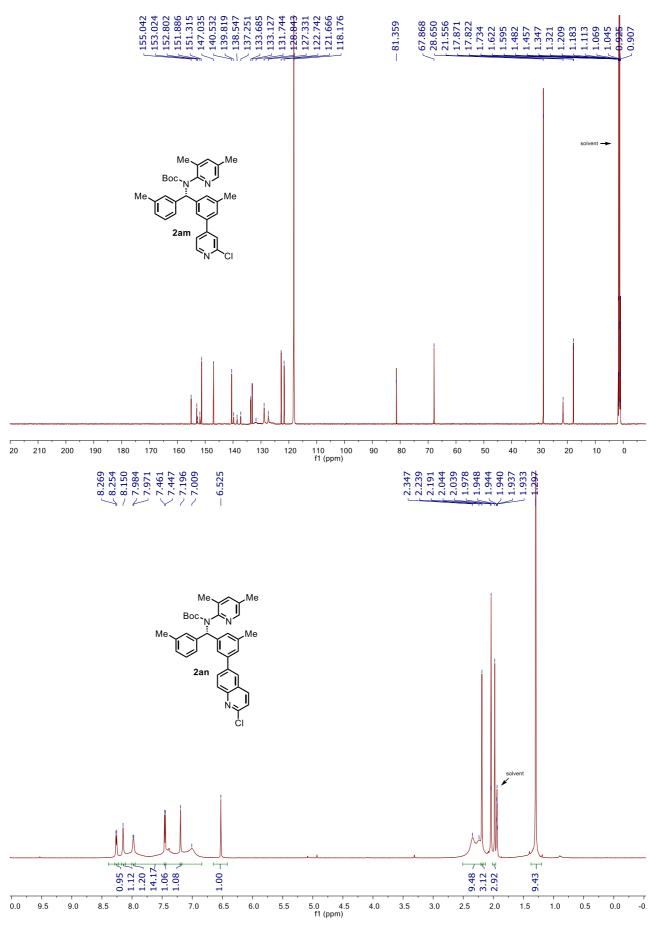

S112

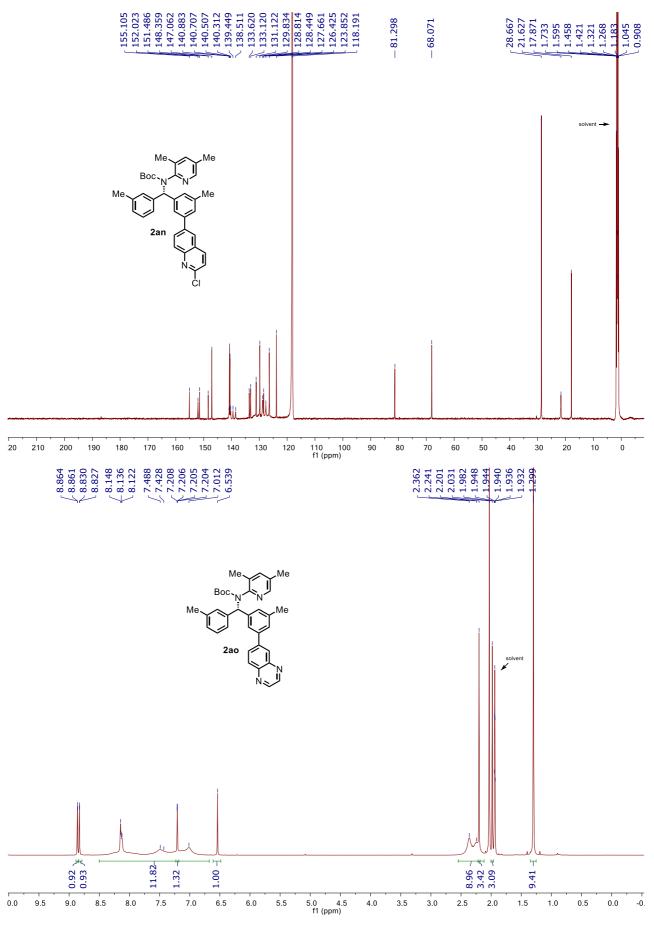


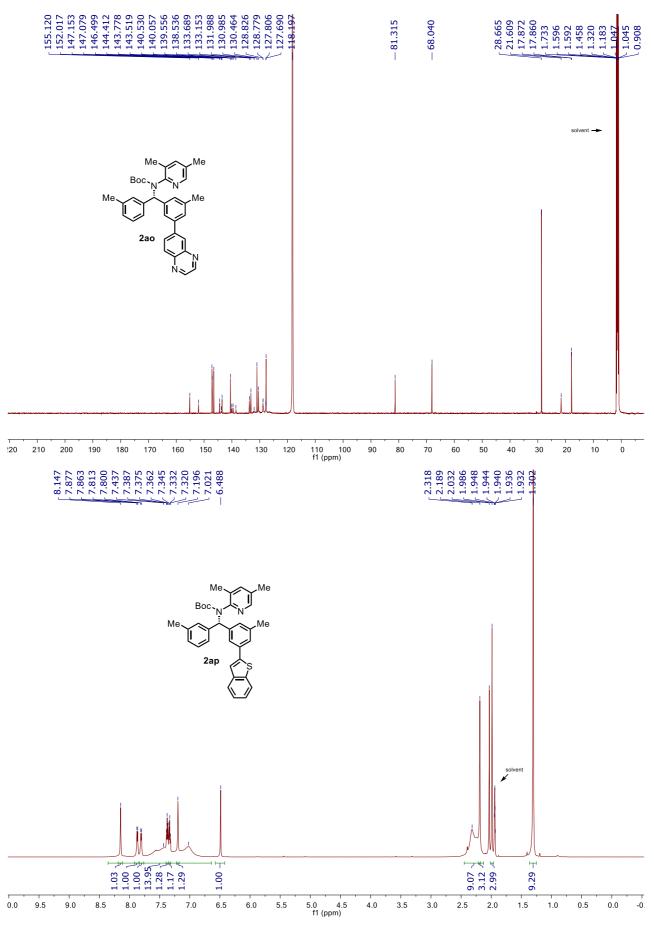


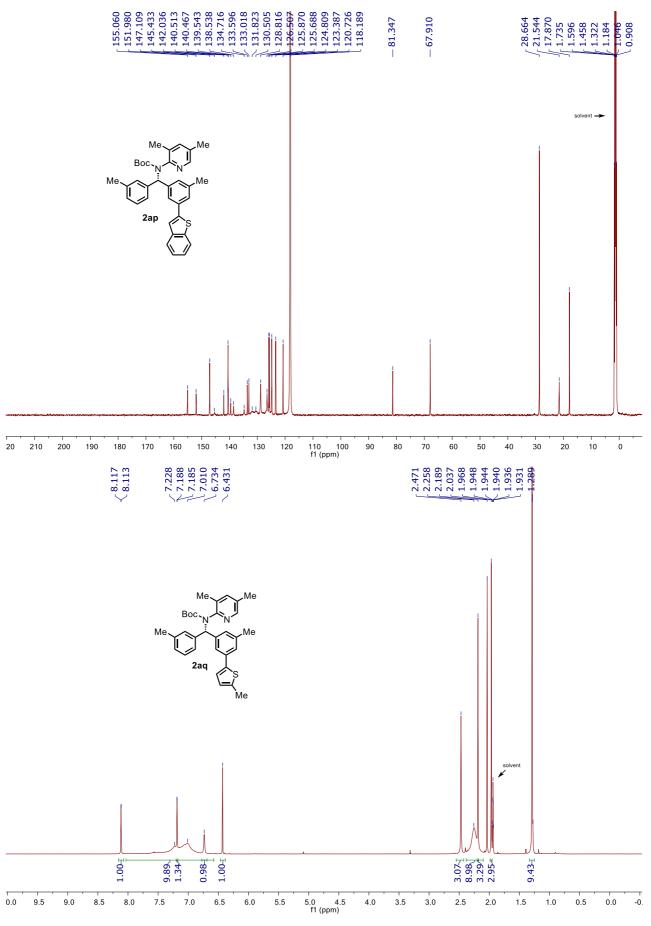


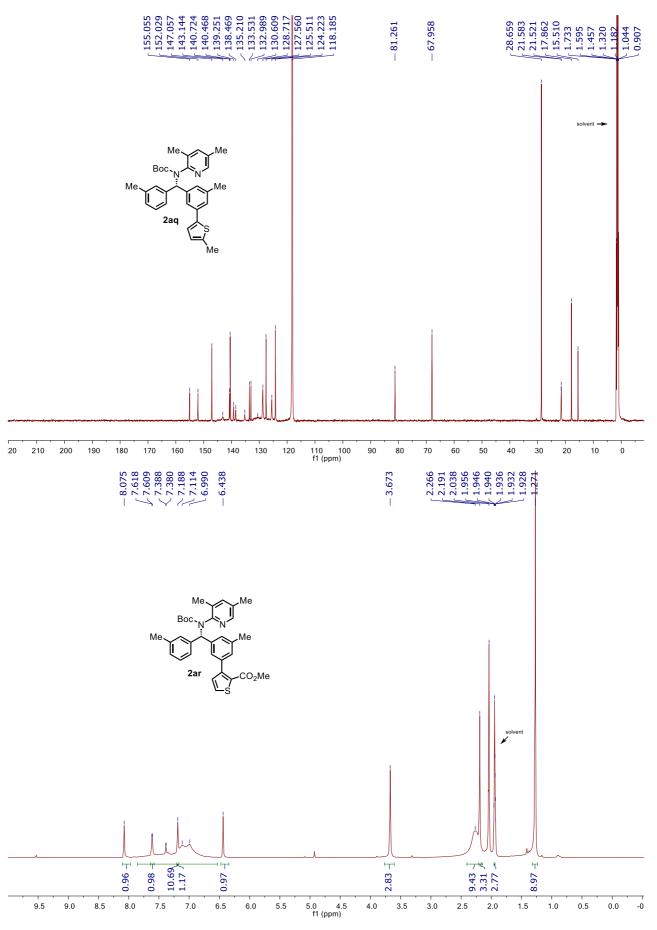


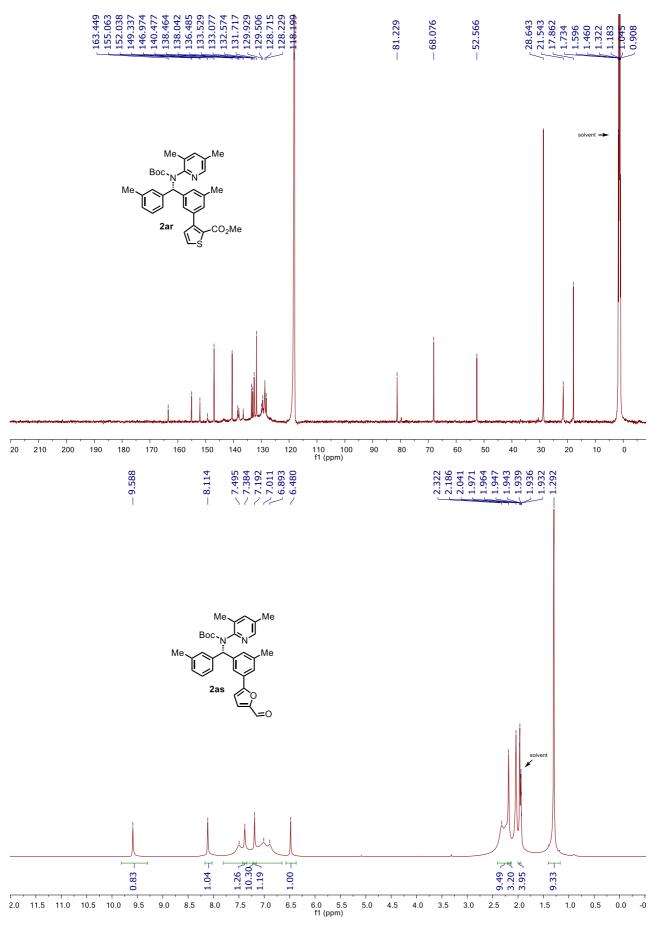


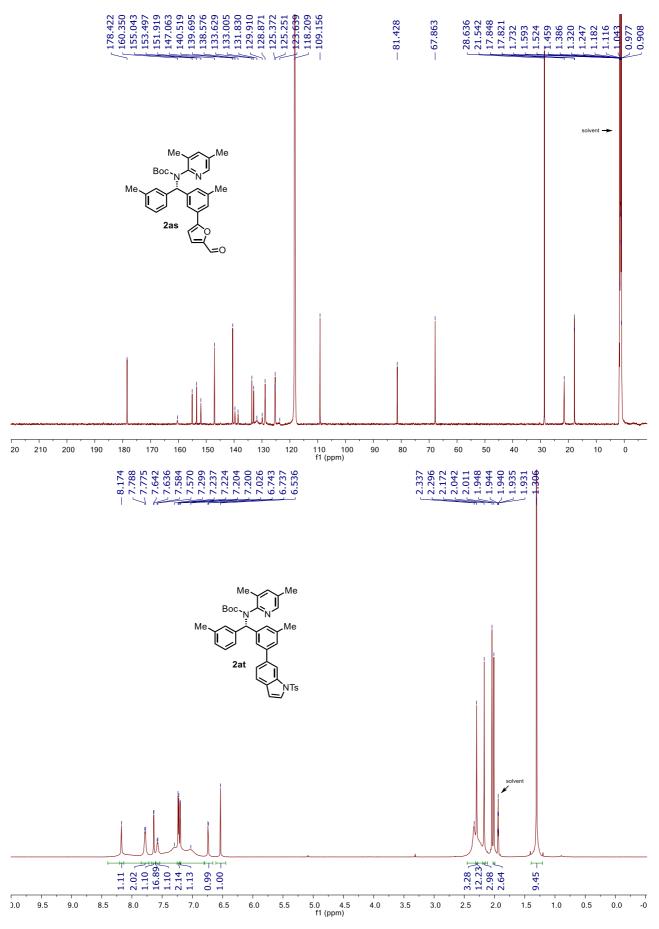


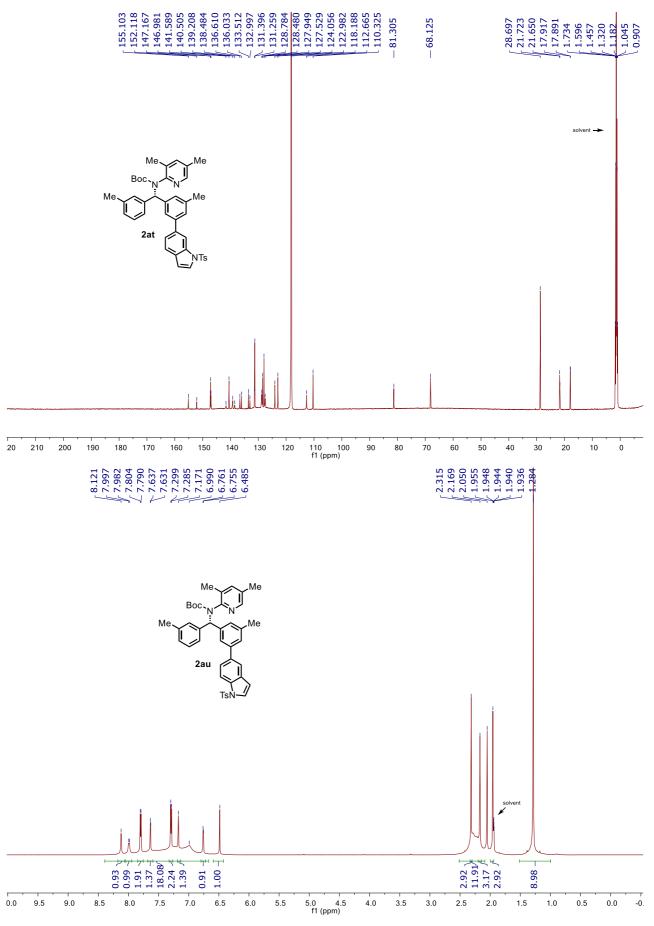


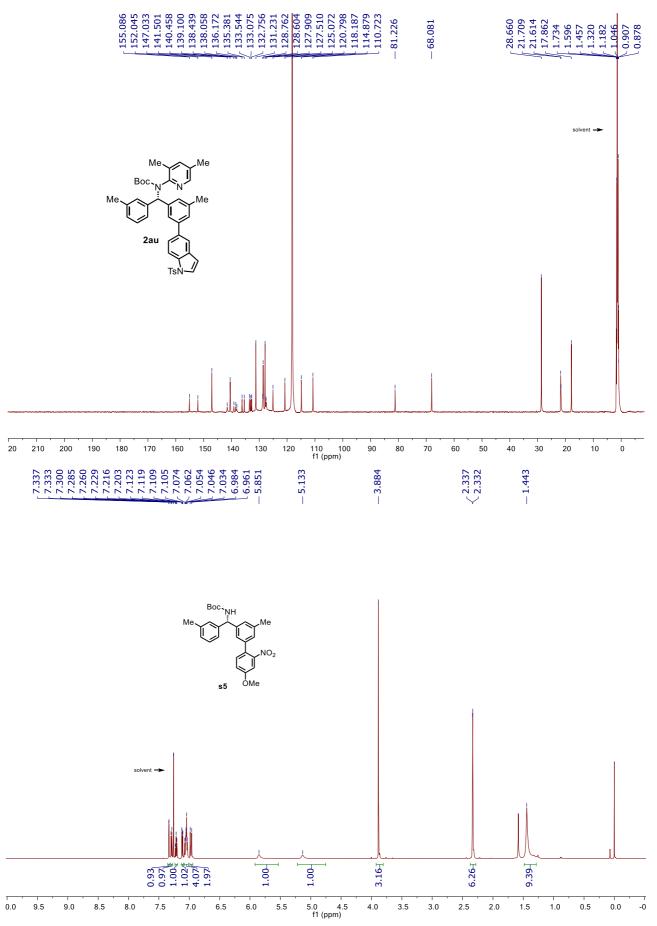


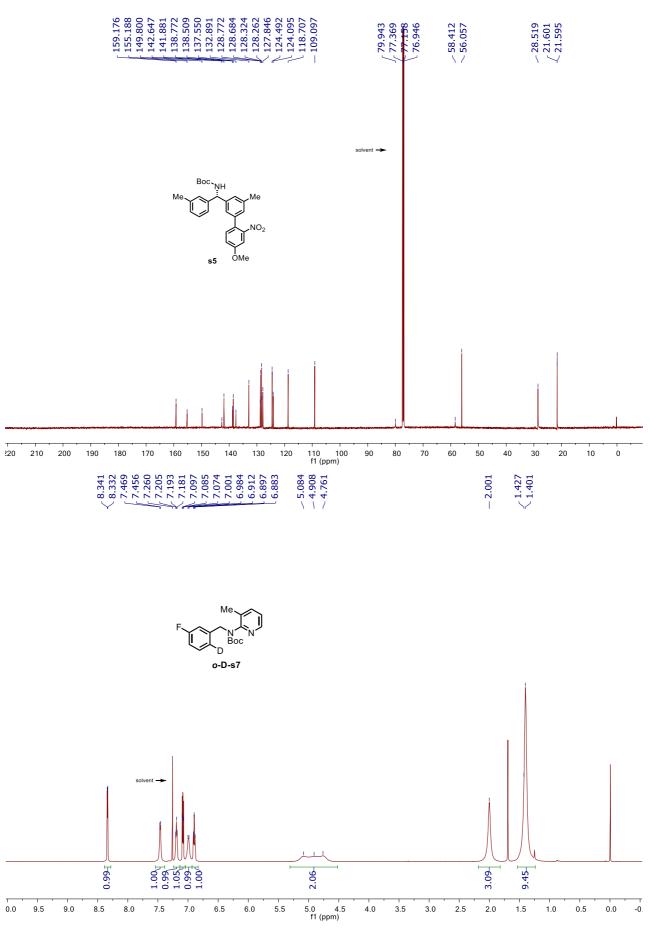


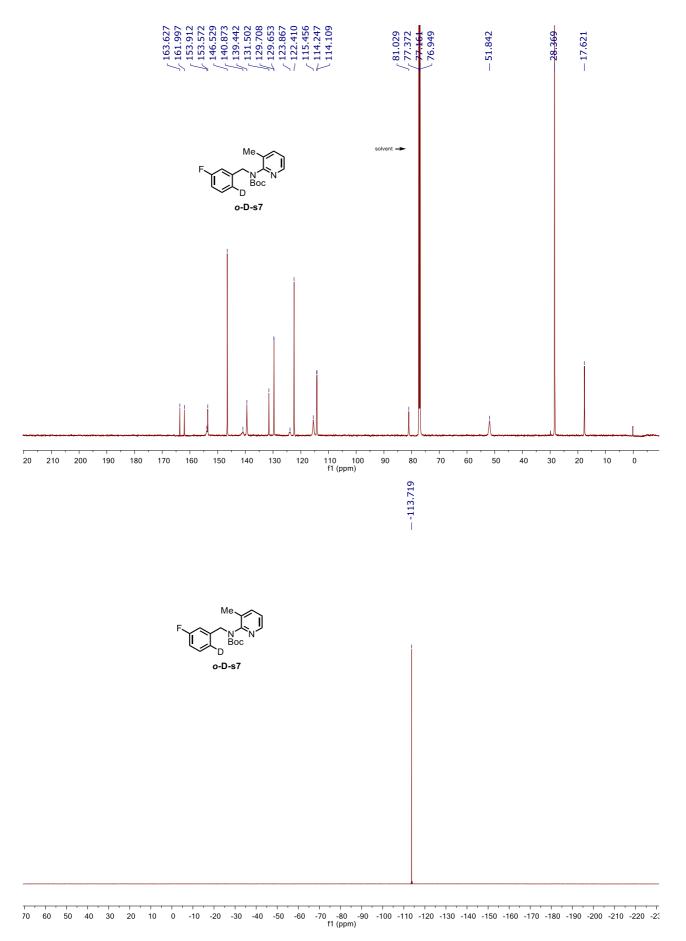


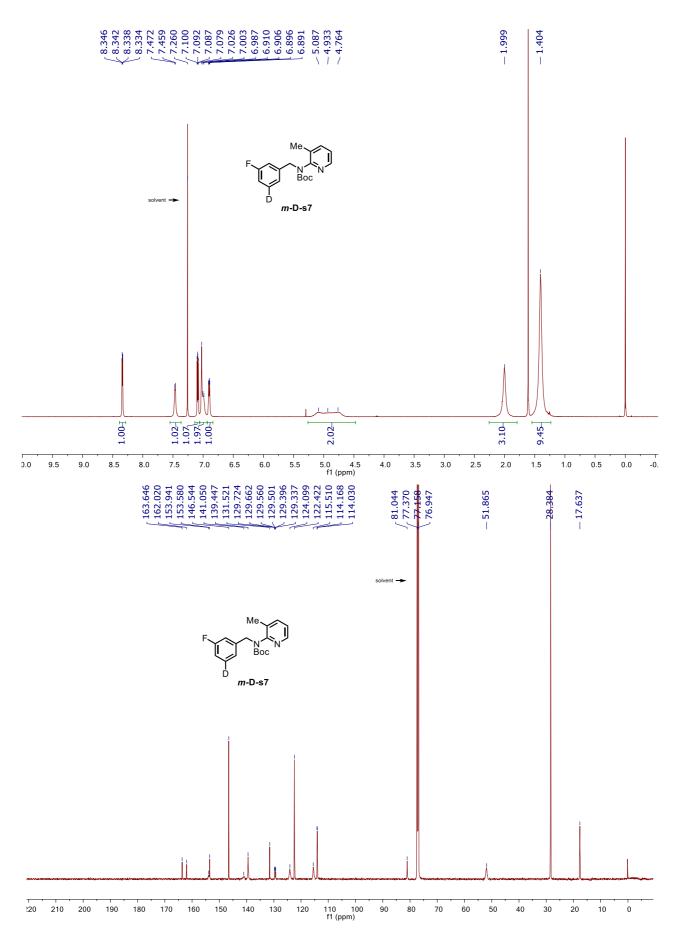


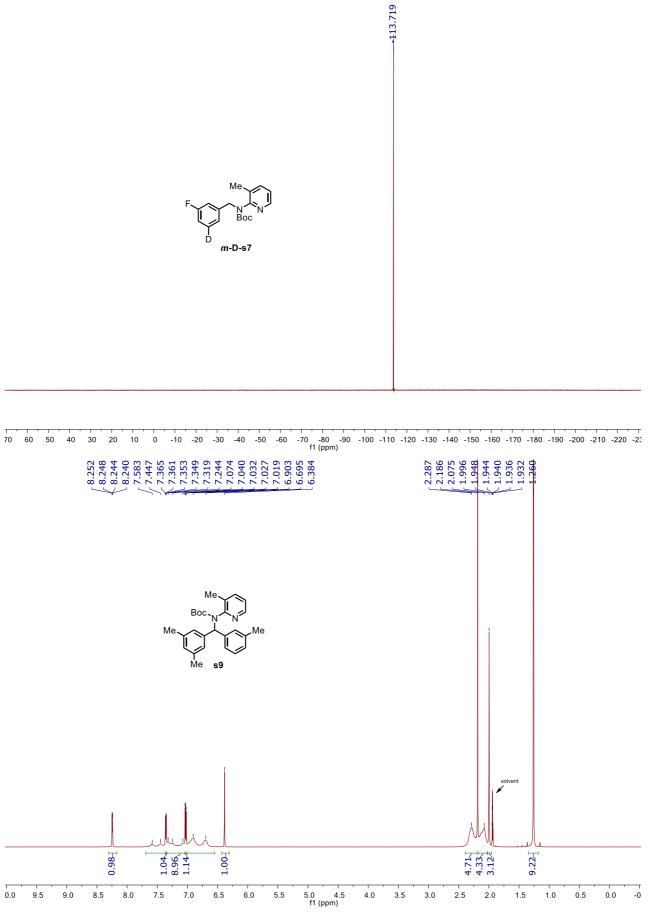


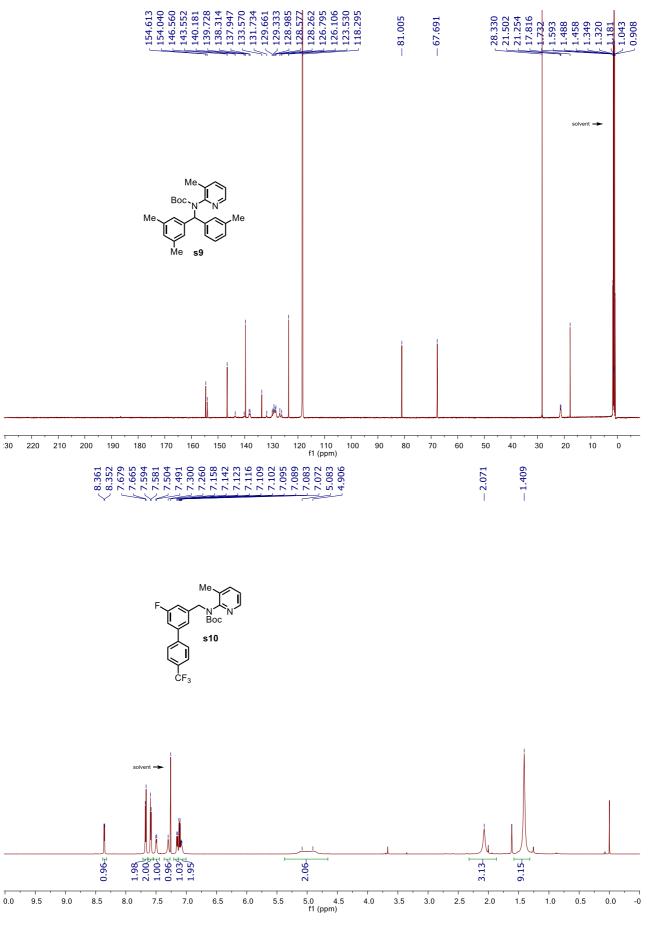


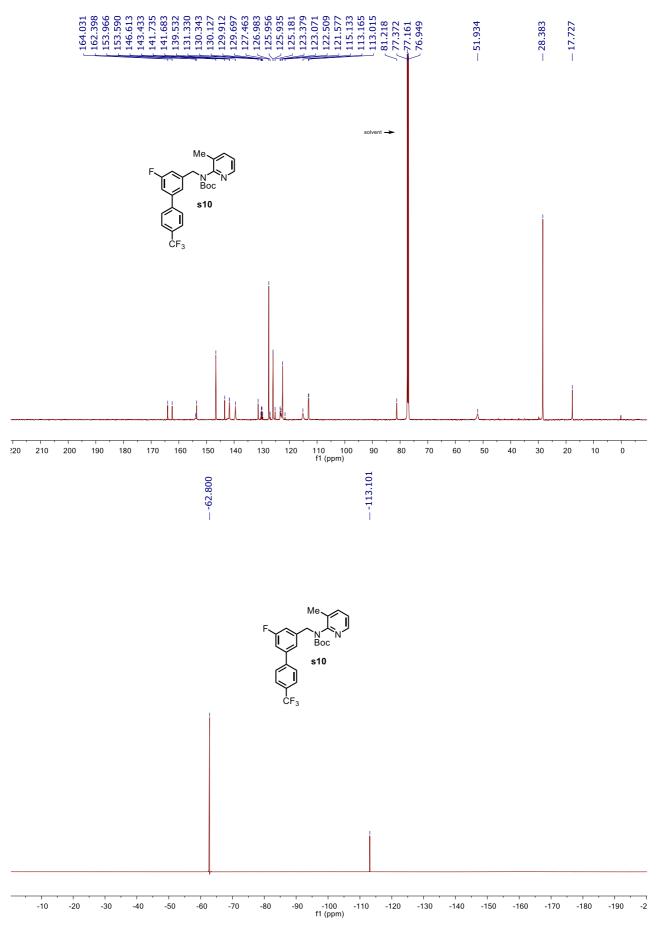


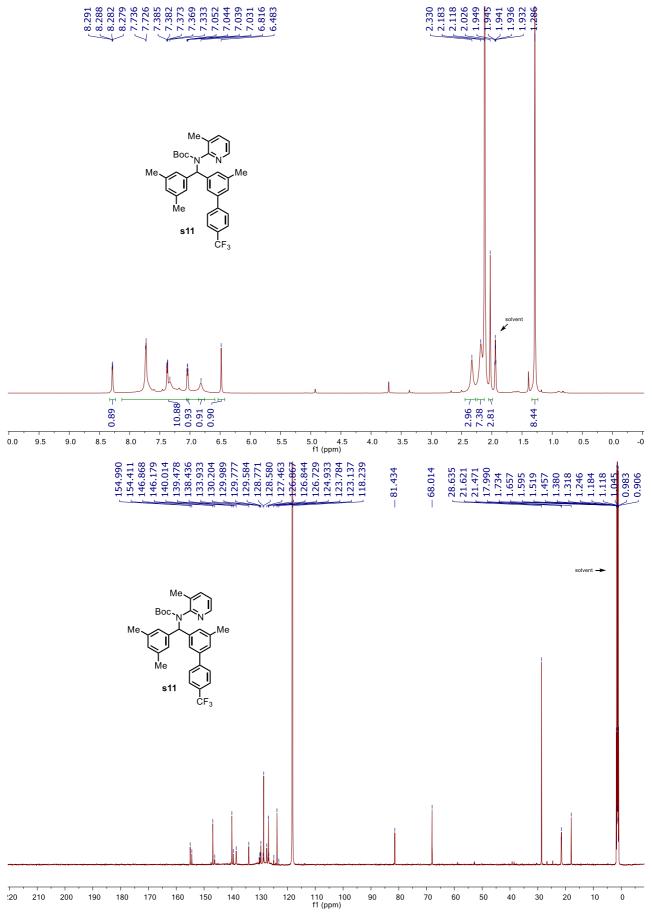


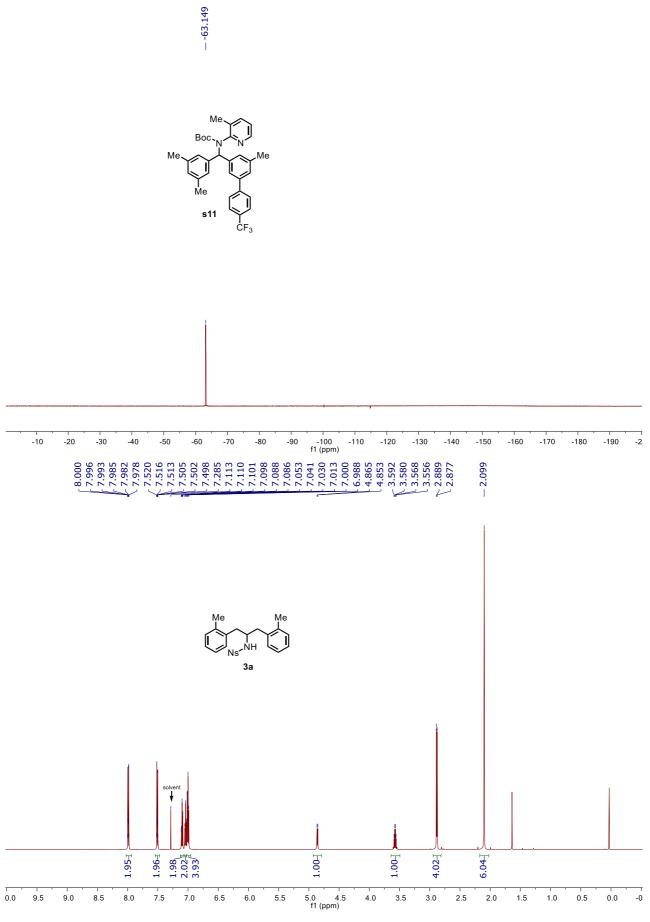


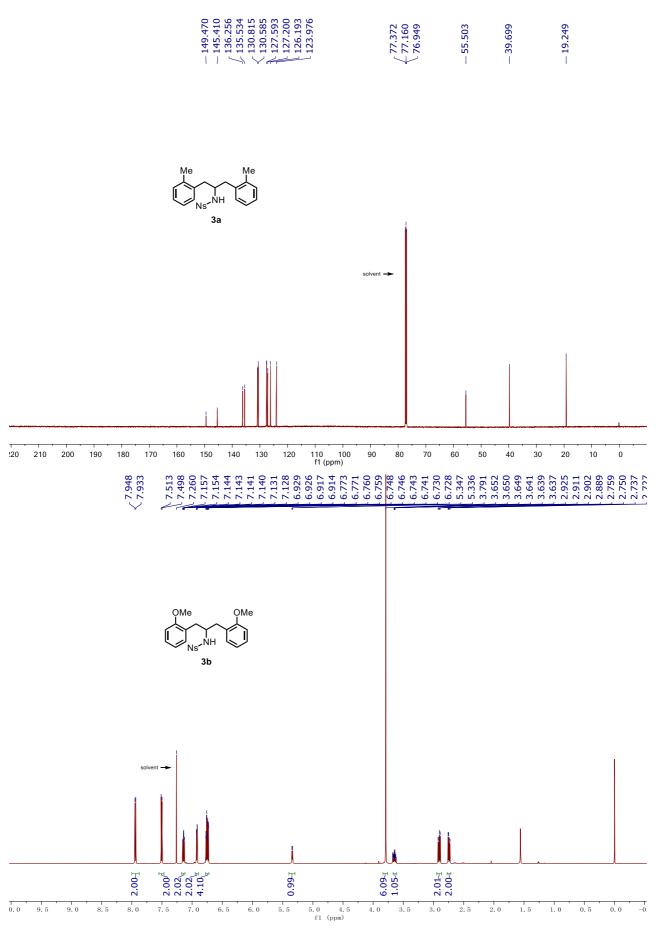


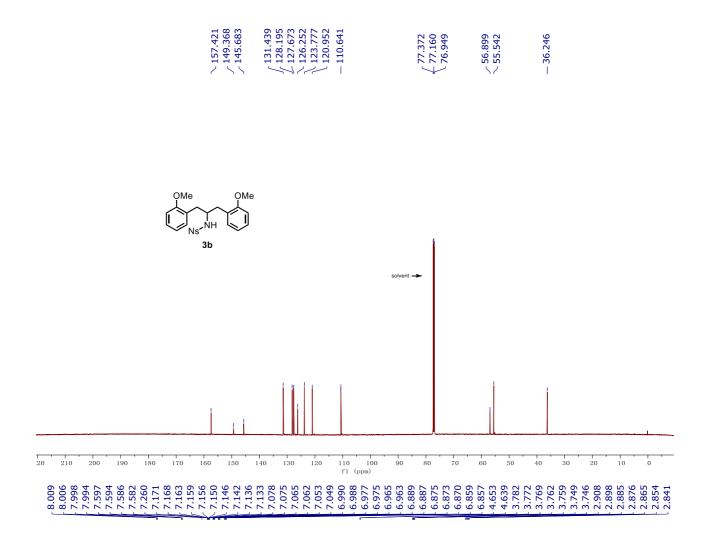


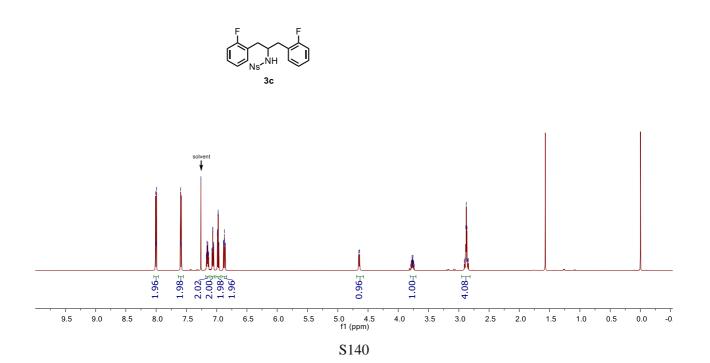


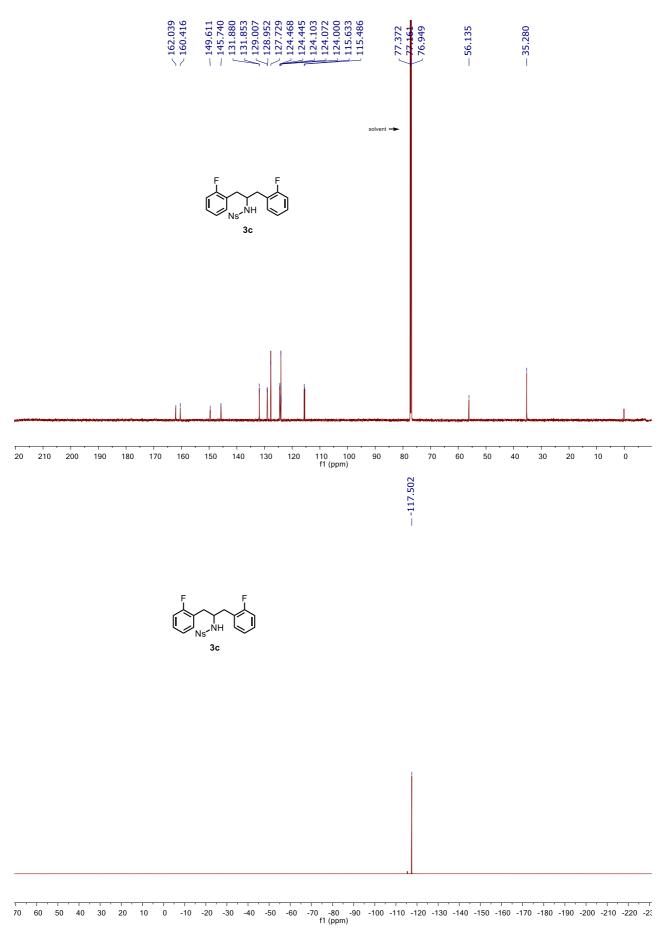


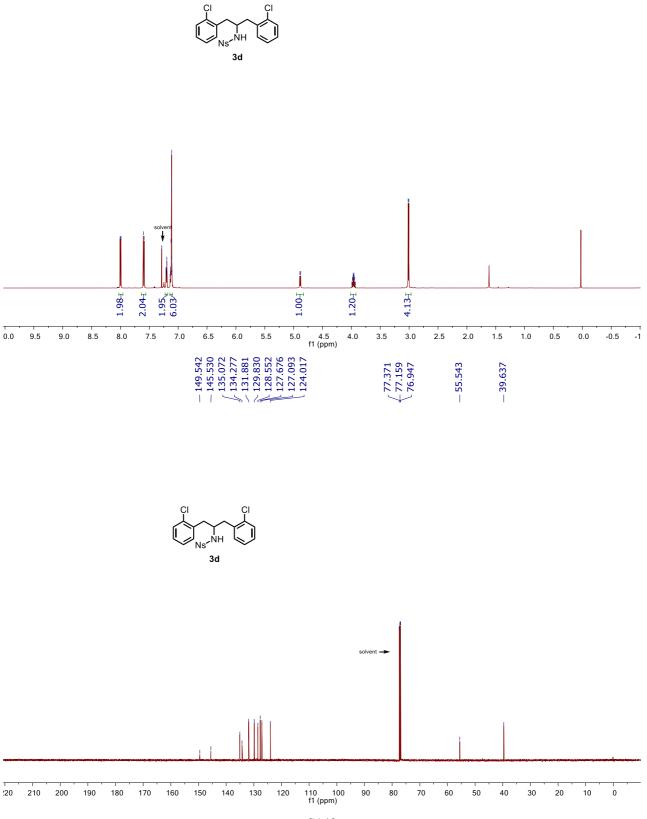


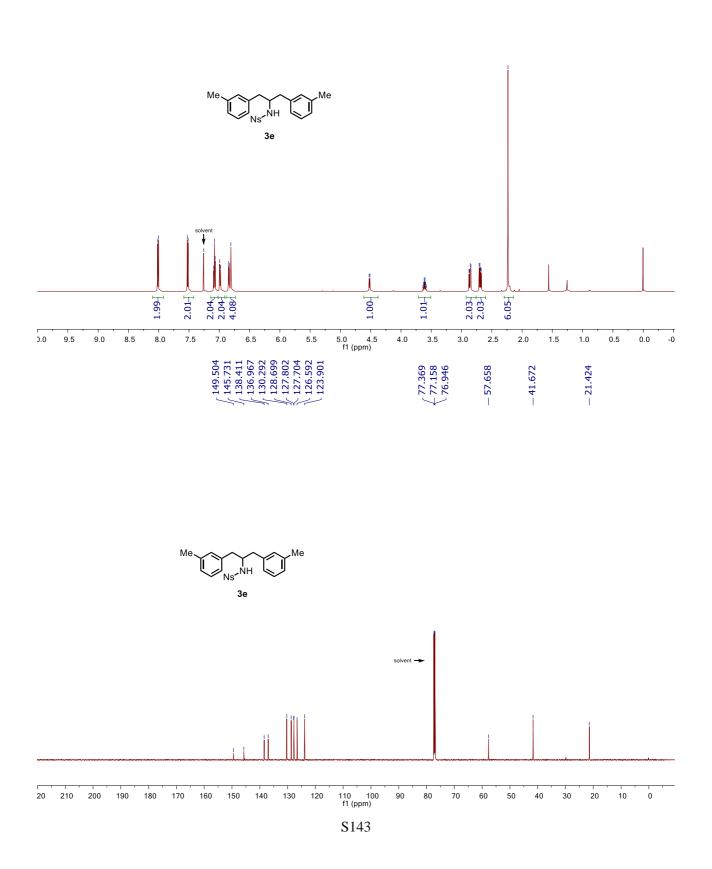


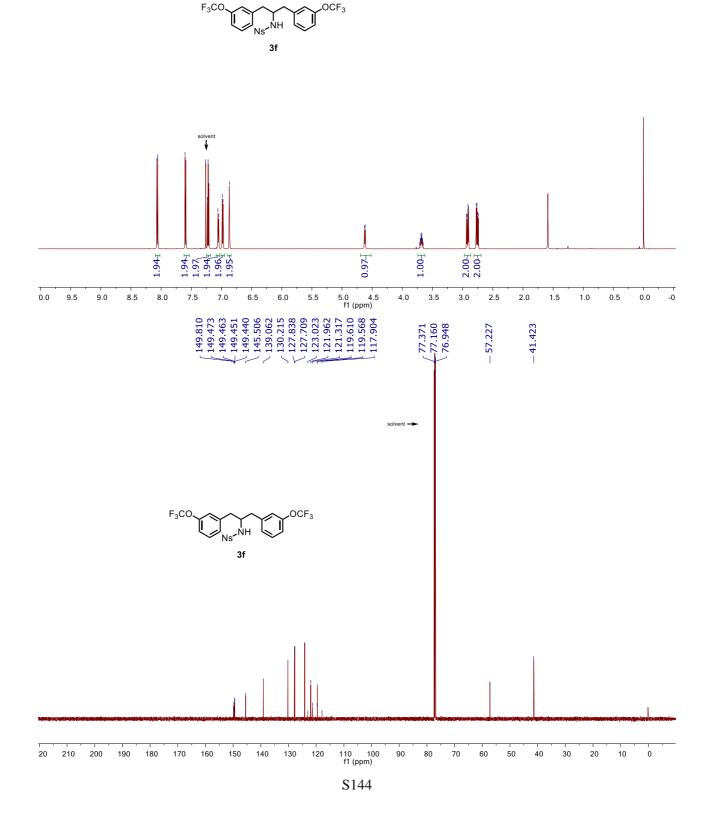


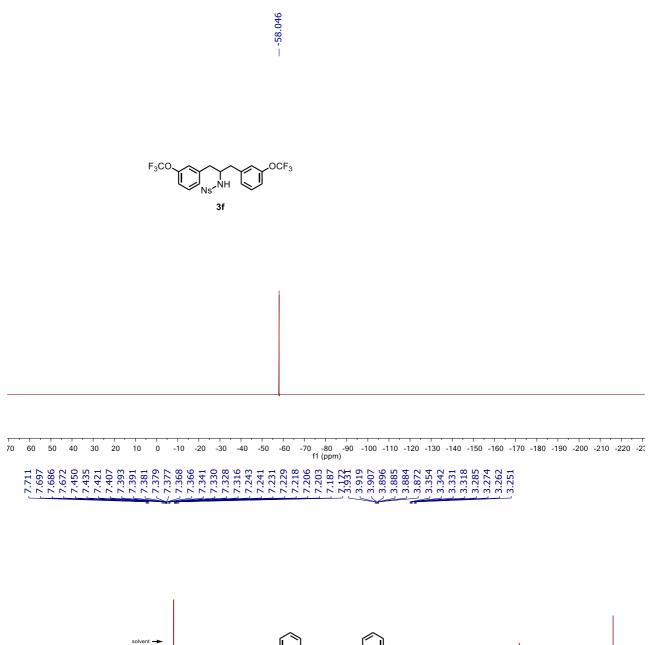


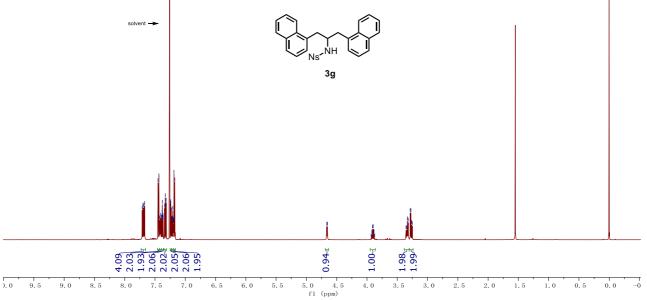


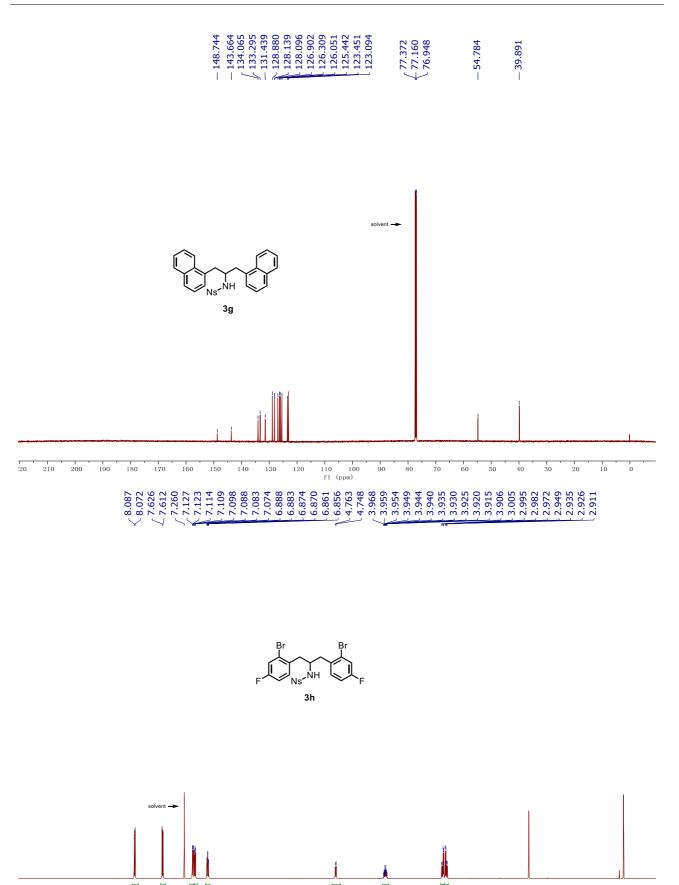


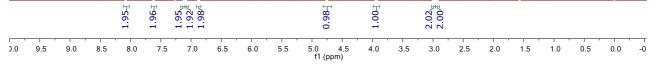


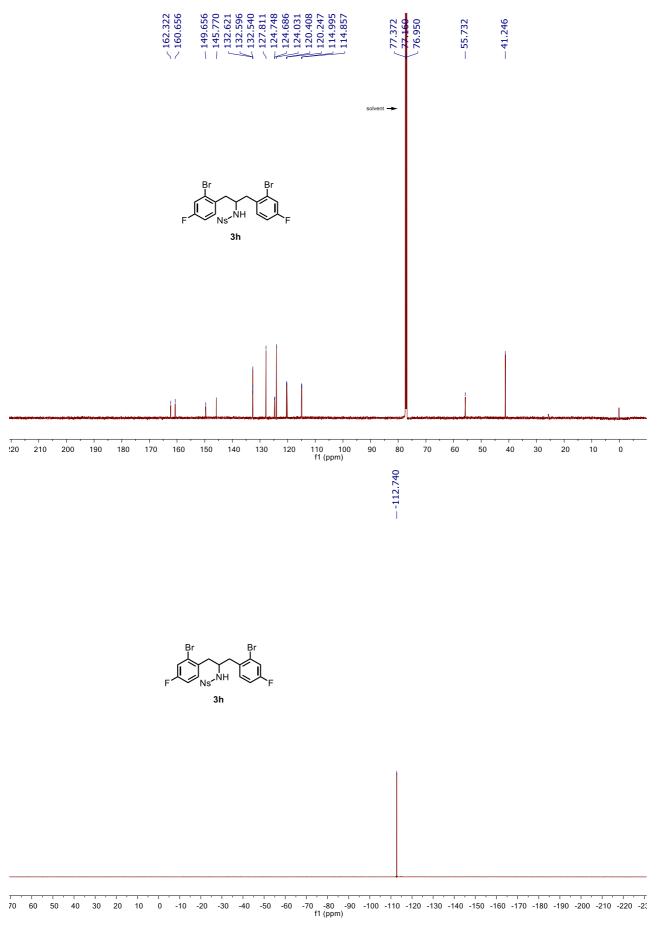

8:006 7:2892 7:2892 7:2892 7:2892 7:2197 7:2197 7:205 7:2

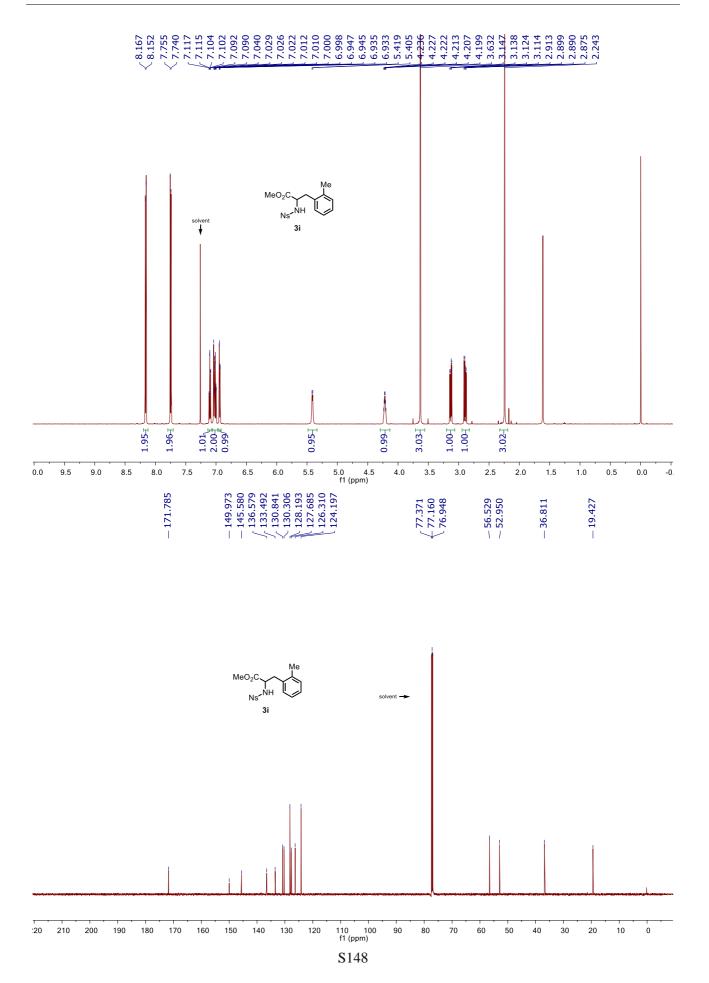


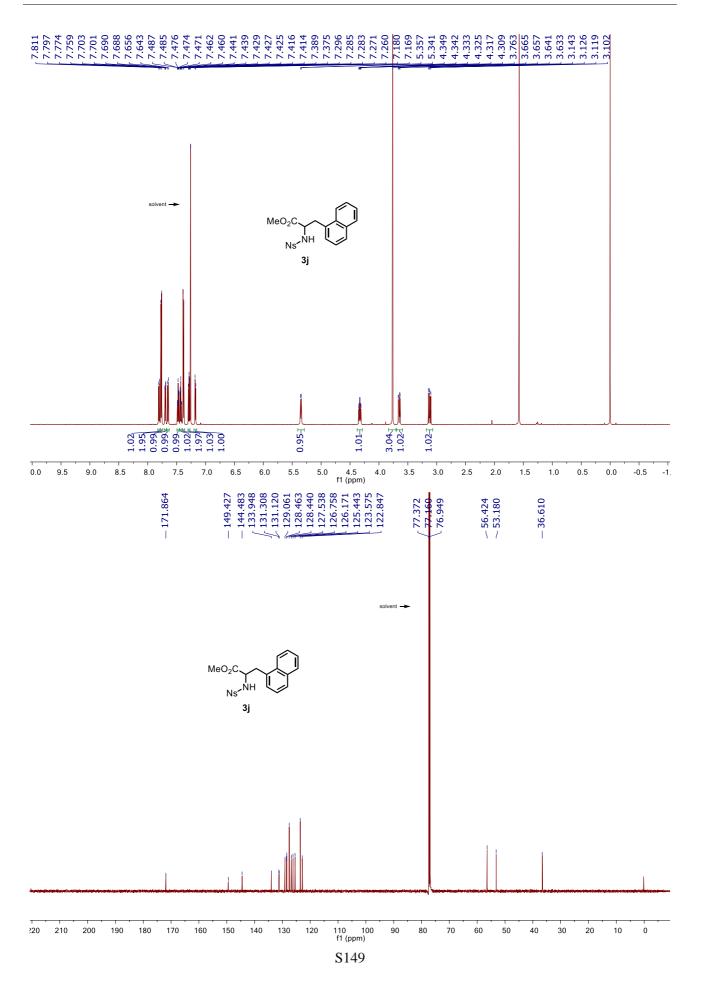


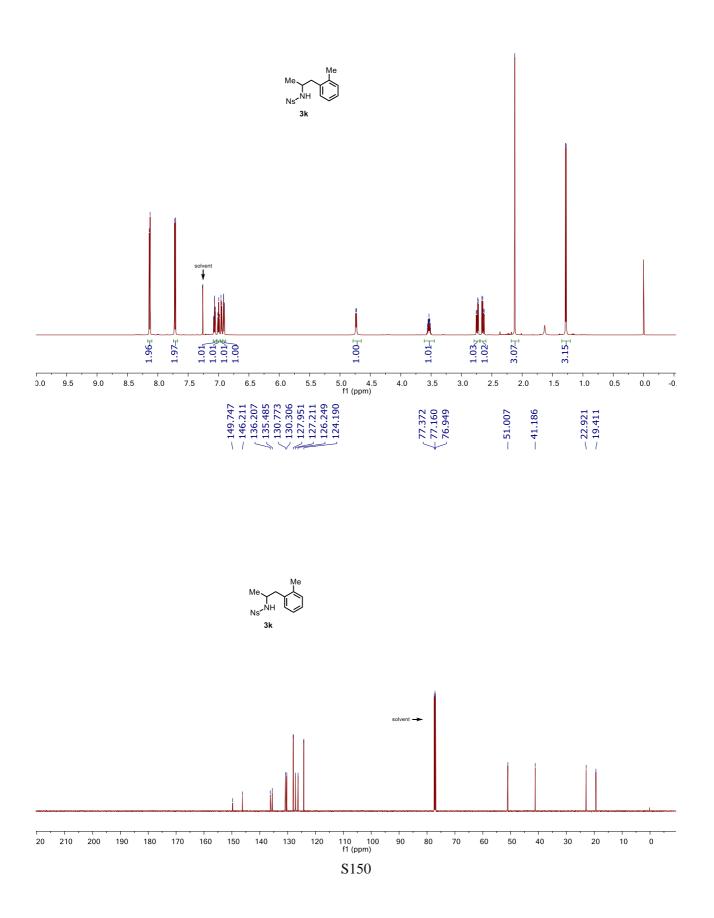


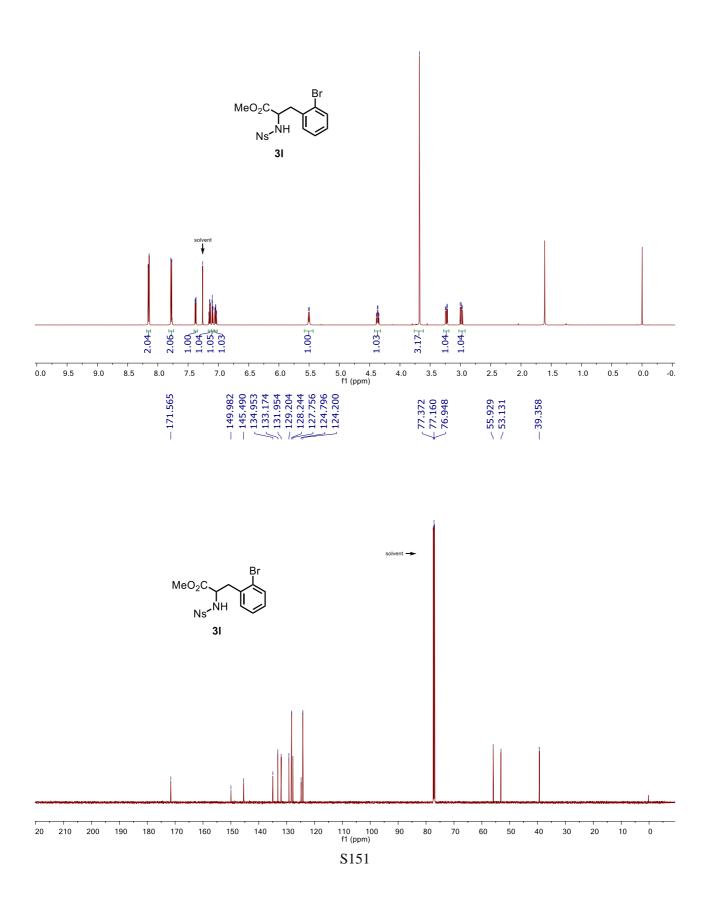


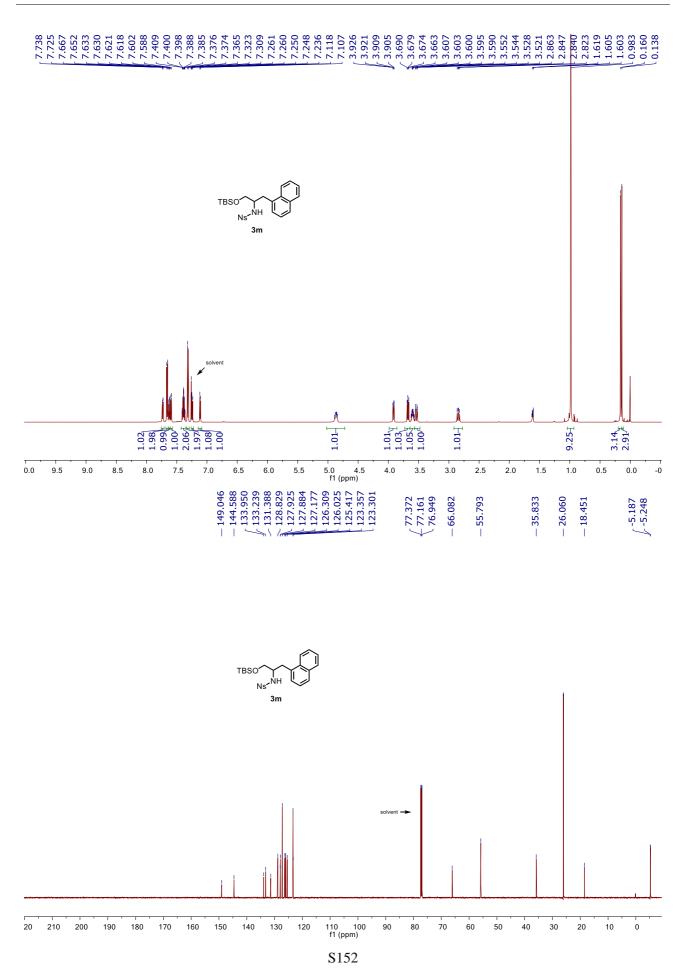


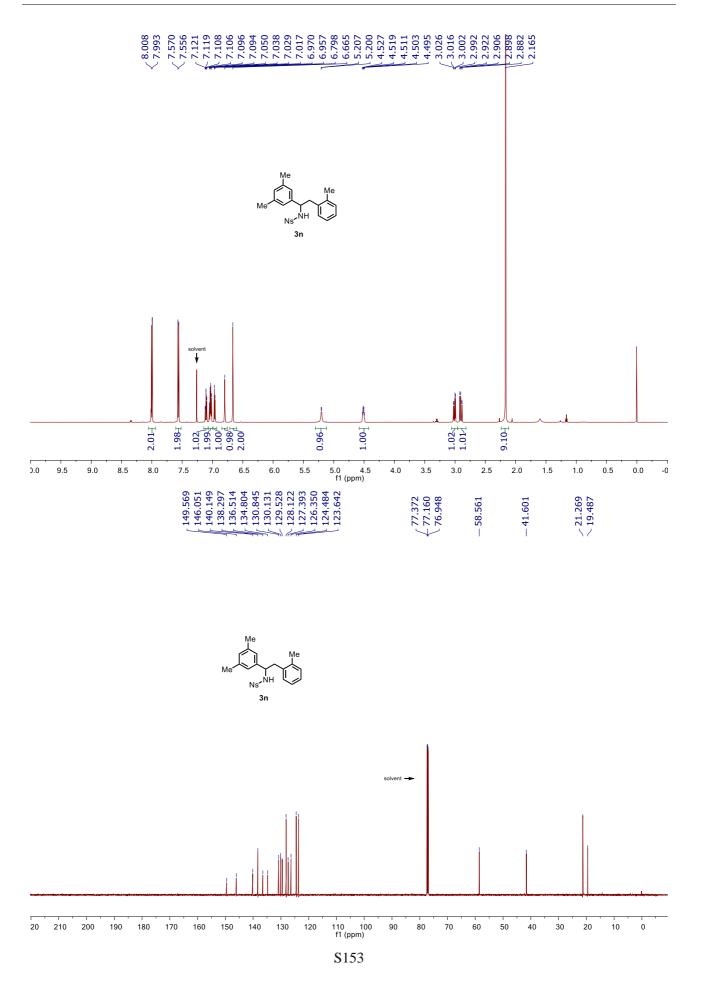


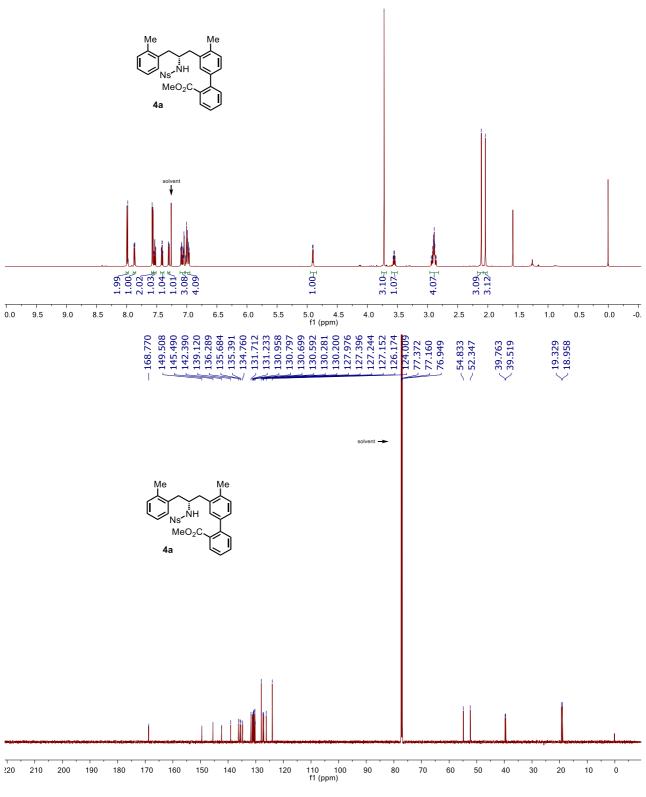


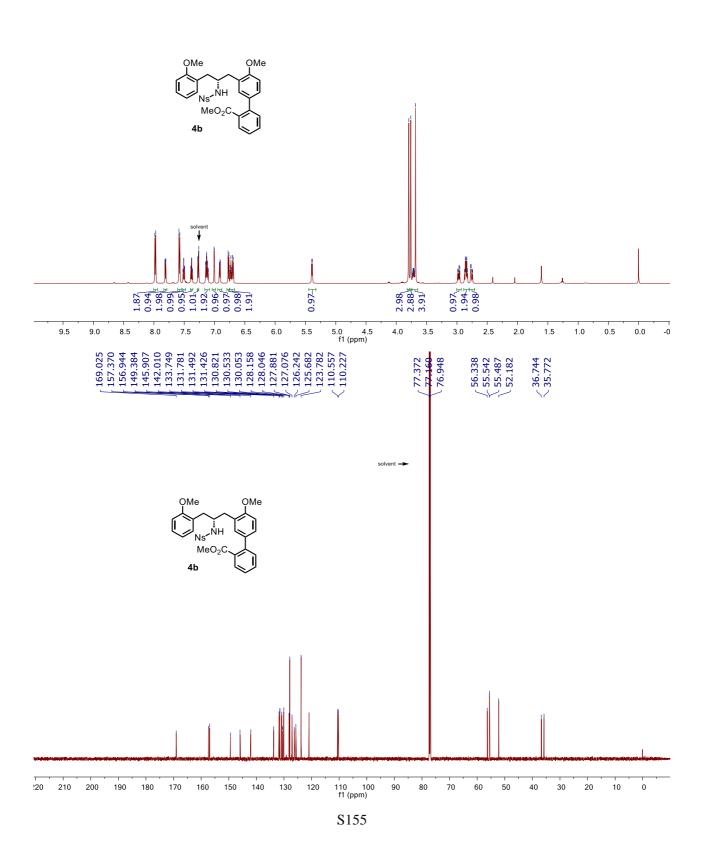


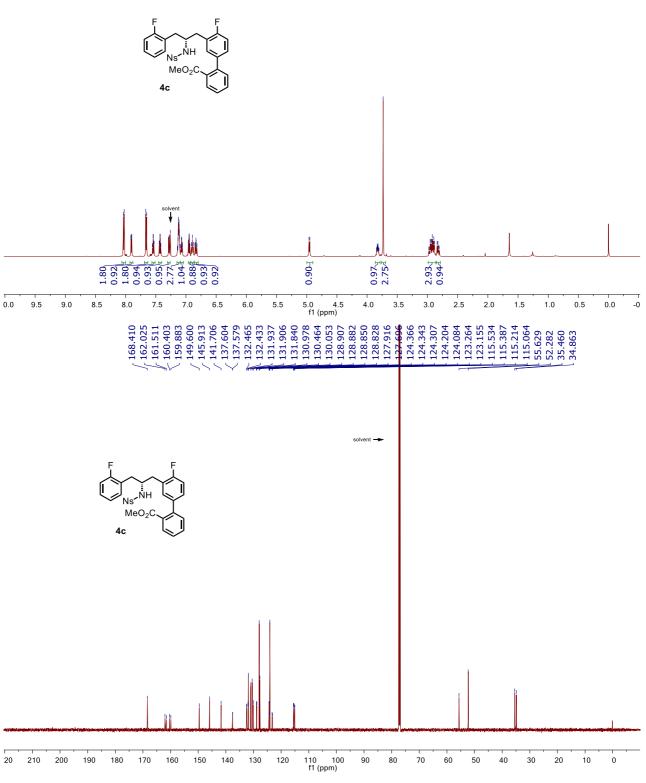


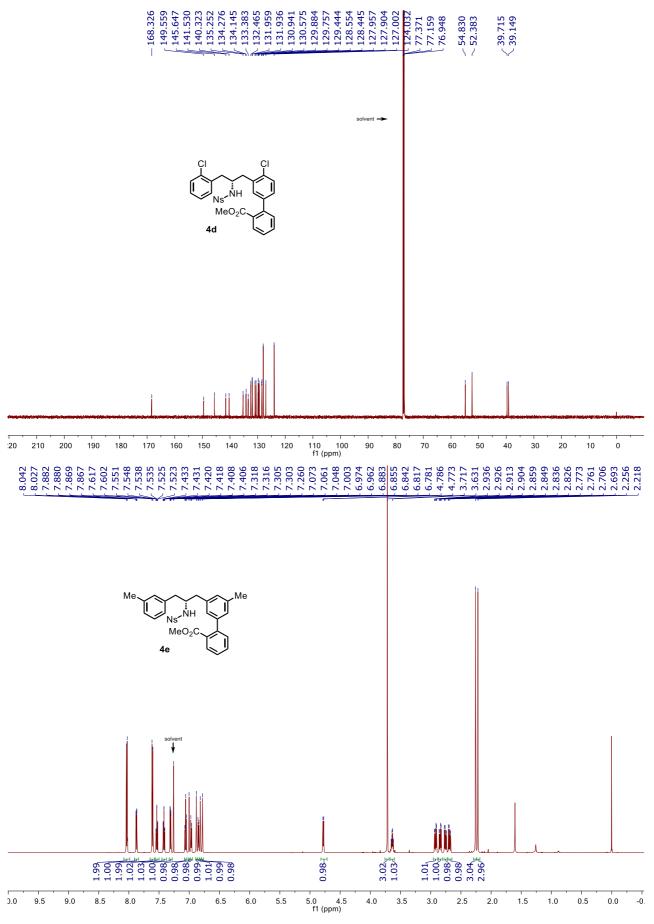


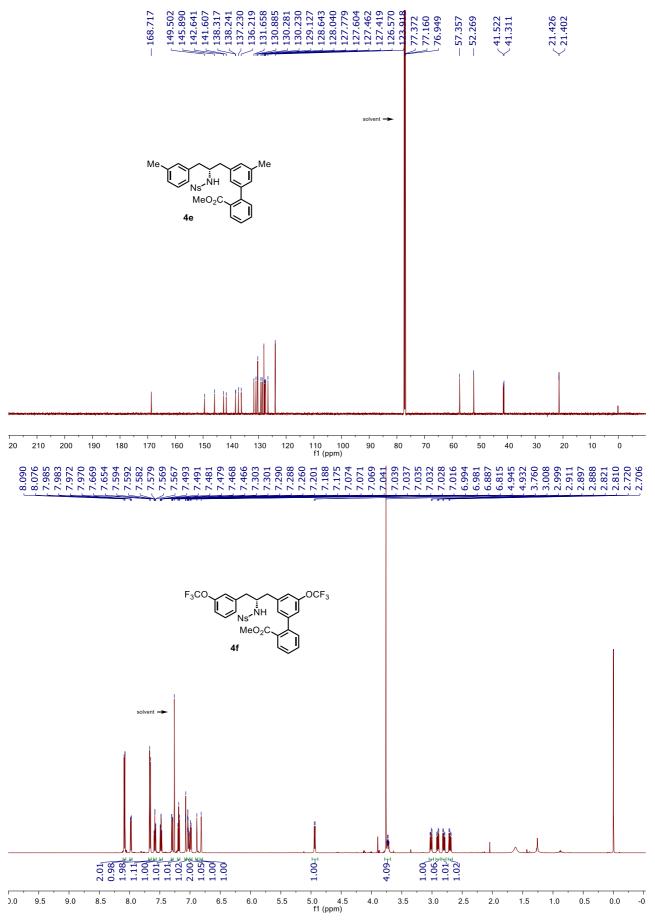




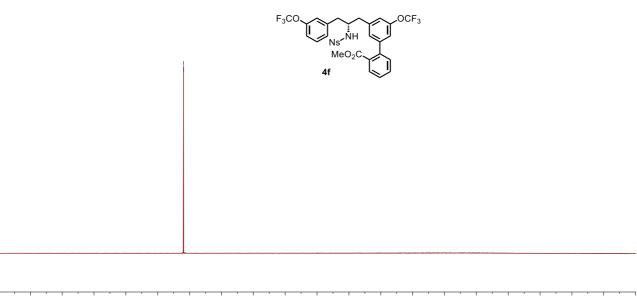


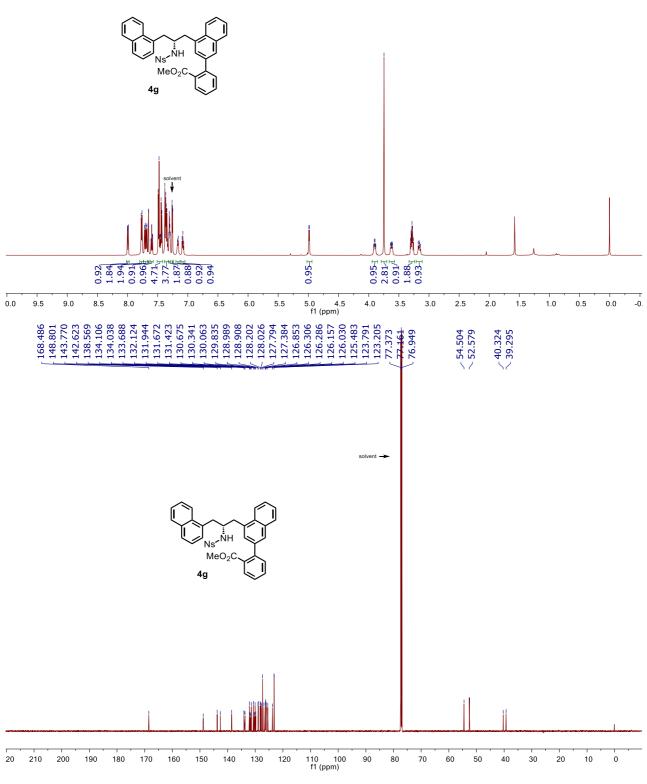


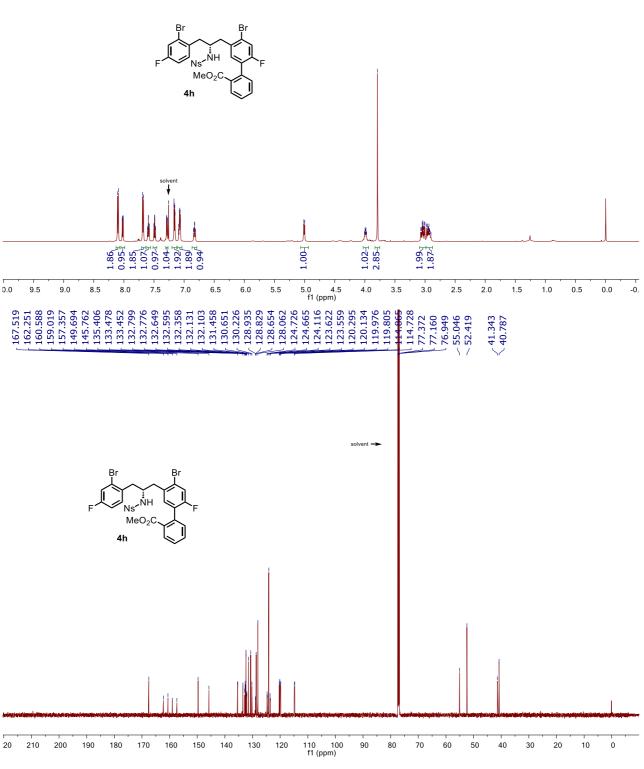


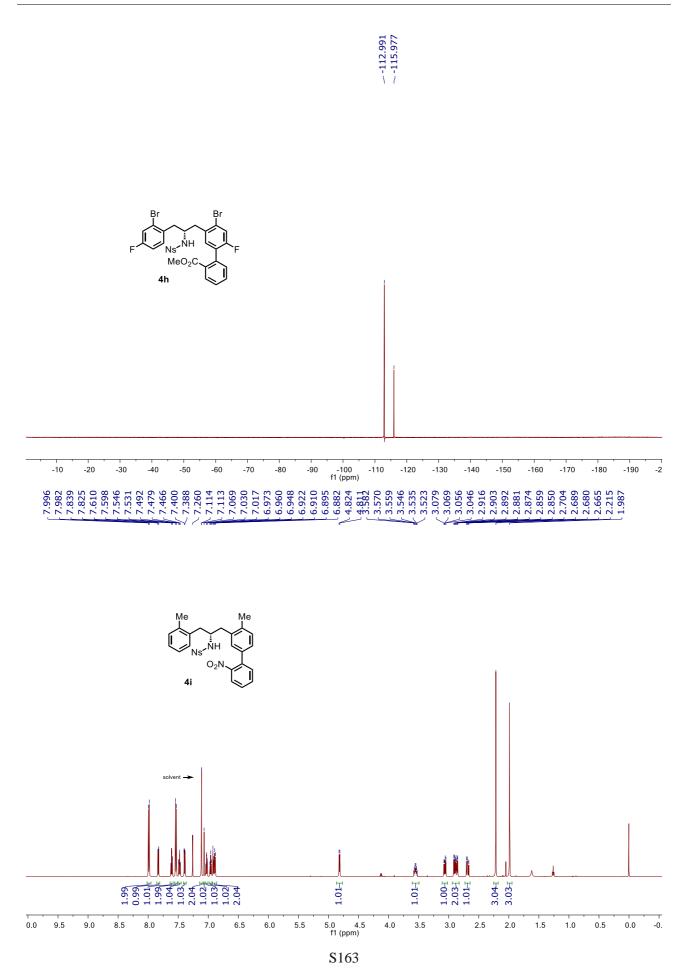


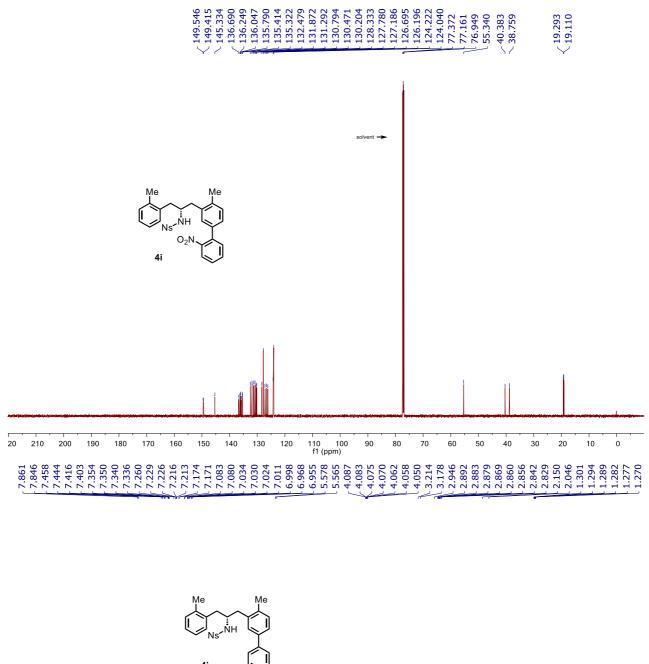

8.038 8.024 7.3911 7.3911 7.3908 7.7.8908 7.7.8908 7.7.8908 7.7.841 7.7.441 7.7.443 7.7.443 7.7.443 7.7.444 7.7.444 7.7.444 7.7.444 7.7.444 7.7.550 7.7.444 7.7.550 7.7.115 7.7.1256 7.7.2556 7.7.12567 7.7.12567 7.7.12567 7.7.12567 7.7.12567 7.7.12

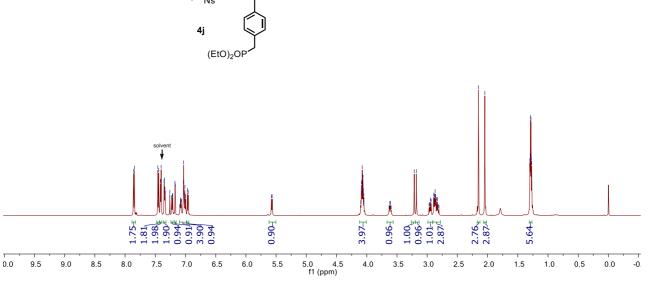




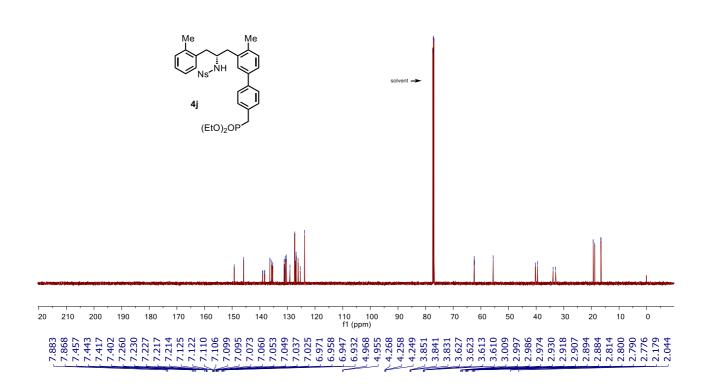


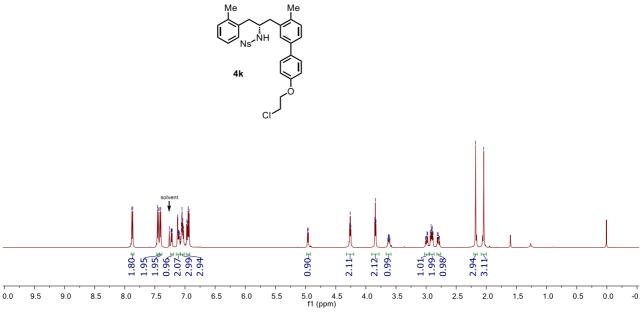

-170 -10 -20 -30 -40 -50 -70 -100 f1 (ppm) -140 -150 -160 -180 -190 -2 -60 -80 -90 -110 -120 -130

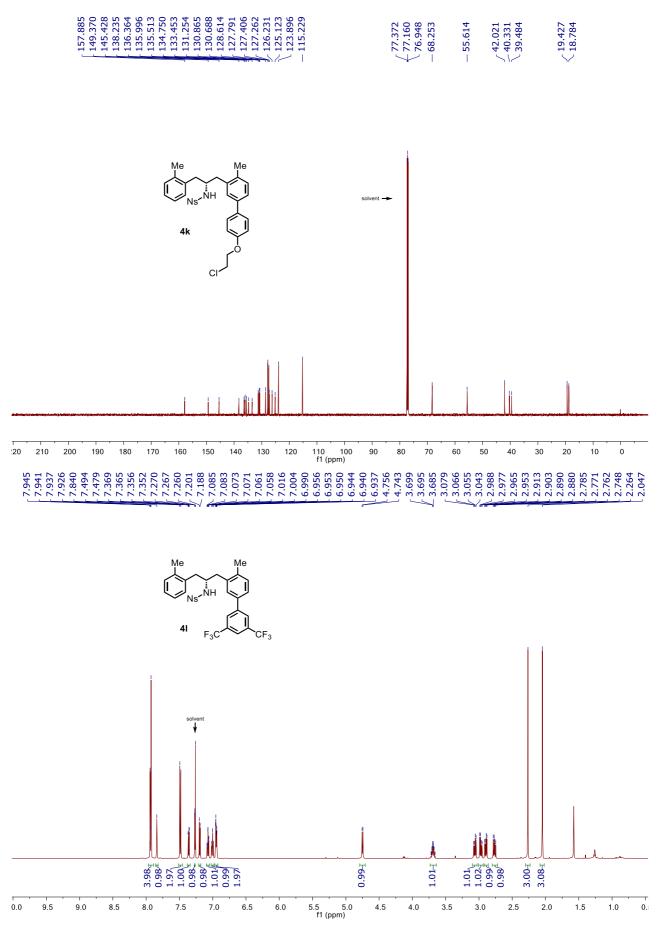

8.001 7.2999 7.7730 7.7730 7.7730 7.7730 7.7735 7.7735 7.7735 7.7735 7.7735 7.7735 7.7755 7.7755 7.7755 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7.75567 7

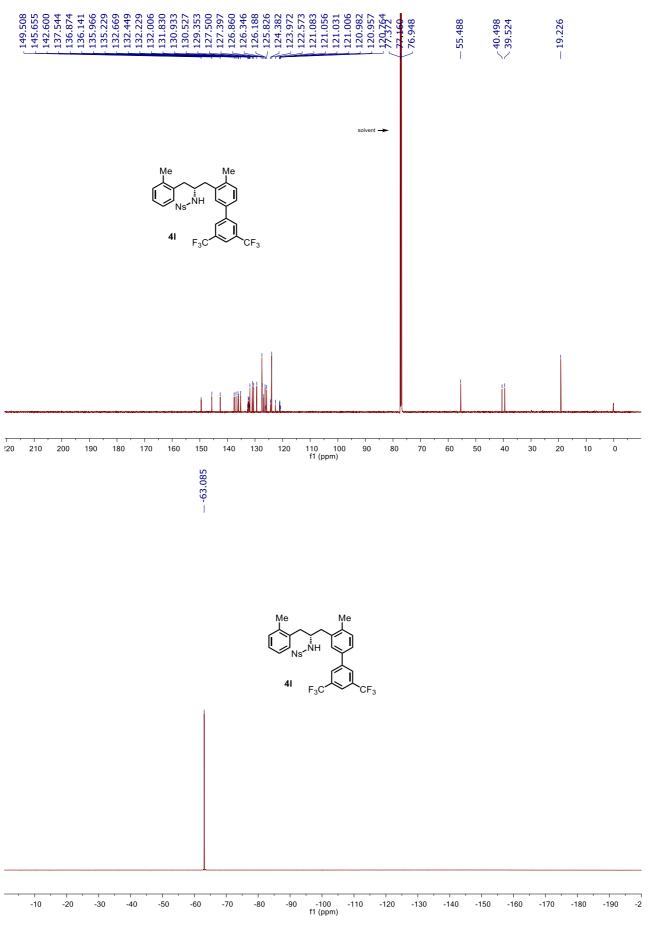


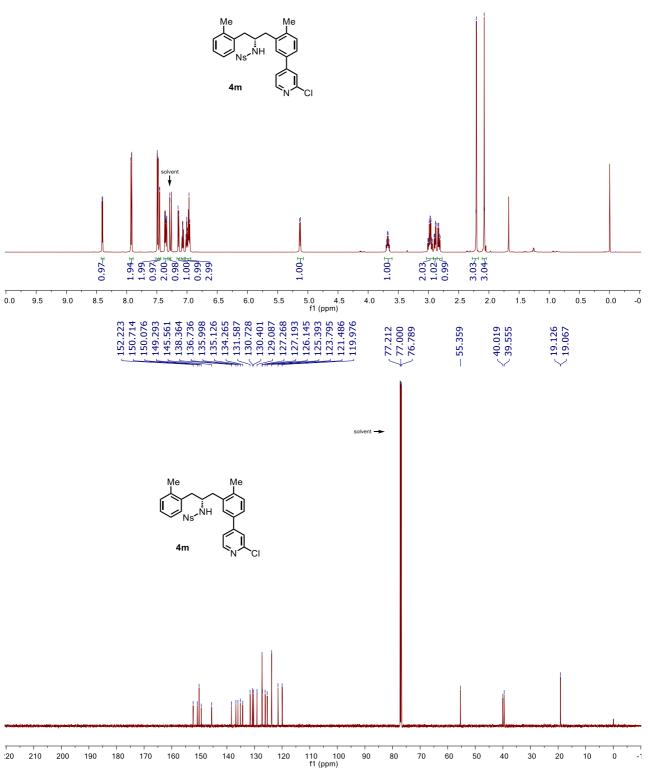
8.107 8.028 8.028 8.028 8.015 8.026 8.015 8.015 8.015 8.015 7.607 7.607 7.501 7.7.501 7.7.501 7.7.503 7.7.7.503 7.7.7.7.503 7.7.7.503 7.7.7.503 7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.503 7.7.7.7.7.7.7.7.7.

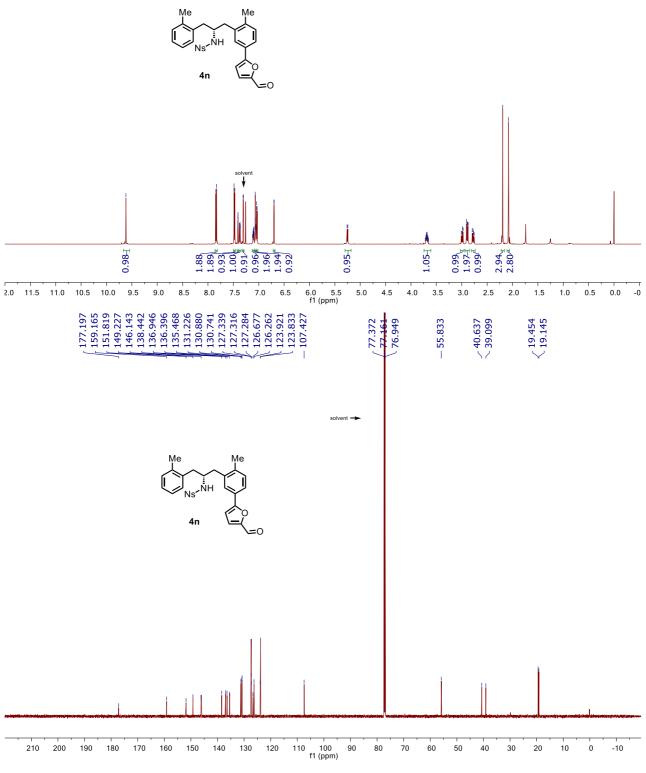


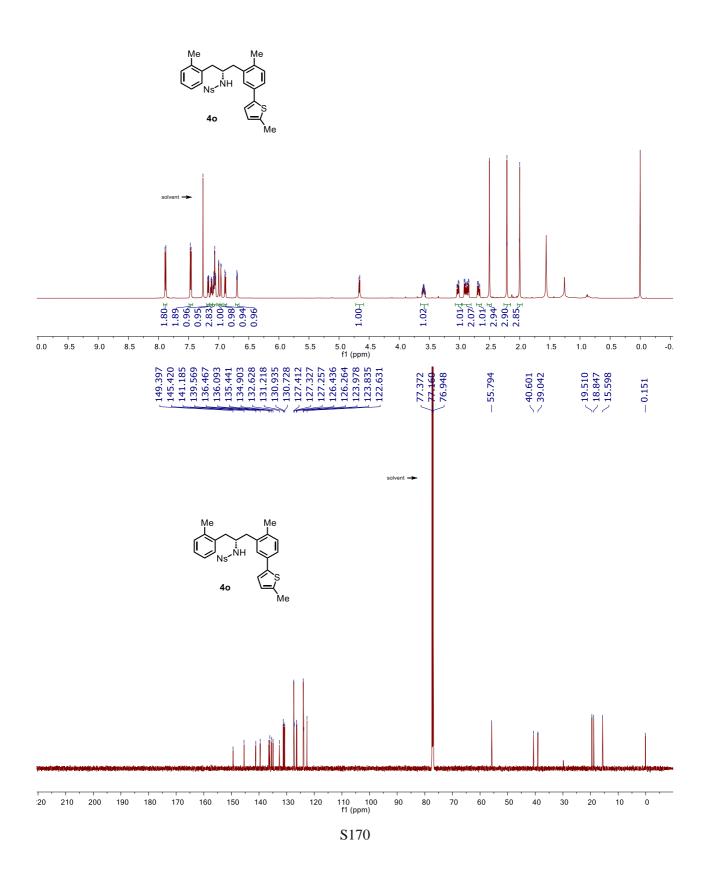


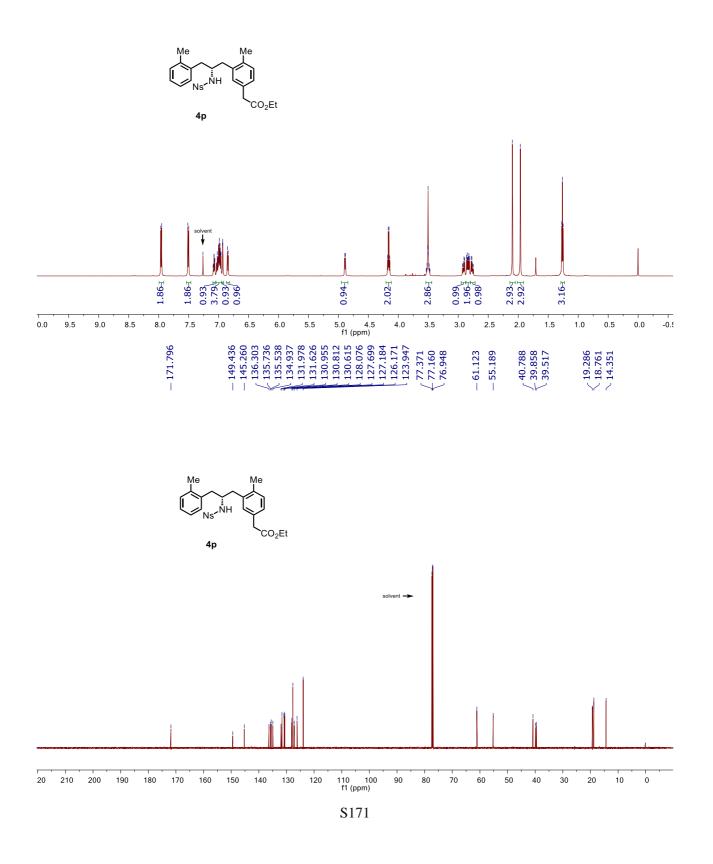


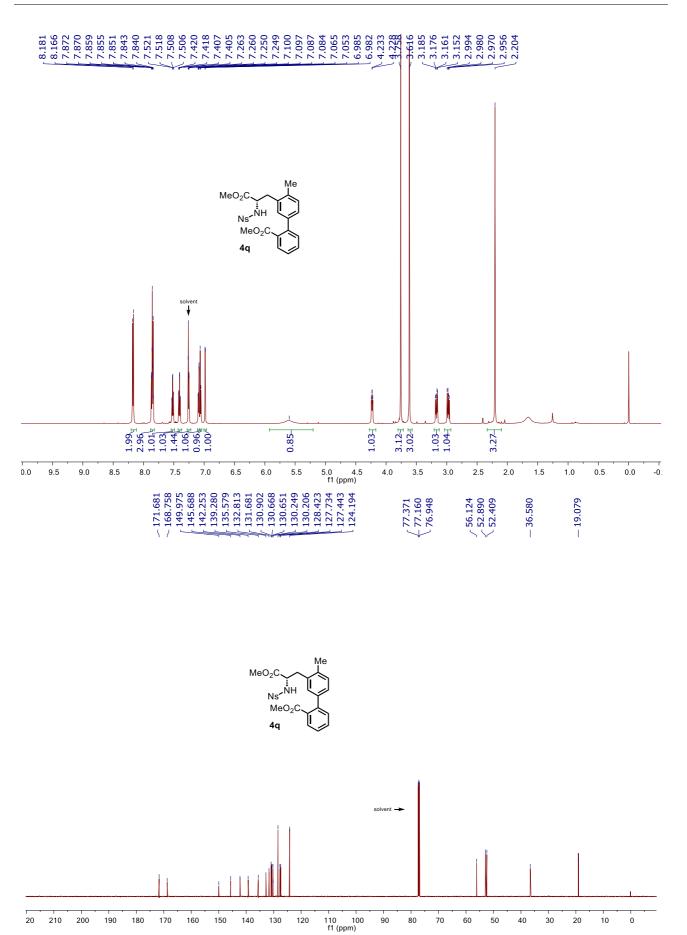




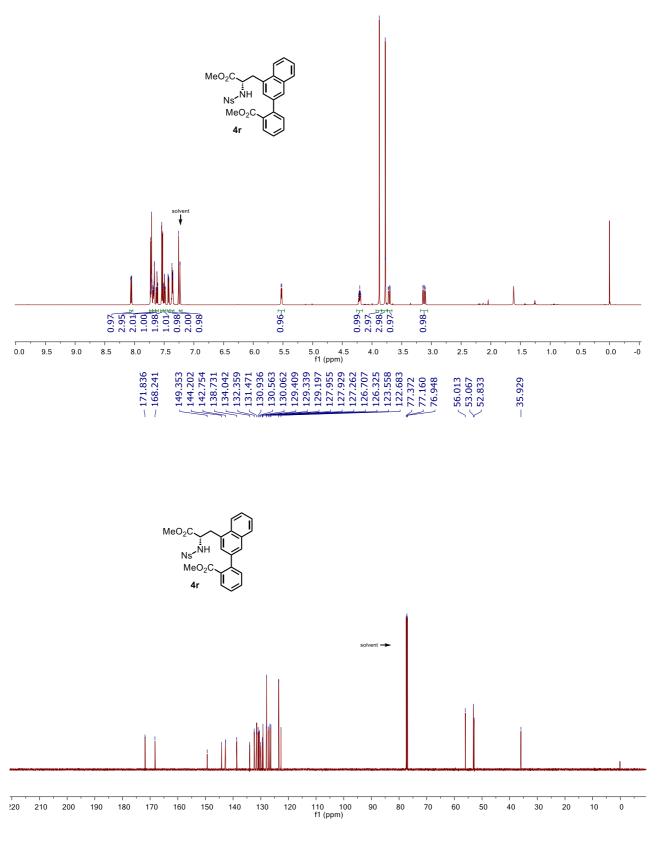


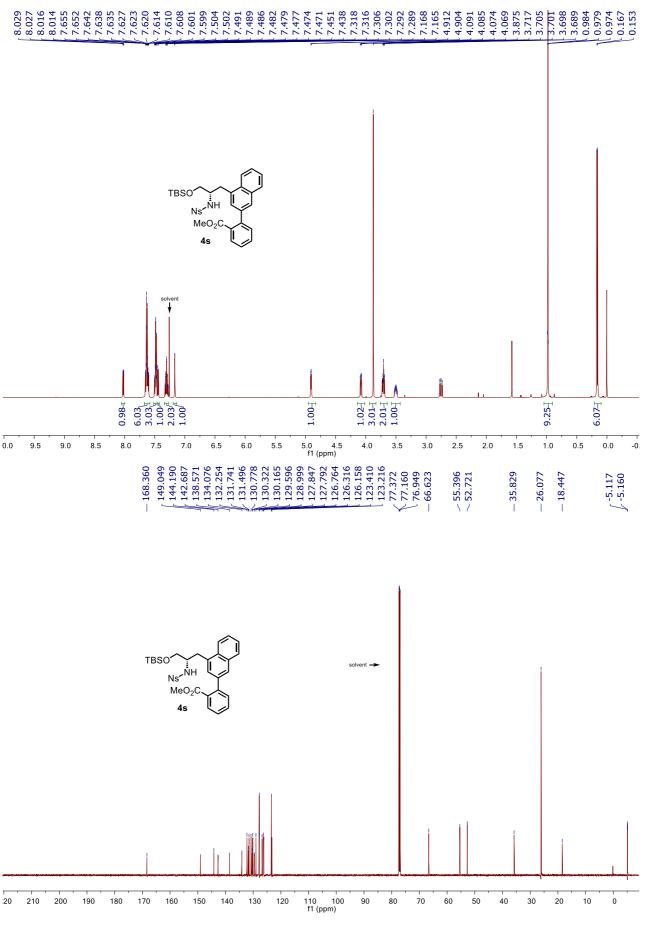


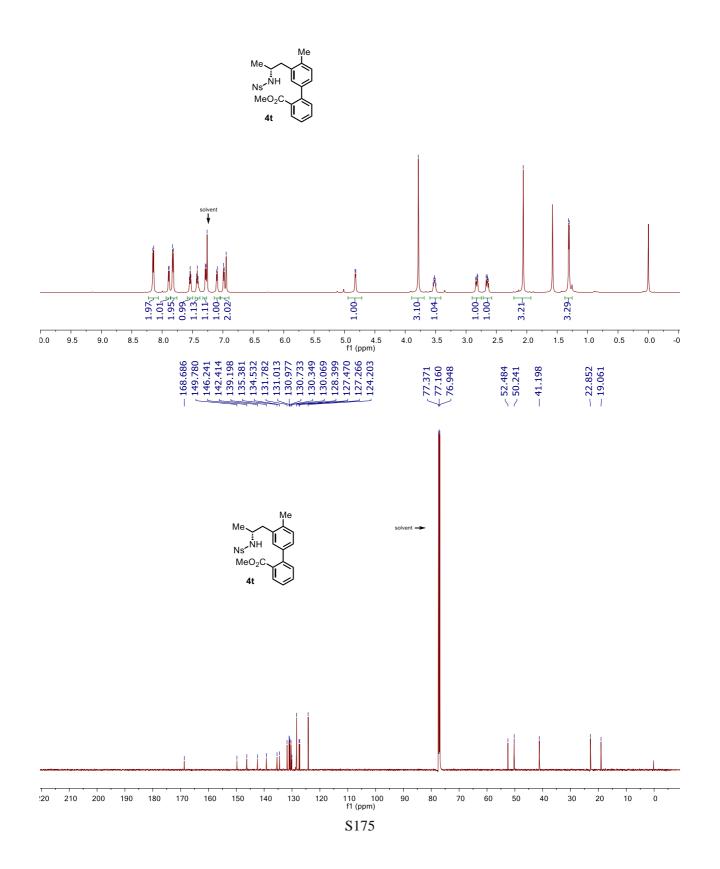


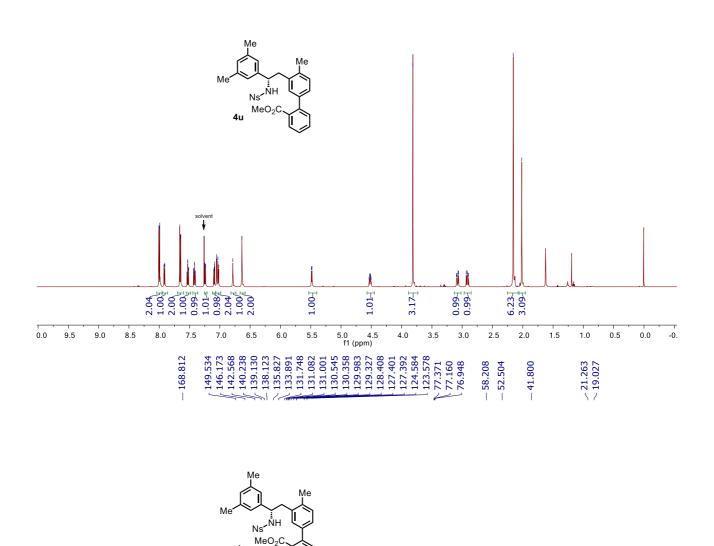


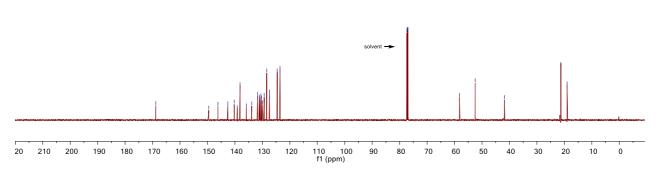
9.616 7.847 7.847 7.847 7.832 7.741 7.741 7.741 7.741 7.741 7.741 7.741 7.741 7.741 7.741 7.741 7.7336 7.7346 7.7346 7.7356 7.7356 7.7356 7.7356 7.7356 7.7356





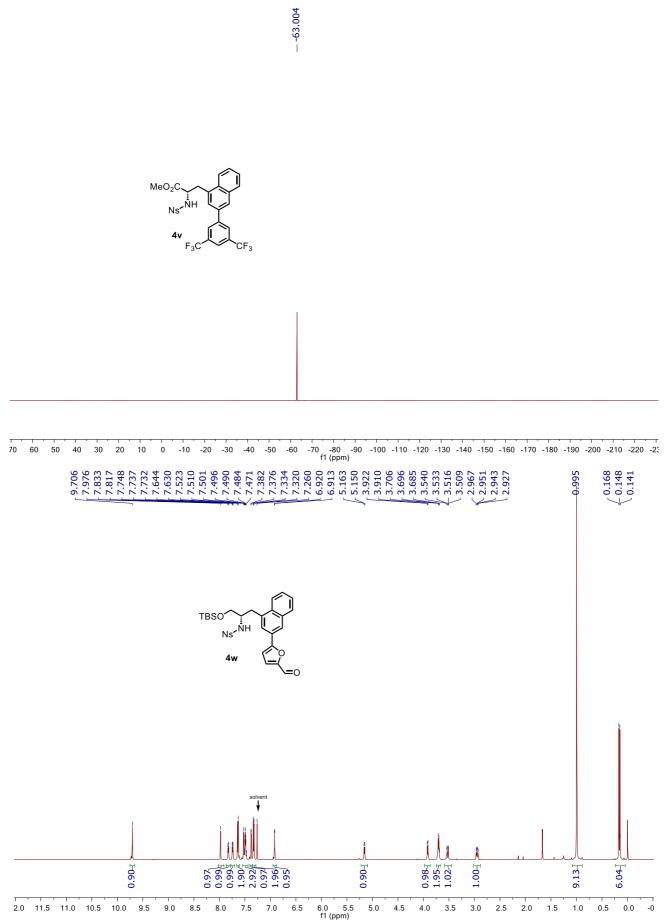


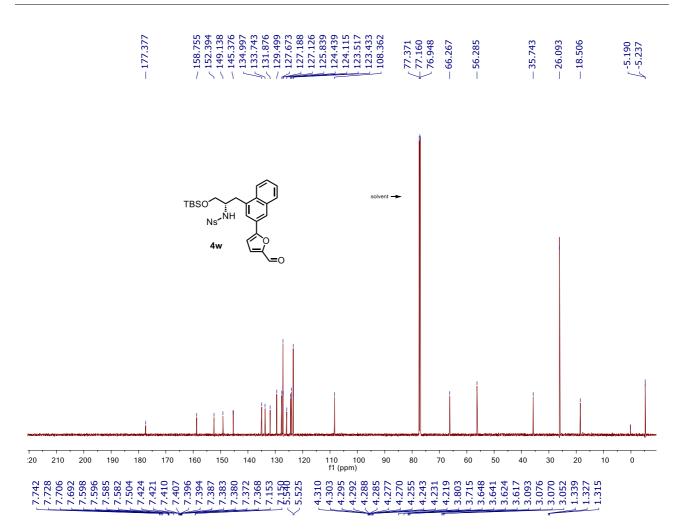


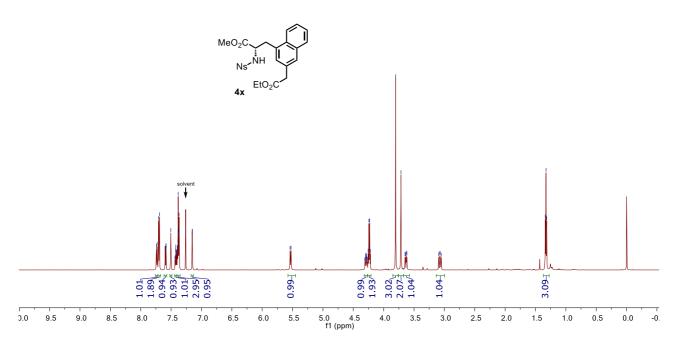


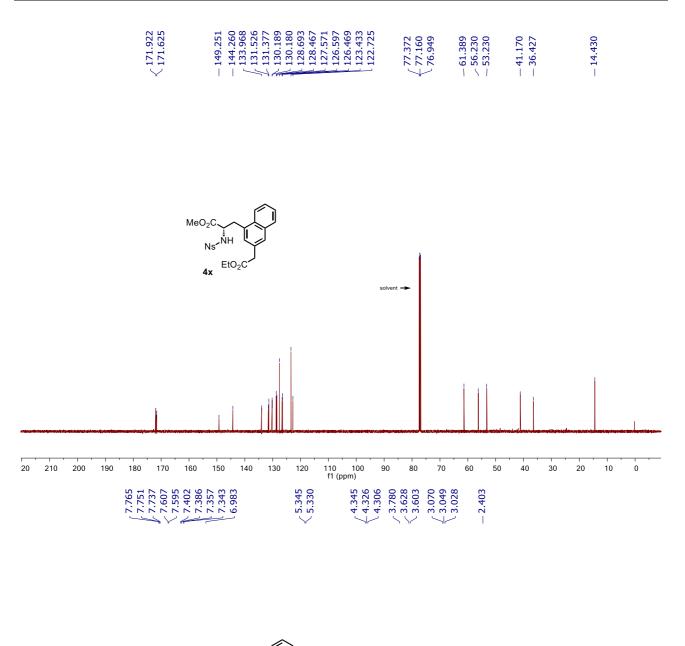
8.154 8.154 7.887 7.884 7.884 7.551 7.551 7.5537 7.5537

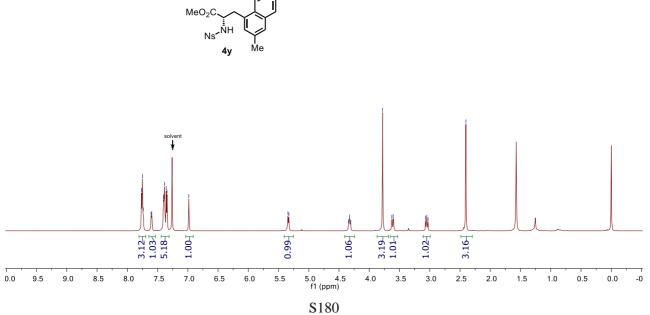


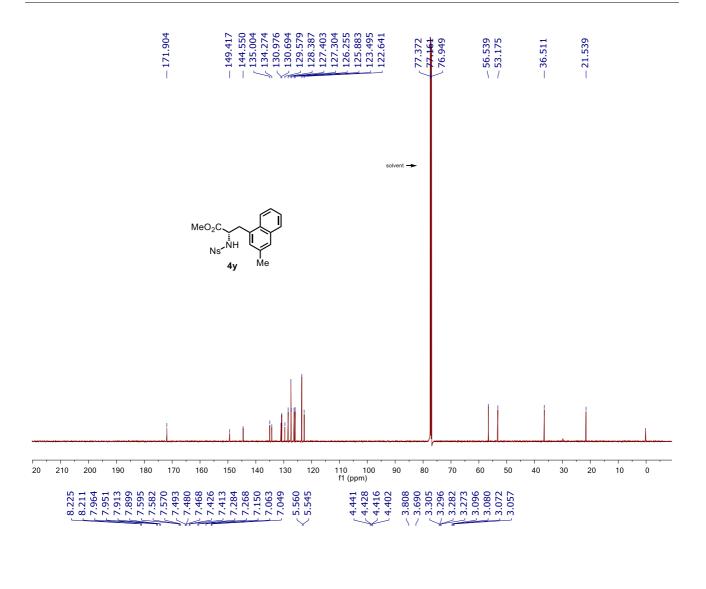


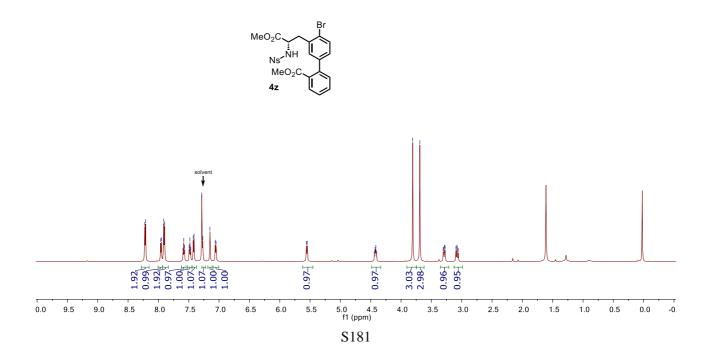


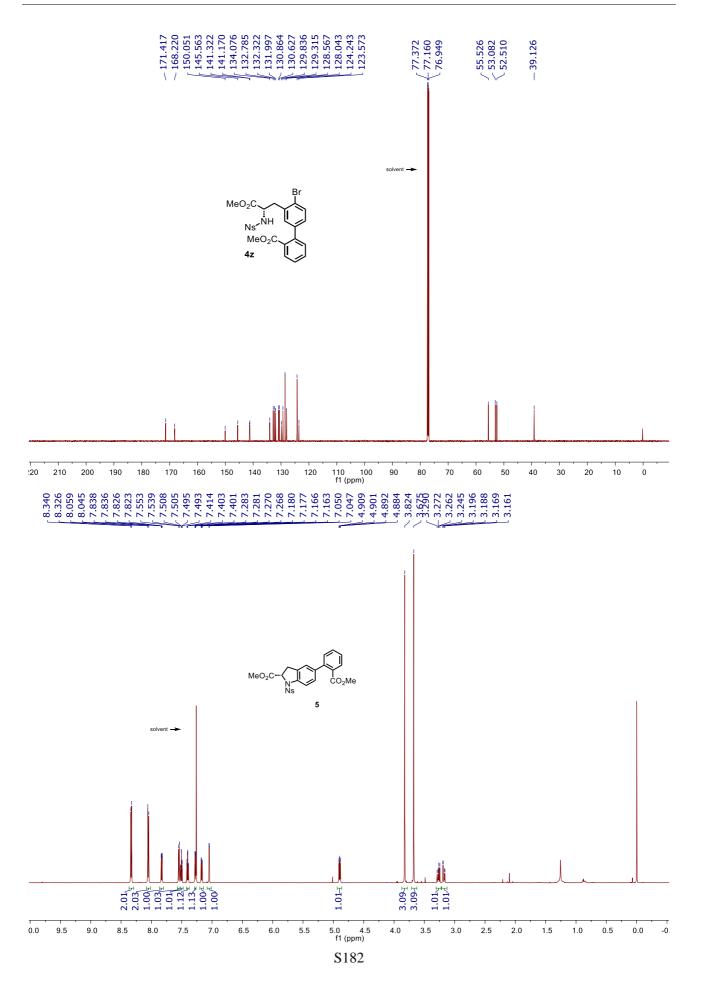

4u

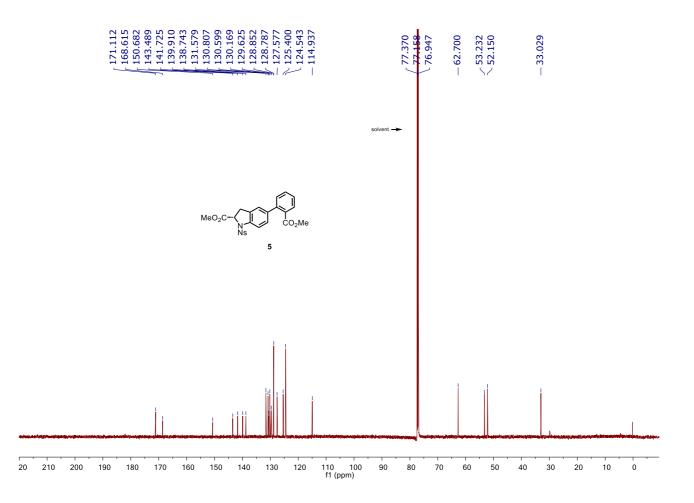

8.070 8.070 8.068 8.068 7.2911 7.2913 7.28914 7.2893 7.2893 7.2894 7.2894 7.2894 7.2894 7.2894 7.2894 7.2894 7.2594 7.2594 7.7559 7.75566 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556 7.7556

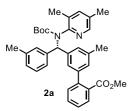


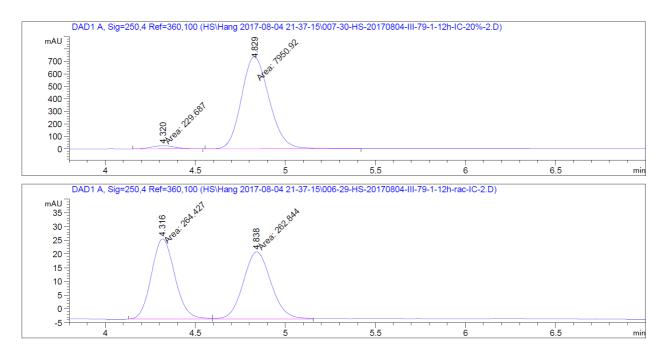


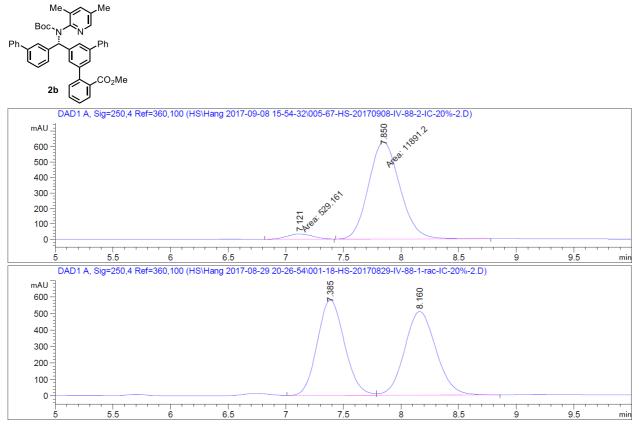






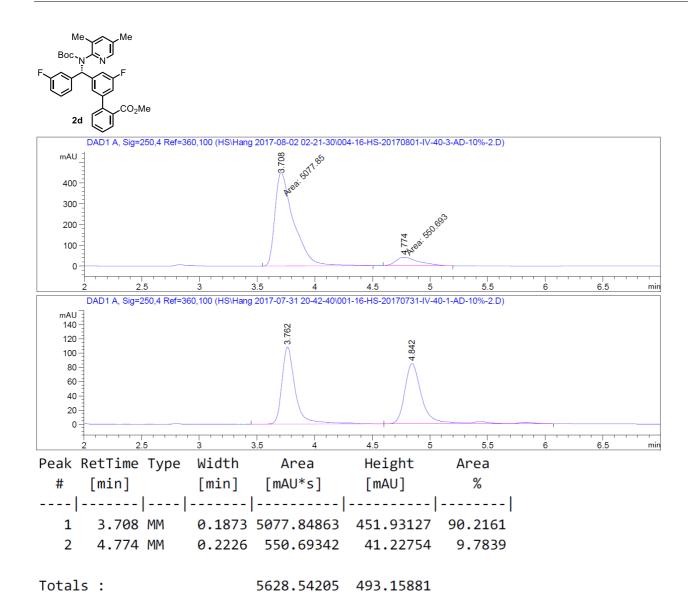


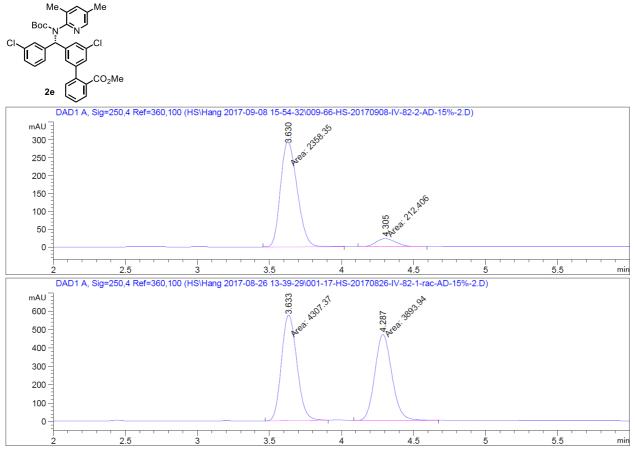



SFC TRACES

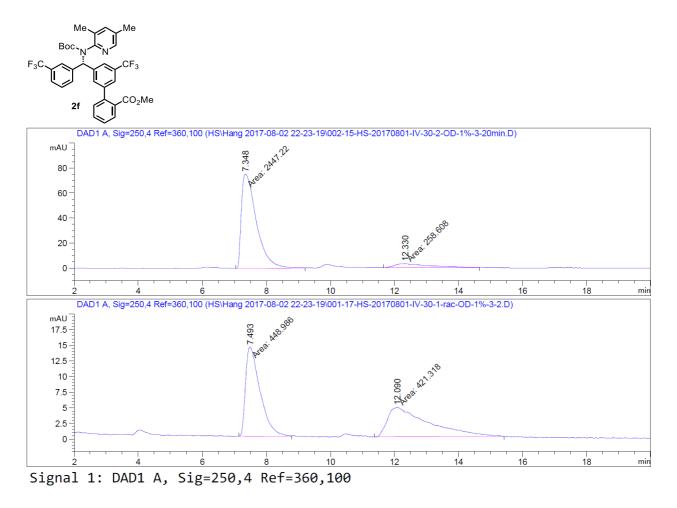

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

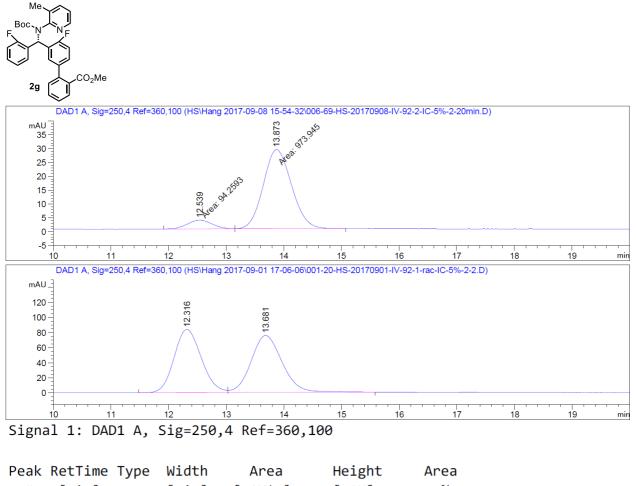
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 4.320 MM	0.1509	229.68727	25.37218	2.8077
2 4.829 MM	0.1797	7950.92139	737.59424	97.1923



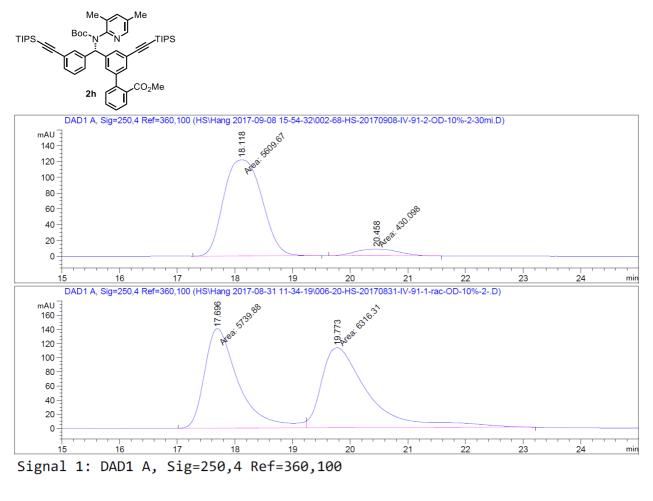

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

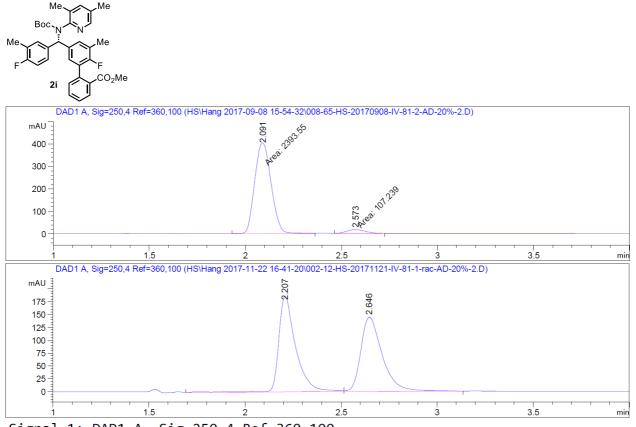
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 7.121 MM	0.2614	529.16058	33.73596	4.2604
2 7.850 MM	0.3155	1.18912e4	628.12677	95.7396


Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	5.415	MM	0.2476	2823.50439	190.06265	95.3276	
2	6.910	MM	0.2723	138.39246	8.46927	4.6724	

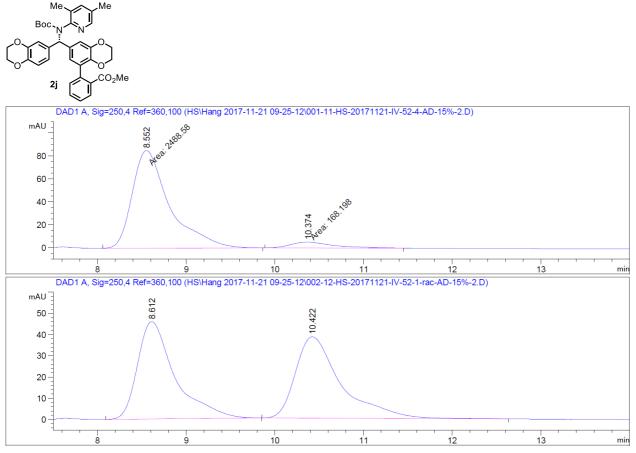


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

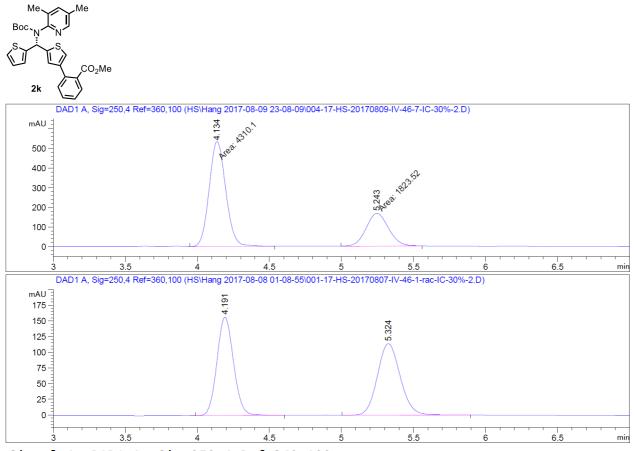

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 3.630	MM	0.1336	2358.35352	294.12524	91.7376
2 4.305	MM	0.1585	212.40570	22.33520	8.2624


Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 7.348	MM	0.5418	2447.21826	75.27472	90.4425
2 12.330	MM	1.3038	258.60831	3.30577	9.5575

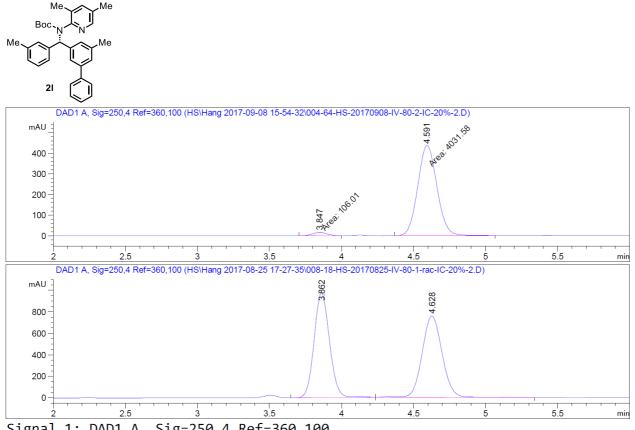
	[min]				
	 12.539 MM				•
2	13.873 MM	0.5678	973.94489	28.58943	91.1759



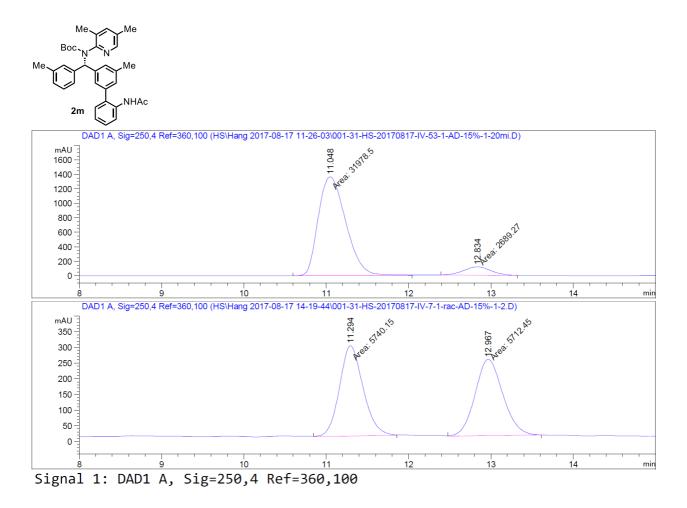
Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	18.118	MM	0.7676	5609.67383	121.80787	92.8789	
2	20.458	MM	0.8680	430.09839	8.25843	7.1211	


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

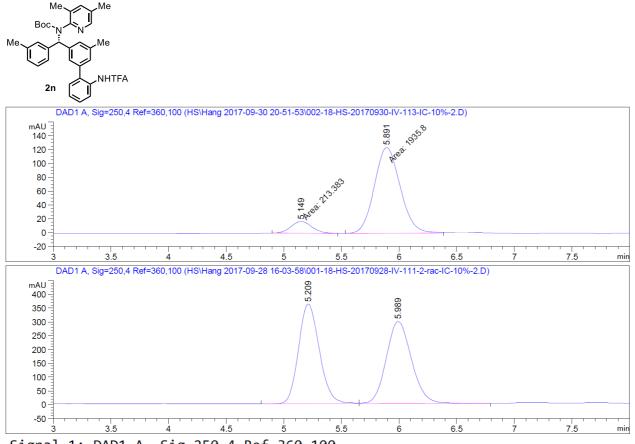
Peak RetTime Ty	/pe Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 2.091 MM	0.0985	2393.55249	404.92963	95.7118
2 2.573 MM	0.1089	107.23945	16.41767	4.2882


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 8.552	MM	0.4877	2488.58325	85.05038	93.6691
2 10.374	MM	0.5628	168.19827	4.98111	6.3309

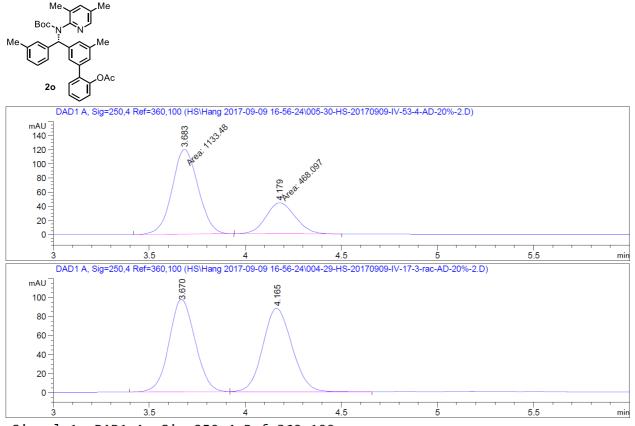

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime T	ype Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
-				
1 4.134 M	M 0.1341	4310.09961	535.67480	70.2700
2 5.243 M	M 0.1816	1823.52490	167.33965	29.7300

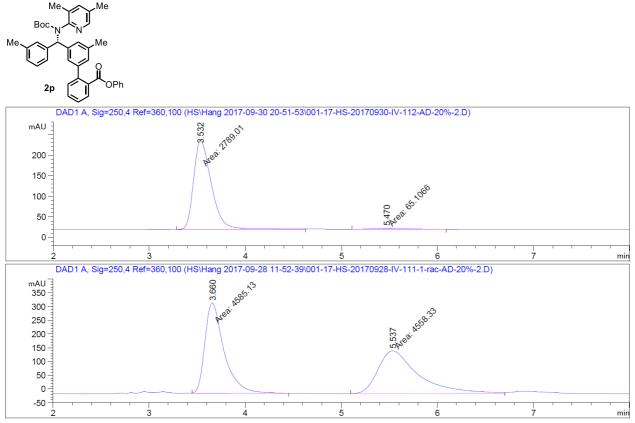


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

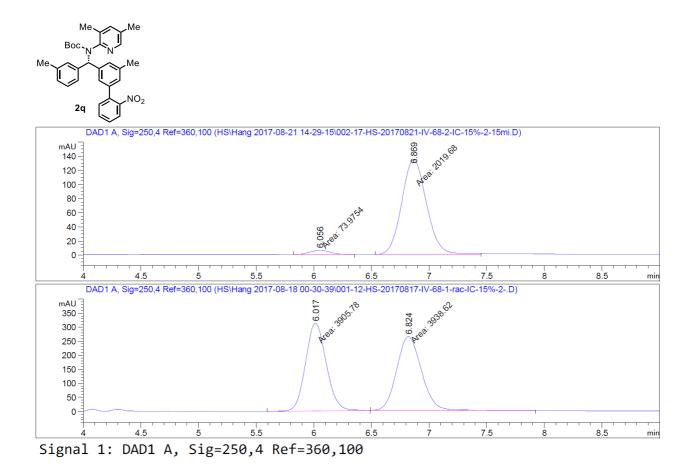
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.847	MM	0.1168	106.01046	15.12457	2.5621
2	4.591	MM	0.1537	4031.58008	437.29309	97.4379



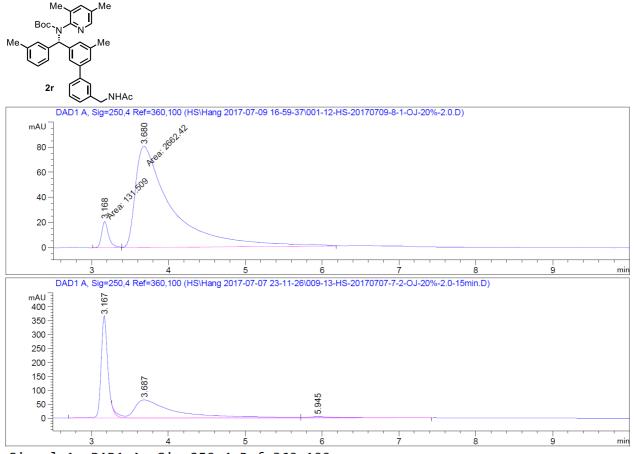
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 11.048 MM	0.3901	3.19785e4	1366.14307	92.2428
2 12.834 MM	0.3848	2689.26538	116.47205	7.7572


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 5.149 MM	0.2102	213.38335	16.92092	9.9286
2 5.891 MM	0.2604	1935.79797	123.88663	90.0714

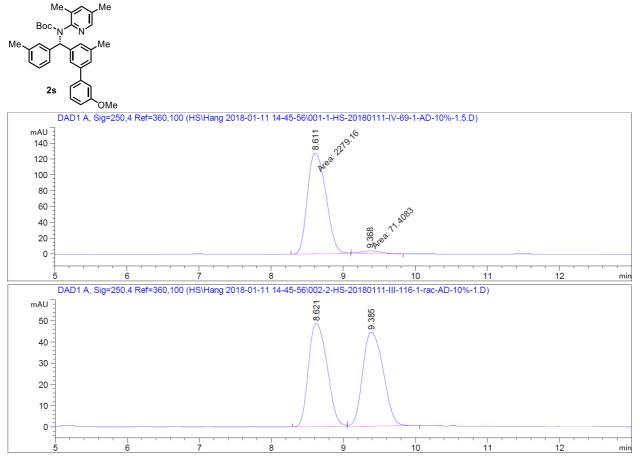

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 3.683 MM	0.1574	1133.48279	120.01421	70.7728
2 4.179 MM	0.1775	468.09714	43.96405	29.2272

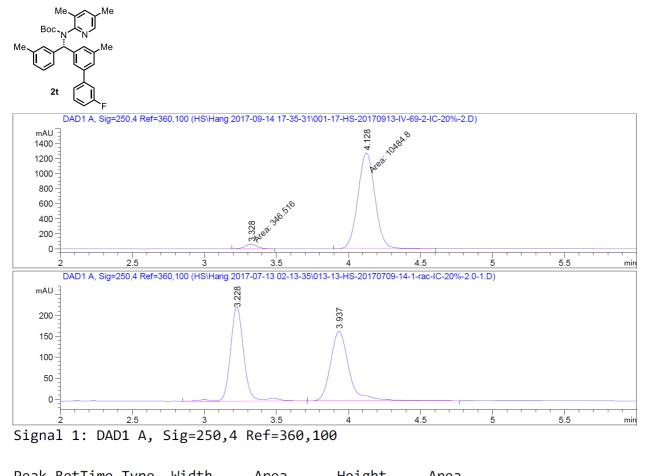


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

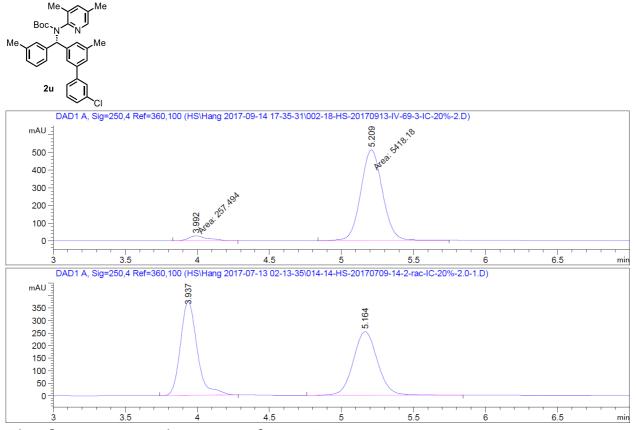
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 3.532 MM	0.2156	2789.01172	215.64548	97.7189
2 5.470 MM	0.4285	65.10661	2.53228	2.2811



Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 6.056 MM	0.2007	73.97545	6.14264	3.5333
2 6.869 MM	0.2503	2019.68396	134.47147	96.4667

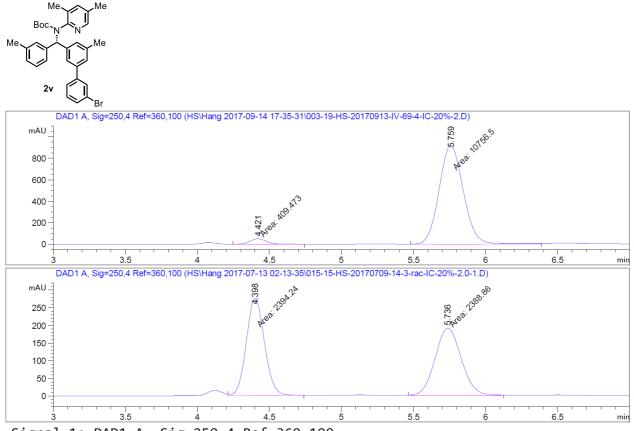

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime	Туре І	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
	-				
1 3.168	MM	0.1047	131.50948	20.93688	4.7070
2 3.680	MM (0.5499	2662.41602	80.69624	95.2930

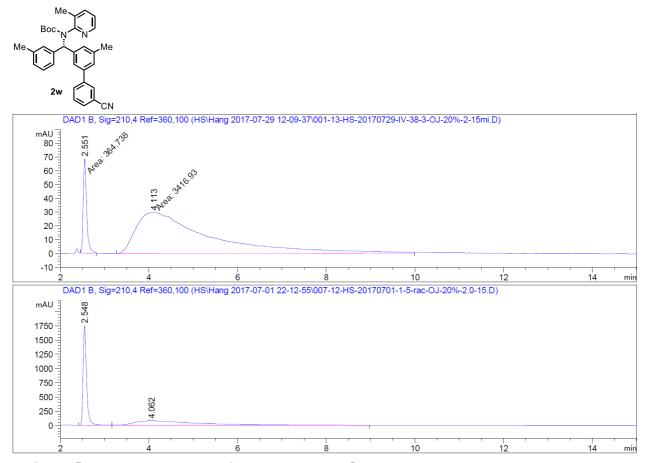


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

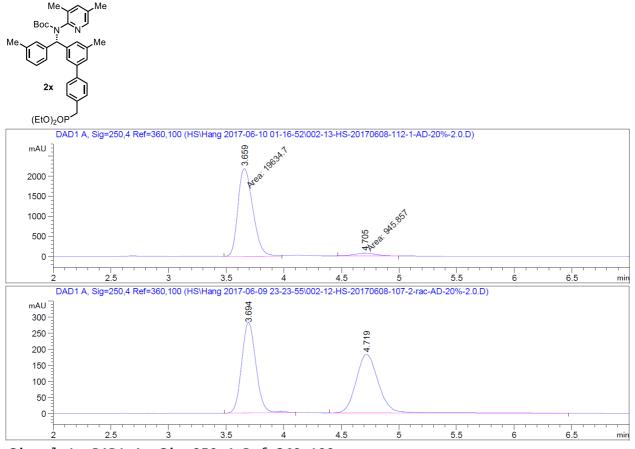
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.611	MM	0.2971	2279.16431	127.85472	96.9621
2	9.368	MM	0.3410	71.40829	3.49040	3.0379



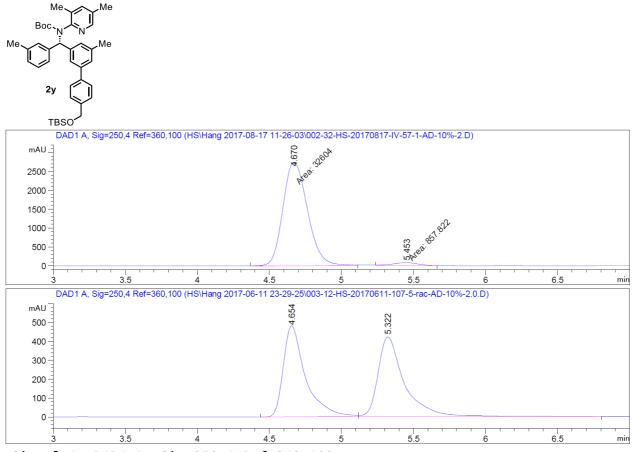
etTime	Туре	Width	Area	Height	Area	
	·					
3.328	MM	0.0959	346.51639	60.22383	3.1992	
4.128	MM	0.1368	1.04848e4	1277.26770	96.8008	
	[min] 3.328	[min] 	[min] [min] 3.328 MM 0.0959	3.328 MM 0.0959 346.51639	[min] [mAU*s] [mAU] 3.328 MM 0.0959 346.51639 60.22383	[min] [min] [mAU*s] [mAU] % 3.328 MM 0.0959 346.51639 60.22383 3.1992


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

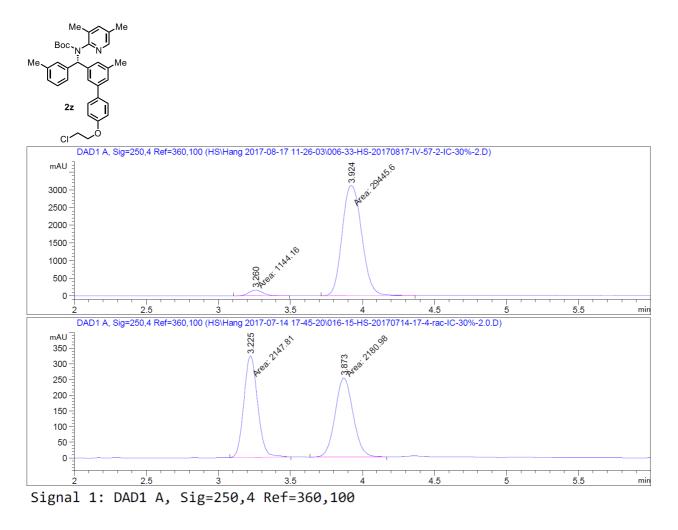
Peak RetTime Type	e Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 3.992 MM	0.1538	257.49399	27.90685	4.5368
2 5.209 MM	0.1756	5418.17627	514.14496	95.4632


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

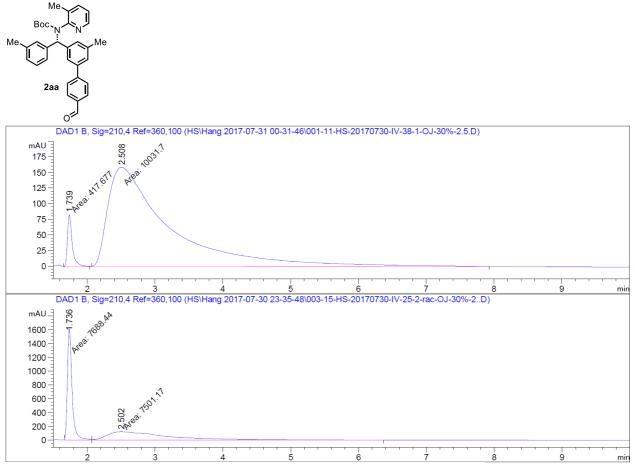
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 4.421 MM	0.1356	409.47339	50.32362	3.6671
2 5.759 MM	0.1956	1.07565e4	916.64673	96.3329


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 2.551 MM	0.0887	364.73767	68.51612	9.6449
2 4.113 MM	1.9086	3416.92749	29 . 83876	90.3551

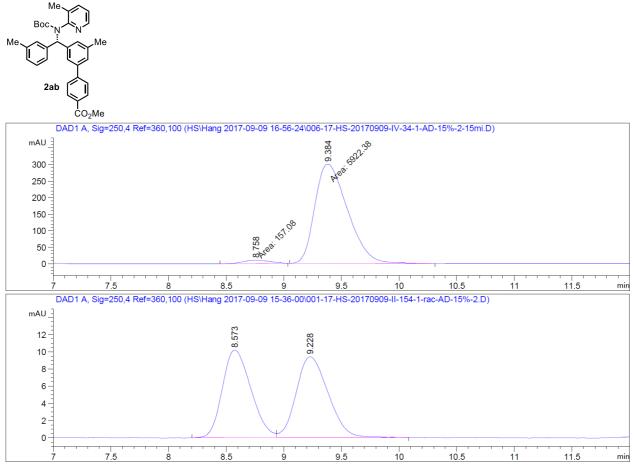

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTi	те Туре	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 3.6	59 MM	0.1497	1.96347e4	2185.73682	95.4041
2 4.7	05 MM	0.2225	945.85706	70.85395	4.5959

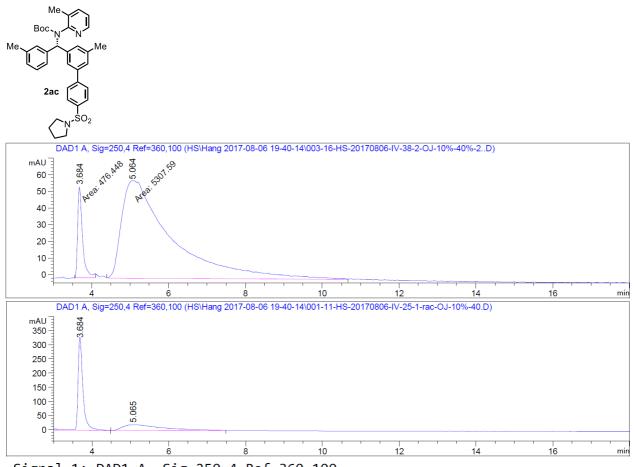


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

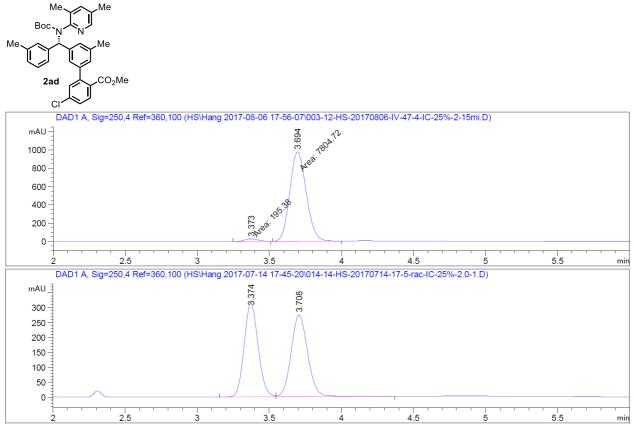
Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 4.670	MM	0.1980	3.26040e4	2744.02490	97.4364
2 5.453	MM	0.1902	857.82245	75.18507	2.5636



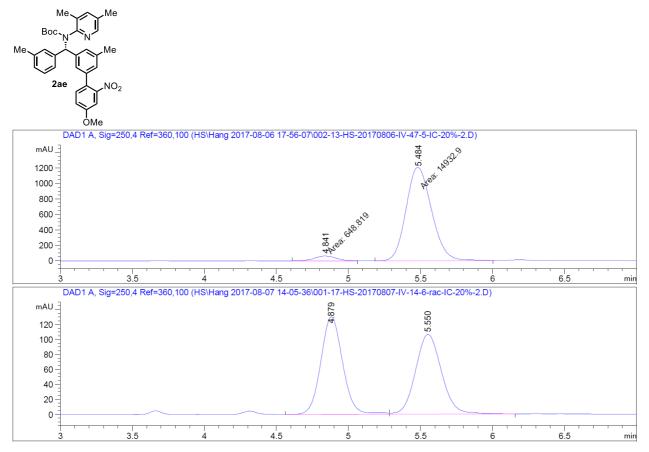
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.260	MM	0.1165	1144.15857	163.68040	3.7403
2	3.924	MM	0.1576	2.94456e4	3114.60840	96.2597


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

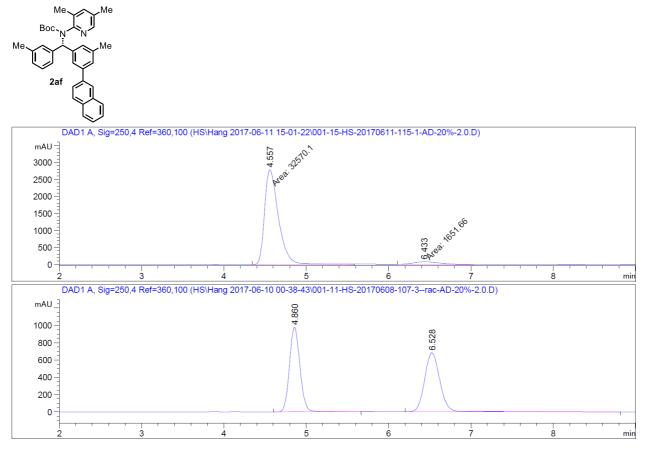
Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	1.739	MM	0.0830	417.67682	83.85143	3.9971
2	2.508	MM	1.0507	1.00317e4	159.12238	96.0029


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

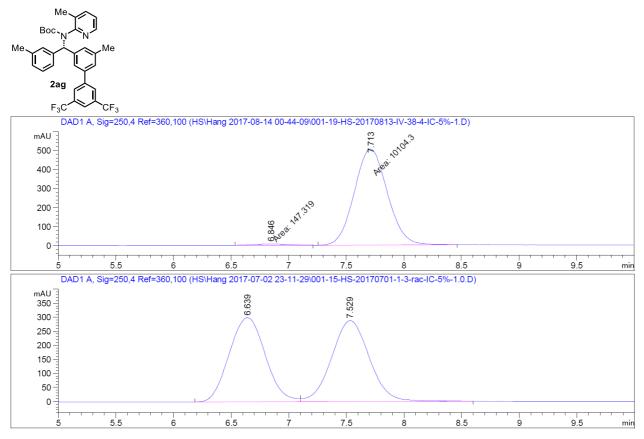
Peak RetTime T	Type Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
-				
1 8.758 M	M 0.2614	157.07967	10.01671	2.5838
2 9.384 M	M 0.3292	5922.38379	299.85886	97.4162


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

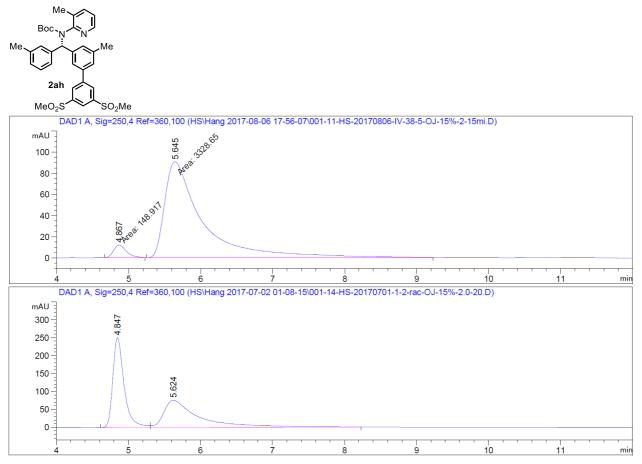
Width	Area	Height	Area
[min]	[mAU*s]	[mAU]	%
0.1455	476.44806	54.58828	8.2373
1.5084	5307.59277	58.64465	91.7627
	0.1455	[min] [mAU*s] 0.1455 476.44806	[min] [mAU*s] [mAU]


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

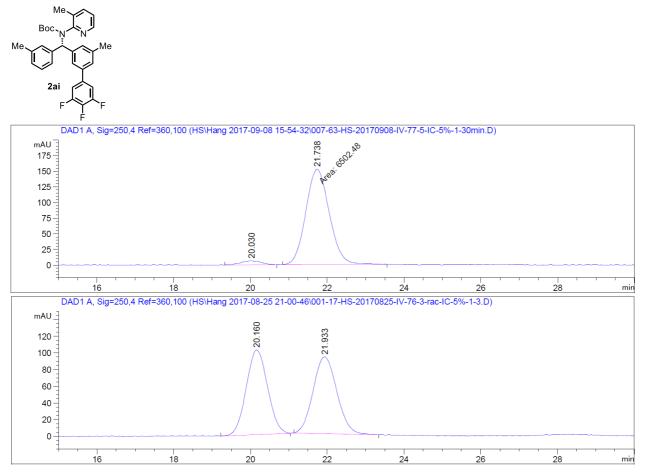
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 3.373 MM	0.1123	195.37979	28.99484	2.4422
2 3.694 MM	0.1328	7804.72314	979.33472	97.5578


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

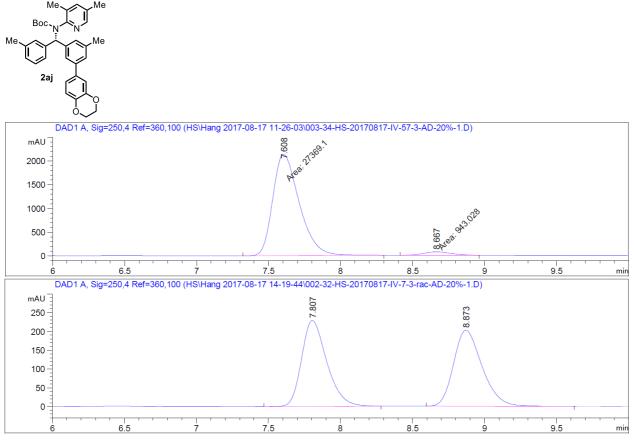
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.841	MM	0.1717	648.81927	62.96412	4.1640
2	5.484	MM	0.2056	1.49329e4	1210.25586	95.8360


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

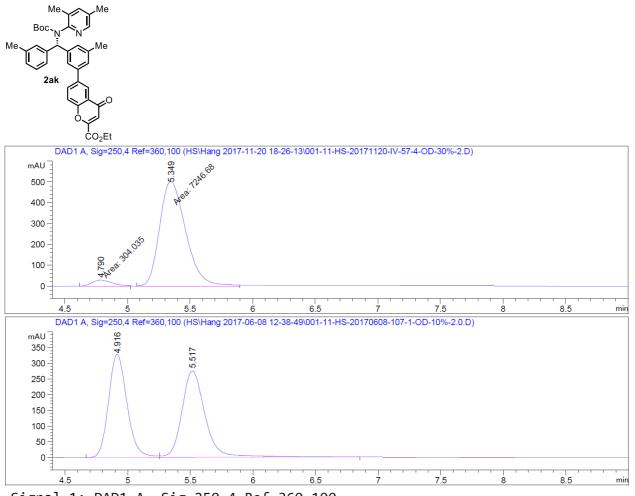
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.557	MM	0.1952	3.25701e4	2781.44775	95.1737
2	6.433	MM	0.3541	1651.65894	77.74711	4.8263


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

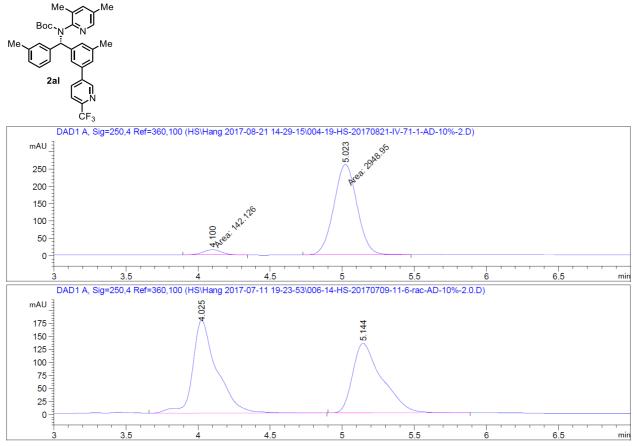
Peak RetTime	Type Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
-				
1 6.846 M	MM 0.3360	147.31938	7.30824	1.4370
2 7.713 M	MM 0.3329	1.01043e4	505.91608	98.5630


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

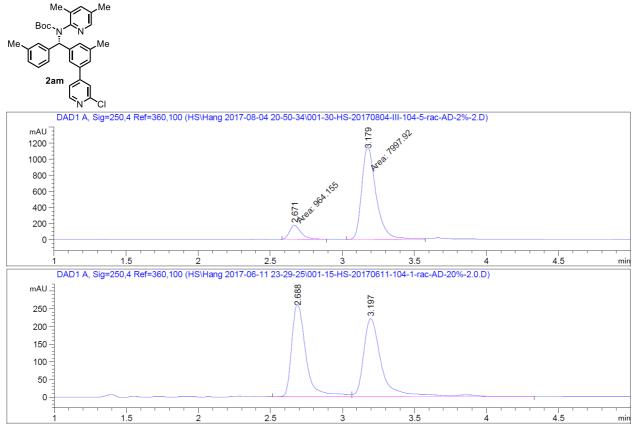
Width	Area	Height	Area
[min]	[mAU*s]	[mAU]	%
0.2089	148.91724	11.88122	4.2822
0.6124	3328.65210	90.58678	95.7178
	[min] 0.2089	[min] [mAU*s] 0.2089 148.91724	[min] [mAU*s] [mAU] 0.2089 148.91724 11.88122


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

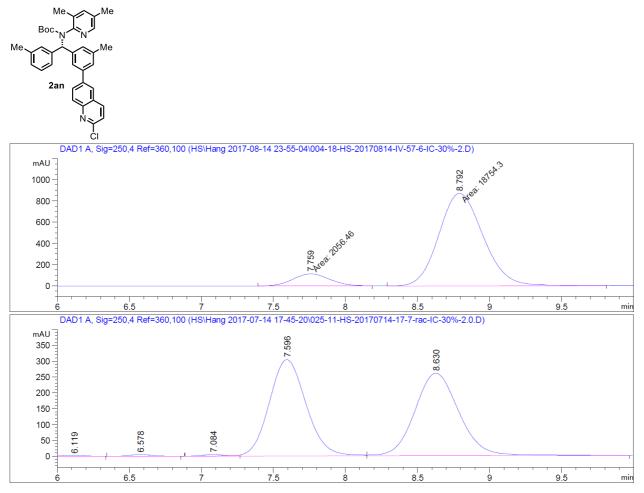
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 20.030 BB	0.4498	244.98763	6.61937	3.6308
2 21.738 MM	0.7111	6502.47852	152.40547	96.3692


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

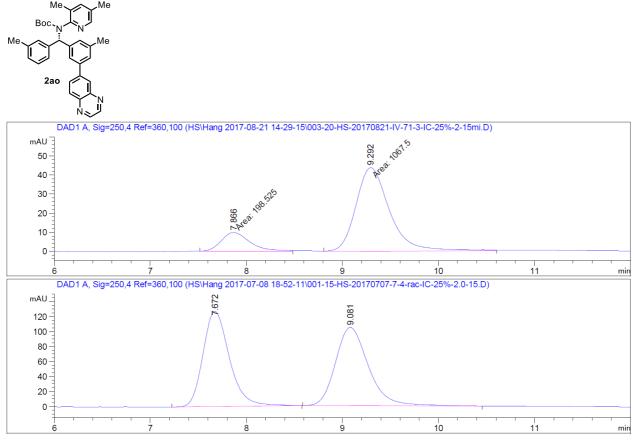
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.608	MM	0.2132	2.73691e4	2139.36987	96.6692
2	8.667	MM	0.2222	943.02783	70.74281	3.3308


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

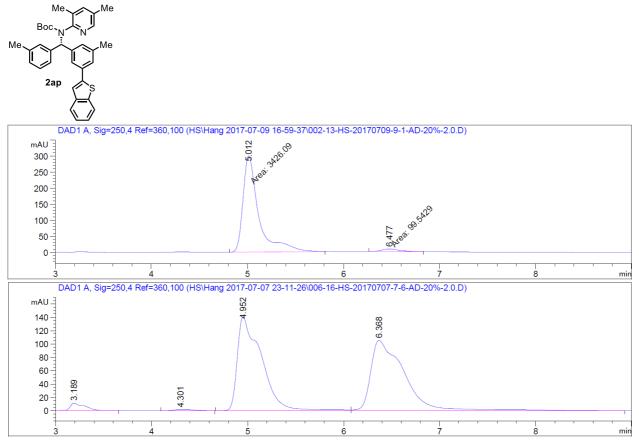
Peak F	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	4.790	MM	0.1805	304.03473	28.07036	4.0266
2	5.349	MM	0.2411	7246.68115	500.97849	95.9734


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

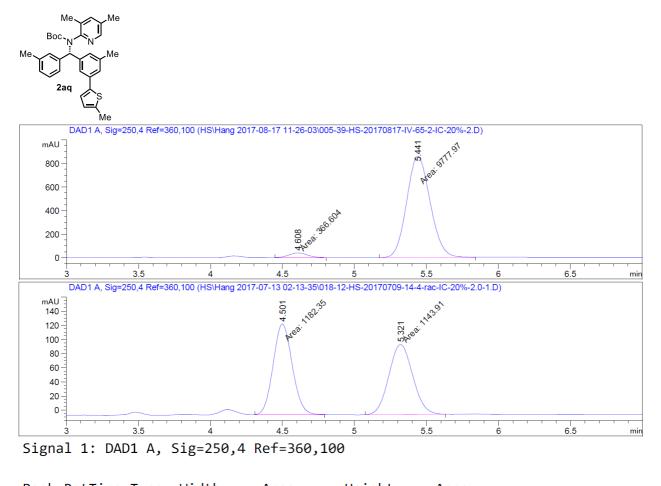
Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
	-				
1 4.100	MM	0.1552	142.12622	15.26688	4.5980
2 5.023	MM	0.1878	2948.95020	261.68994	95.4020


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

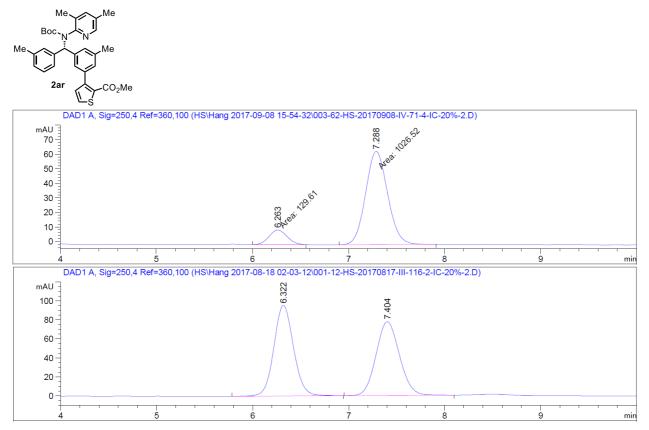
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.671	MM	0.0920	964.15527	174.58240	10.7582
2	3.179	MM	0.1155	7997.92480	1154.24976	89.2418


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.759	MM	0.2990	2056.45923	114.62666	9.8817
2	8.792	MM	0.3583	1.87543e4	872.31128	90.1183
1	7.759	MM	0.2990	2056.45923	114.62666	9.8817

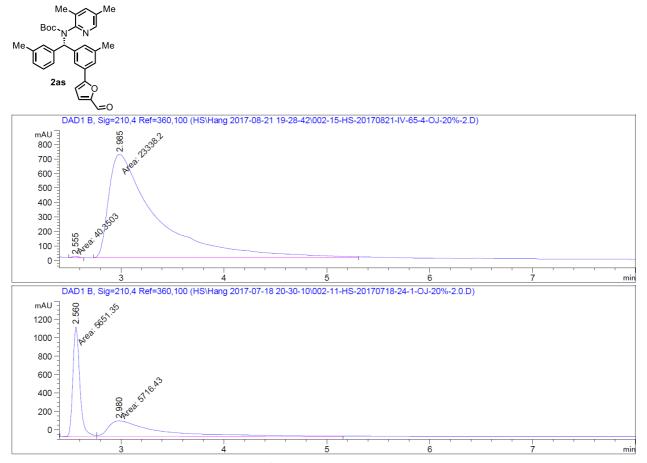

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 7.866	MM	0.3384	198.52547	9.77880	15.6810
2 9.292	MM	0.4059	1067.50208	43.83463	84.3190

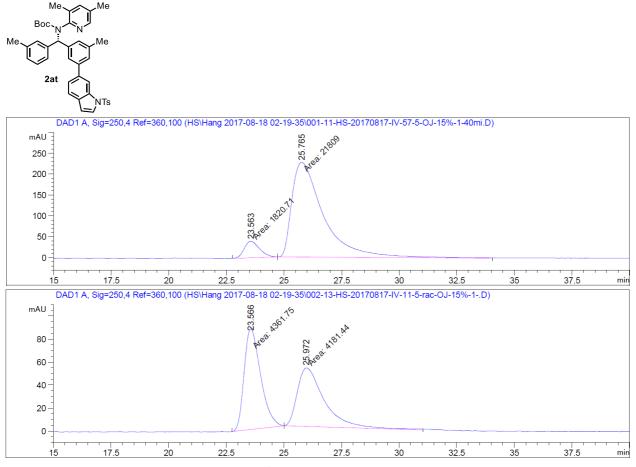


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

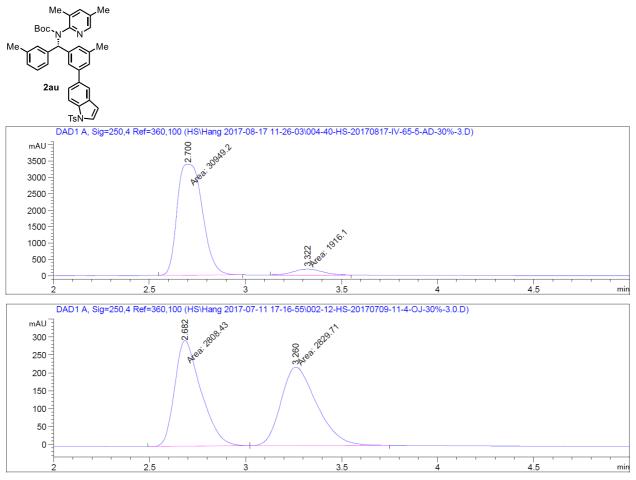
Peak RetTim	е Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
	-				
1 5.01	2 MM	0.1902	3426.08545	300.28397	97.1766
2 6.47	7 MM	0.2112	99.54285	7.85430	2.8234



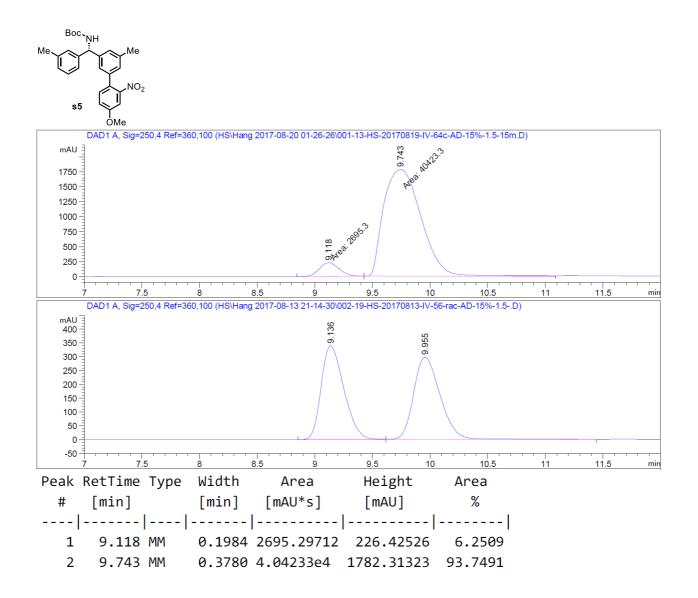
Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	4.608	MM	0.1523	366.60370	40.11977	3.6138
2	5.441	MM	0.1896	9777.97461	859.60364	96.3862

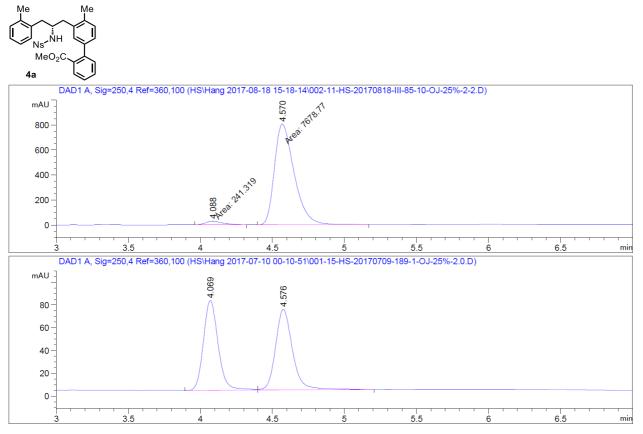

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Width	Area	Height	Area
[min]	[mAU*s]	[mAU]	%
0.2169	129.60992	9.95831	11.2106
0.2665	1026.52490	64.20895	88.7894
	[min] 0.2169	[min] [mAU*s] 	[min] [mAU*s] [mAU] 0.2169 129.60992 9.95831


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

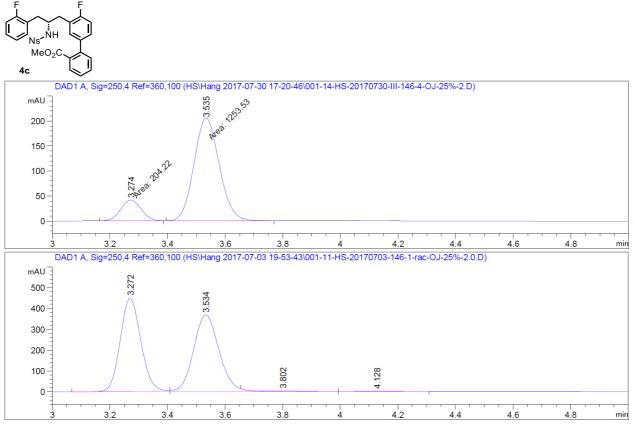
Peak RetTime	Туре	Width	Area	Height	Area	
# [min]		[min]	[mAU*s]	[mAU]	%	
1 2.555	MM	0.0719	40.35028	9.35781	0.1726	
2 2.985	MM	0.5451	2.33382e4	713.63544	99.8274	


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

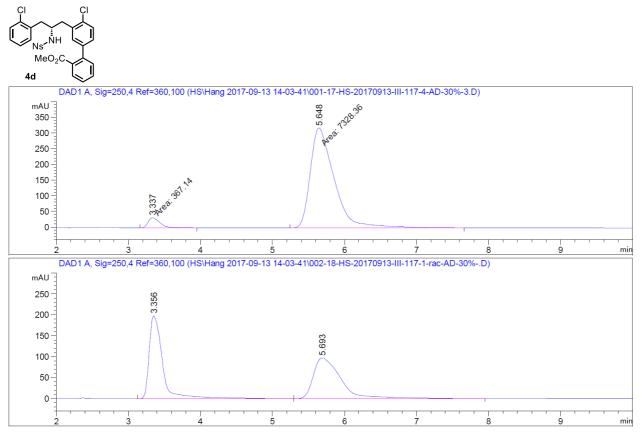

Width Are	a Height	Area
[min] [mAU*	s] [mAU]	%
0.7665 1820.7	0520 39.58834	7.7051
1.6020 2.1809	0e4 226.88873	92.2949
	[min] [mAU* 0.7665 1820.7	0

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

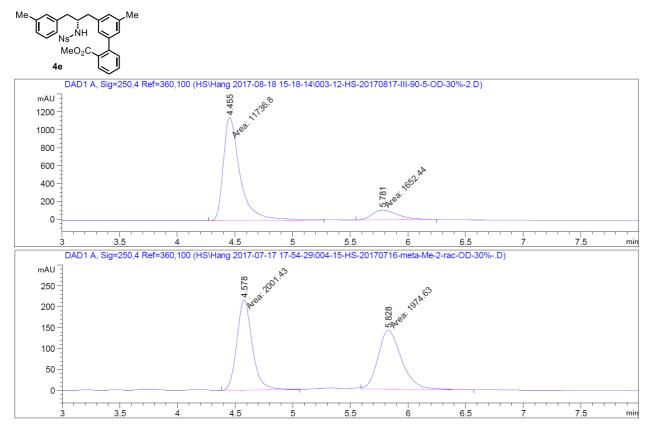
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 2.700 MM	0.1525	3.09492e4	3382.94434	94.1698
2 3.322 MM	0.1762	1916.10339	181.27367	5.8302


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

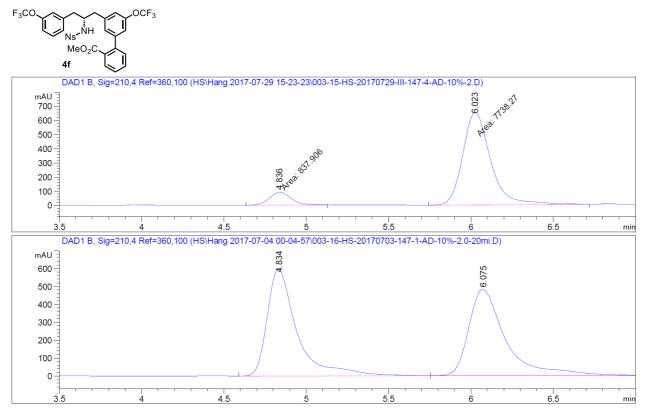
Peak RetTime Type	e Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
	.			
1 4.088 MM	0.1385	241.31932	29.04813	3.0469
2 4.570 MM	0.1587	7678.76660	806.38159	96.9531


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

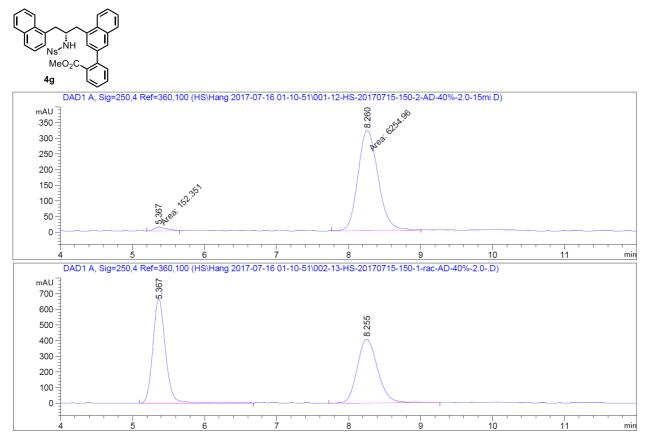
Peak RetTime Type	e Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 2.844 MM	0.1658	132.40337	13.30708	13.2096
2 4.411 MM	0.2586	869.92133	56.06168	86.7904


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

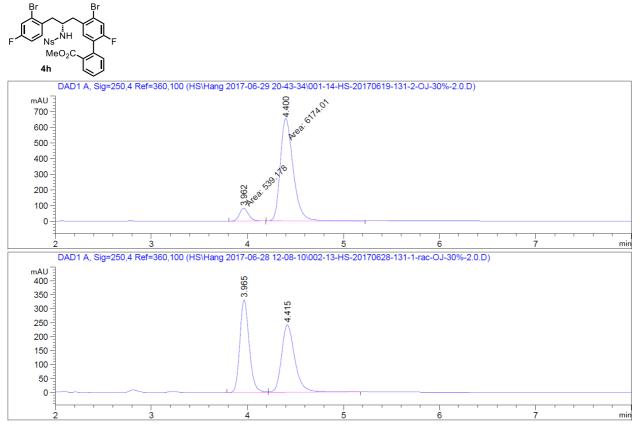
Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.274	MM	0.0816	204.21960	41.70602	14.0092
2	3.535	MM	0.1014	1253.53442	206.02576	85.9908


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

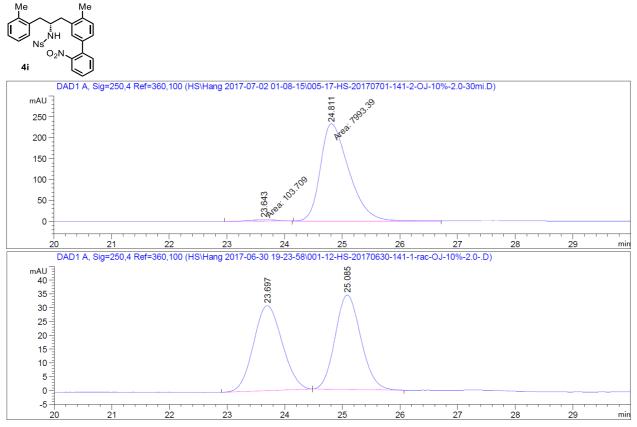
Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.337	MM	0.1902	367.13989	32.17627	4.7708
2	5.648	MM	0.3832	7328.36084	318.74097	95.2292


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 4.455 MM	0.1695	1.17368e4	1153.87244	87.6585
2 5.781 MM	0.2540	1652.43713	108.42530	12.3415


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

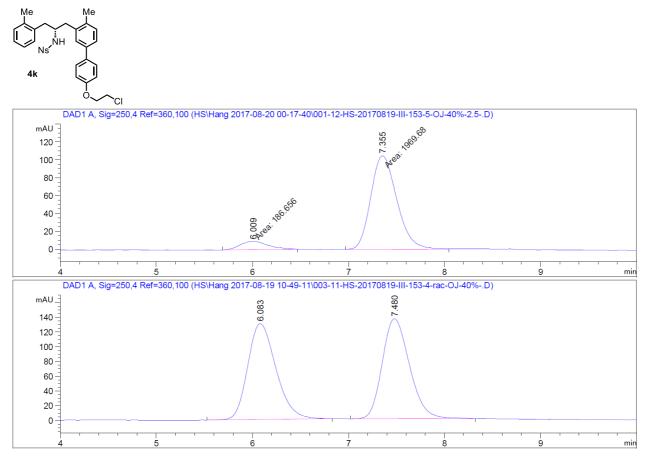
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.836	MM	0.1526	837.90576	91.53378	9.7702
2	6.023	MM	0.1971	7738.27490	654.50769	90.2298


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

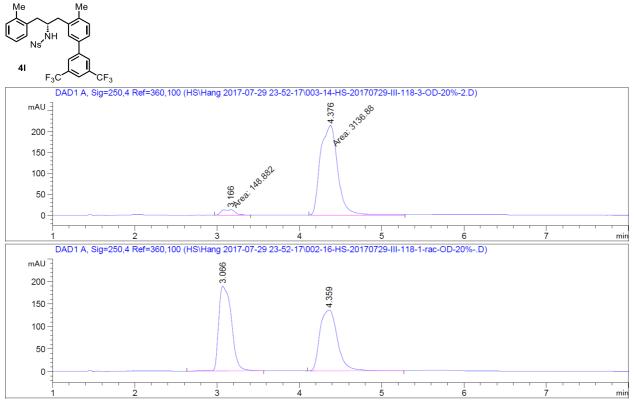
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.367	MM	0.2039	152.35146	12.45088	2.3778
2	8.260	MM	0.3247	6254.95654	321.03714	97.6222

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

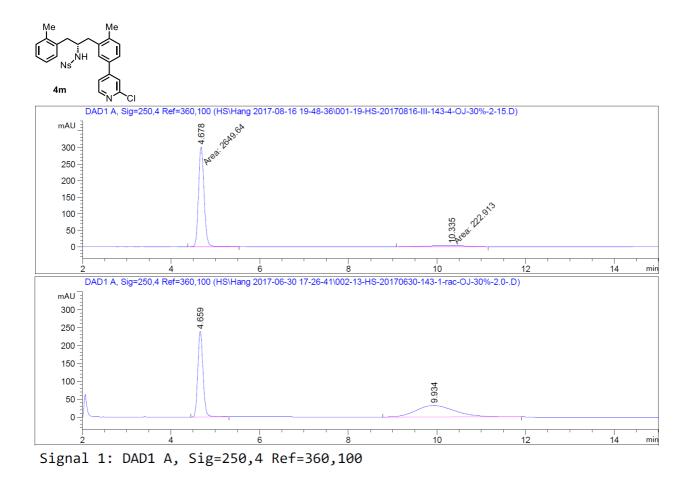
Peak Ret	Тіте Туре	Width	Area	Height	Area
# [m	in]	[min]	[mAU*s]	[mAU]	%
1 3	.962 MM	0.1099	539.17792	81.76174	8.0316
2 4	.400 MM	0.1569	6174.00928	656.01202	91.9684


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

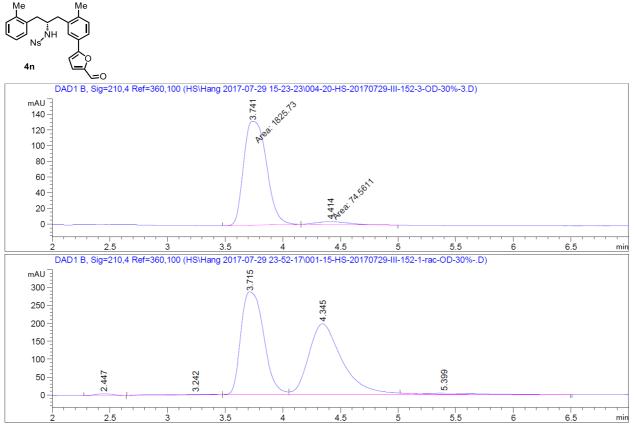
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 23.643 MM	0.5091	103.70914	3.39537	1.2808
2 24.811 MM	0.5724	7993.39209	232.74353	98.7192


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.505	MM	0.2401	2310.84912	160.43649	96.0311
2	8.575	MM	1.1314	95.50554	1.40690	3.9689

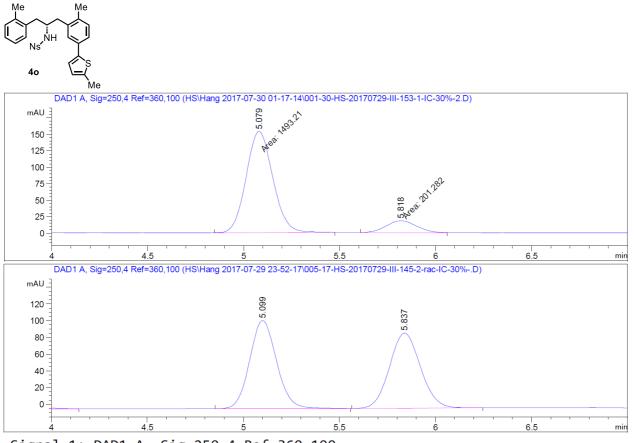

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.009	MM	0.3380	186.65569	9.20326	8.6562
2	7.355	MM	0.3139	1969.67542	104.57546	91.3438

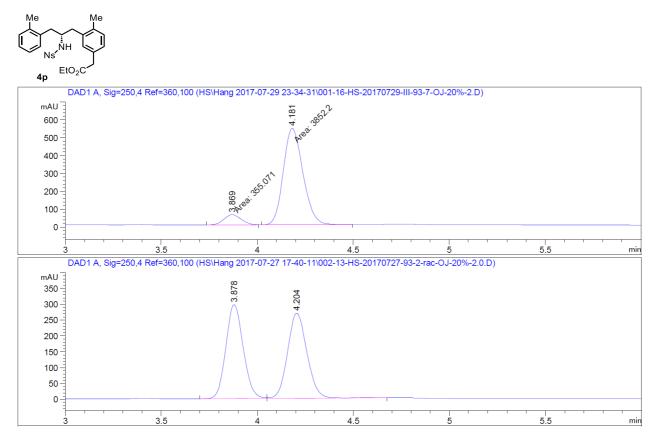


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

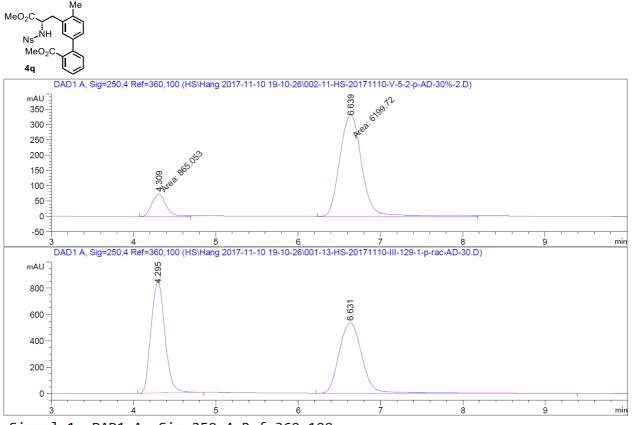
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.166	MM	0.1885	148.88176	13.16310	4.5311
2	4.376	MM	0.2433	3136.87891	214.88333	95.4689



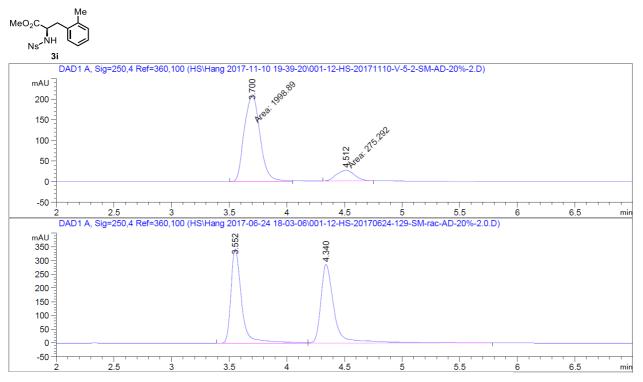
Peak RetTime	е Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 4.678	8 MM	0.1465	2649.63574	301.41370	92.2399
2 10.335	MM	1.1082	222.91309	3.35239	7.7601


Signal 2: DAD1 B, Sig=210,4 Ref=360,100

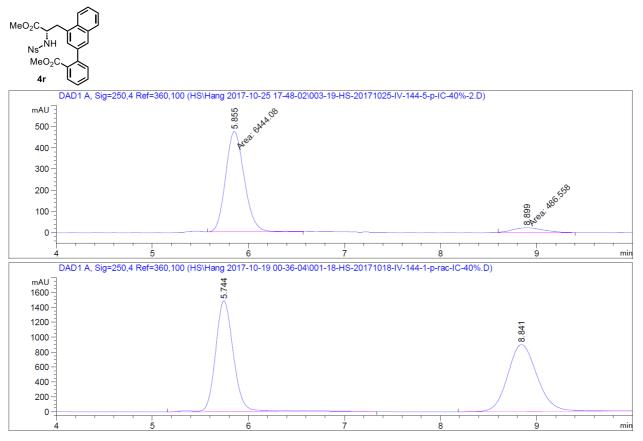
Peak Re	etTime	Туре	Width	Area	Height	Area
# [[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	3.741	MM	0.2292	1825.73450	132.75627	96.0763
2	4.414	MM	0.3333	74.56106	3.72887	3.9237


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

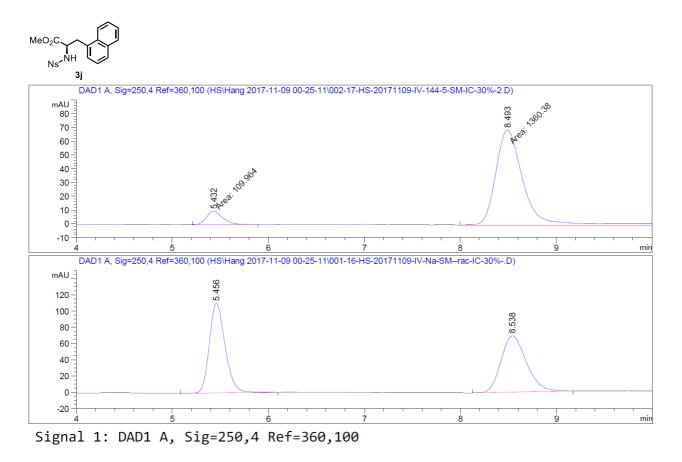
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.079	MM	0.1616	1493.21191	153.99384	88.1214
2	5.818	MM	0.1849	201.28221	18.13864	11.8786


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

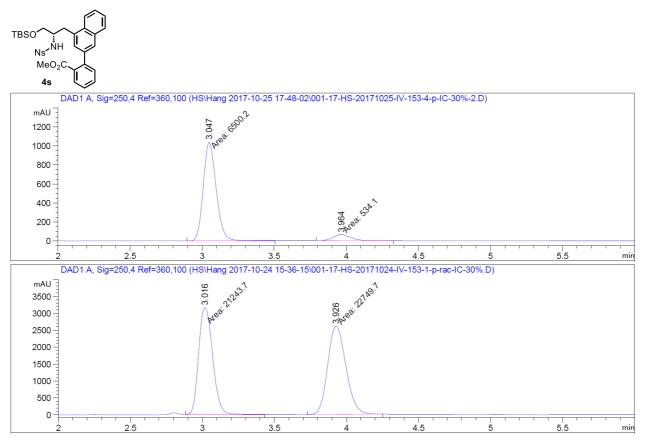
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.869	MM	0.1042	355.07101	56.79617	8.4395
2	4.181	MM	0.1187	3852.19800	541.02374	91.5605


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 4.309 MM	0.1973	865.05347	73.09028	12.2446
2 6.639 MM	0.3105	6199.71631	332 . 83386	87.7554

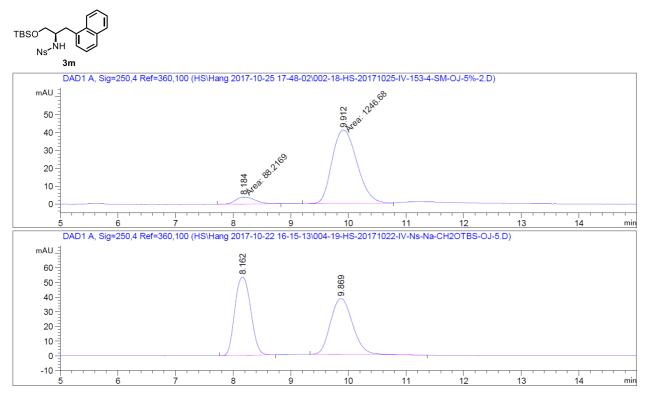

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.700	MM	0.1579	1998.88965	211. 03954	87.8949
2	4.512	MM	0.1776	275.29227	25.83036	12.1051

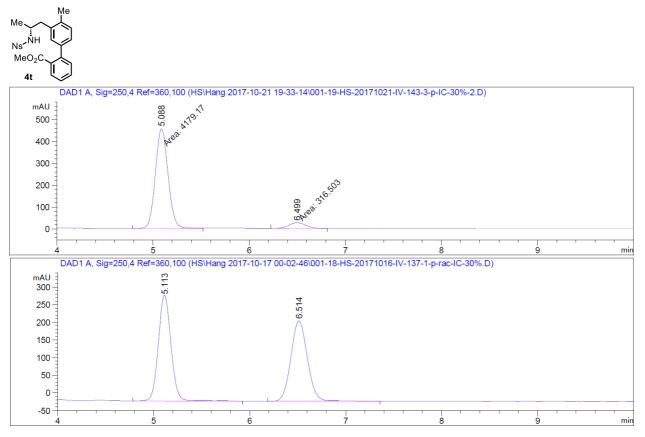


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

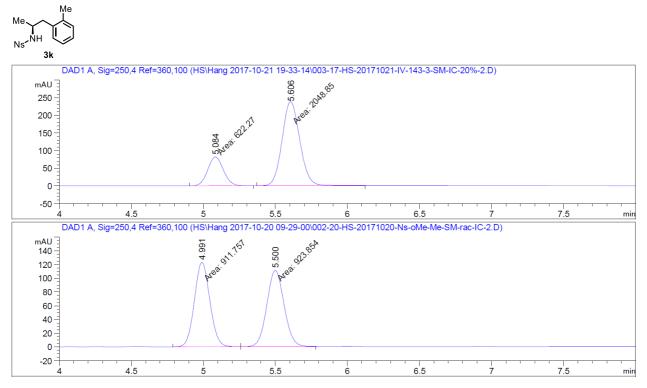
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.855	MM	0.2266	6444.08398	473.91415	92.9796
2	8.899	MM	0.3658	486.55807	22.16995	7.0204



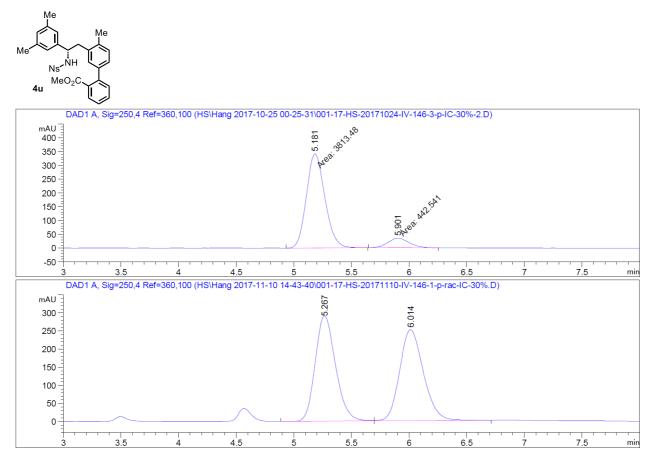
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.432	MM	0.1920	109.96355	9.54492	7.4788
2	8.493	MM	0.3289	1360.38098	68.94481	92.5212


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

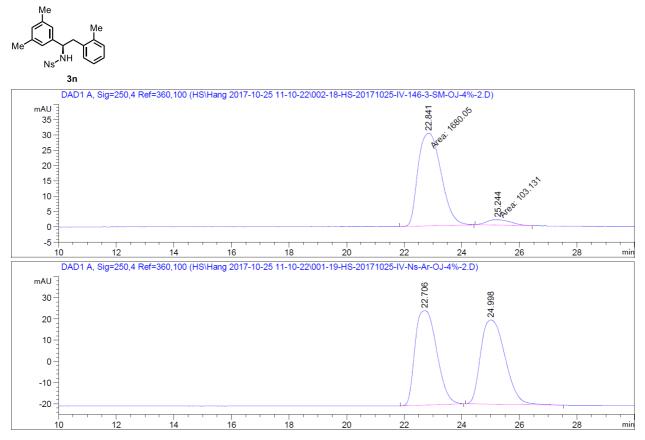
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.047	MM	0.1041	6500.20361	1040.88354	92.4072
2	3.964	MM	0.1421	534.09979	62.65053	7.5928


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

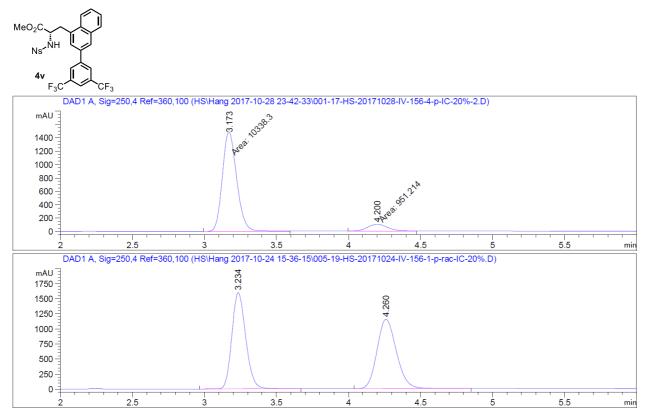
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 8.184 MM	0.3906	88.21686	3.76424	6.6085
2 9.912 MM	0.5032	1246.67957	41.29092	93.3915


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

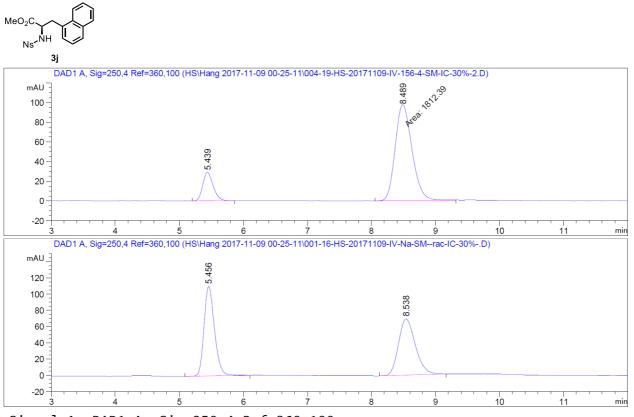
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.088	MM	0.1528	4179.16943	455.88596	92.9598
2	6.499	MM	0.2030	316.50284	25.98948	7.0402


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

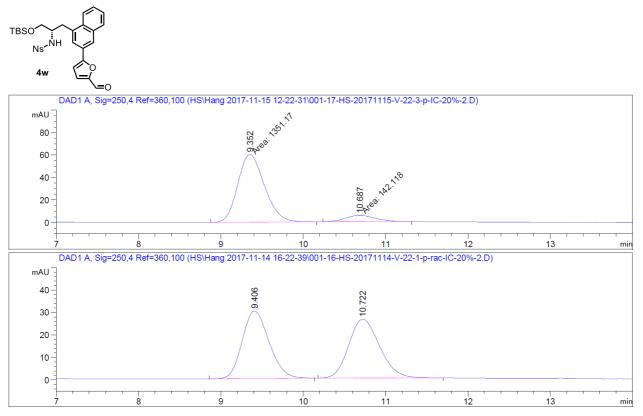
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.084	MM	0.1267	622.26953	81.83183	23.2962
2	5.606	MM	0.1432	2048.85010	238.52176	76.7038


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

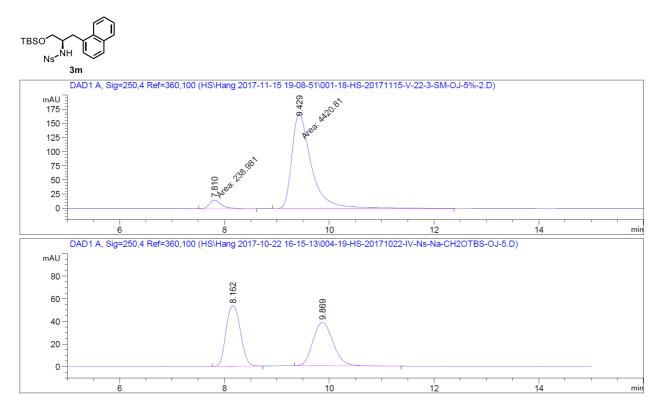
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.181	MM	0.1861	3813.48438	341.60596	89.6020
2	5.901	MM	0.2166	442.54083	34.05733	10.3980


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

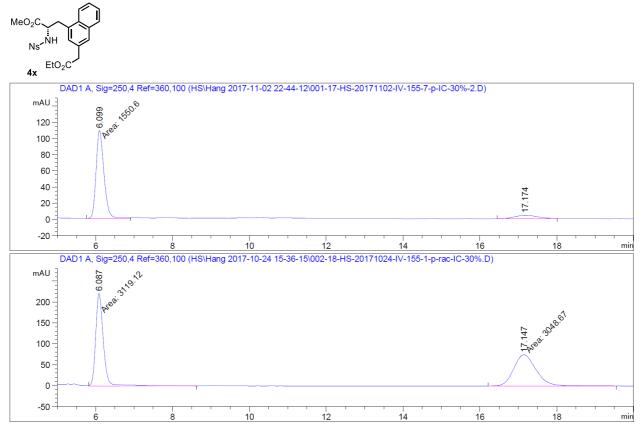
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	22.841	MM	0.9240	1680.05347	30.30535	94.2165
2	25.244	MM	0.9805	103.13062	1.75308	5.7835


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

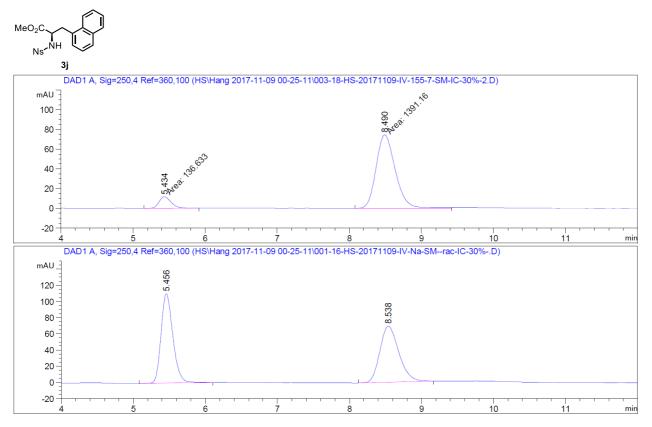
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.173	MM	0.1155	1.03383e4	1491.61975	91.5744
2	4.200	MM	0.1581	951.21368	100.26136	8.4256


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

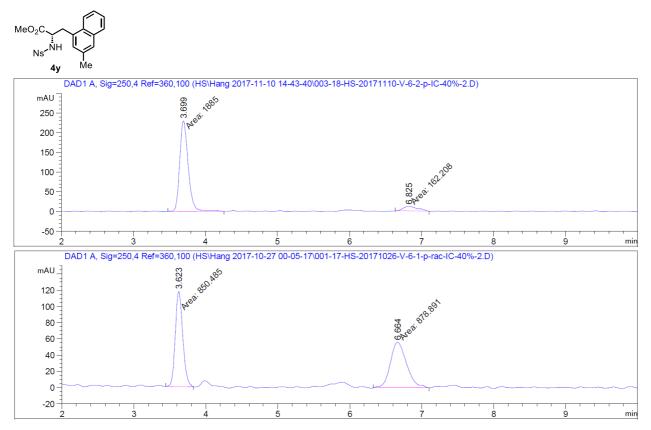
Peak RetTime Typ	e Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
	-			
1 5.439 BB	0.1743	327.99240	28.92523	15.3240
2 8.489 MM	0.3077	1812.38513	98.16897	84.6760


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

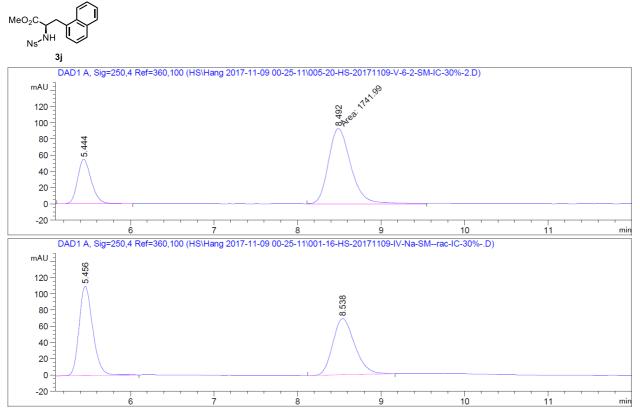
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.352	MM	0.3749	1351.17456	60.07418	90.4829
2	10.687	MM	0.4269	142.11836	5.54905	9.5171


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

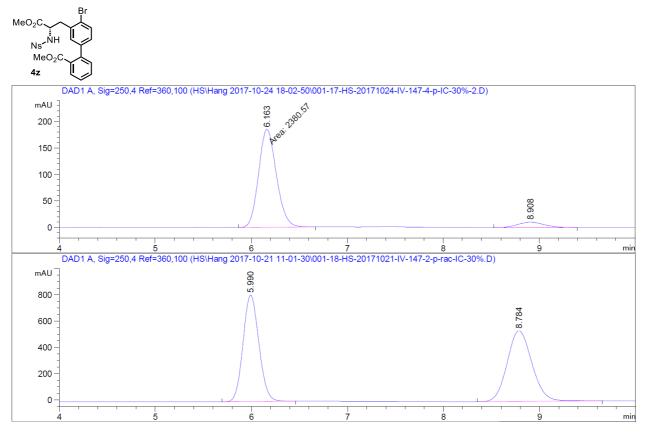
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.810	MM	0.2600	238.98119	15.32124	5.1286
2	9.429	MM	0.4416	4420.81201	166.84232	94.8714


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

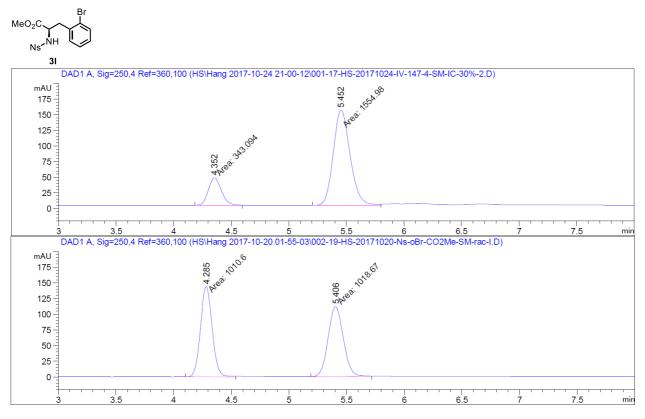
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 6.099 MM	0.2380	1550.60046	108.56999	90.0303
2 17.174 BB	0.4969	171.70859	4.27254	9.9697


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

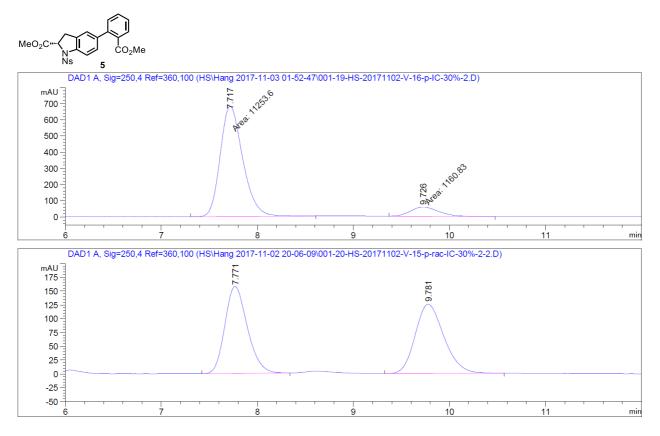
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 5.434 MM	0.1939	136.63313	11.74363	8.9432
2 8.490 MM	0.3110	1391.15540	74.56083	91.0568


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime	Туре	Width	Area	Height	Area
# [min]		[min]	[mAU*s]	[mAU]	%
1 3.699	MM	0.1366	1884.99915	230.05949	92.0766
2 6.825	MM	0.2376	162.20778	11.37620	7.9234


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime Ty	be Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 5.444 BB	0.1743	619.92261	54.67658	26.2467
2 8.492 MM	0.3125	1741.98792	92.92081	73.7533


Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.163	MM	0.2145	2380.57056	184.94643	92.3810
2	8.908	BB	0.3025	196.33482	10.20089	7.6190

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.352	MM	0.1299	343.09421	44.03119	18.0759
2	5.452	MM	0.1697	1554.98279	152.74278	81.9241

Signal 1: DAD1 A, Sig=250,4 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 7.717 MM	0.2747	1.12536e4	682.73999	90.6493
2 9.726 MM	0.3379	1160.83484	57.26508	9.3507

REFERENCES

- 34. Bolm, C., Schiffers, I., Dinter, C. L. & Gerlach, A. Practical and highly enantioselective ring opening of cyclic *meso*-anhydrides mediated by cinchona alkaloids. *J. Org. Chem.* **65**, 6984–6991 (2000).
- 35. Youk, S. H., Oh, S. H., Rho, Ho S., Lee, J. E., Lee, J. W. & Song, C. E. A polymer-supported *Cinchona*-based bifunctional sulfonamide catalyst: a highly enantioselective, recyclable heterogeneous organocatalyst. *Chem. Commun.* 2220–2222 (2009).
- 36. Wang, P., Li, G.-C., Jain, P., Farmer, M. E., He, J., Shen, P.-X. & Yu, J.-Q. Ligand-promoted *meta*-C– H amination and alkynylation. *J. Am. Chem. Soc.* **138**, 14092–14099 (2016).
- Chu, L., Wang, X.-C., Moore, C. E., Rheingold, A. L. & Yu, J.-Q. Pd-catalyzed enantioselective C–H iodination: asymmetric synthesis of chiral diarylmethylamines. *J. Am. Chem. Soc.* 135, 16344–16347 (2013).
- 38. Dastbaravardeh, N., Schngrch, M. & Mihovilovic, M. D. Ruthenium(0)-catalyzed sp³ C–H bond arylation of benzylic amines using arylboronates. *Org. Lett.* **14**, 1930–1933 (2012).
- Resendiz, M. J. E. & Garcia-Garibay, M. A. Hammett analysis of photodecarbonylation in crystalline 1,3-diarylacetones. *Org. Lett.* 7, 371–374 (2005).