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The pial vasculature of the mouse develops according to

a sensory-independent program

Explanation of the model

Overview:

This analysis tested the hypothesis that sensory deprivation (plucking whiskers) a�ected the distribution of
leptomeningeal anastomoses (LMA), penetrating arterioles (PA) and the vessel branching structure. Mice
received either the sensory-deprivation (plucked) or control (sham) treatment. The LMA/PA/branch count
from 5 cortical regions (Auditory, Barrel, forelimb, hindlimb, Visual) was measured. The size (mm2) of each
cortical region was measured using cytochrome oxidase stains.

Approach: We chose to examine the e�ect of sensory deprivation on LMA/PA/branch counts using a
generalized linear model for 2 reasons:

1. Inter-dependence of count data: Since counts were taken from multiple cortical regions in the same
mouse, they cannot be considered to be independent of each other. This dependence of the data due to
the nested structure violates the assumptions of basic tests such as ANOVA/t-tests, resulting in an
underestimation of the residual variance and inflation of Type 1 error. Dependence of variance on the
grouping of data is handled well by general linear models, which can include fixed and random e�ects.

2. Non-normality of errors: The LMA/PA count within each cortical region was not well represented by a
normal distribution since counts are bounded by 0. Rather the data are likely to follow a Poisson or
Negative Binomial distribution. A generalized linear model, which is an extension of the general linear
model, can handle non-normal residuals.

The LMA/PA/branch counts can be conceptualized as a series of Bernoulli trials, where each trial evaluates
the presence (success) or absence (failure) of an LMA/PA/branch within a given trial area. However, each
cortical region was a di�erent size and spanned a di�erent number of “Bernoulli trial areas”.

To account for the nested data structure, non-normal distribution, and varying size of cortical regions. We
used a generalized linear model (GLM) based on a Poisson distribution with an o�set term which models the
logarithm of the count data as a linear combination of a set of independent variables:

(1)
log(C) = X— + Zu + ‘

where C was the LMA/PA count, X and Z were matrices of independent variables, — was a vector of the
fixed-e�ects, u was a vector of the random e�ects, and ‘ was a vector of error.

At the lowest level of the nested data, the main factor influencing count data was assumed to be the cortical
region (R):

(2)
log(C) = —0 + R—1 + ‘

where —0 and —1 denote columns of the matrix —. However, the count also scales with the size of the cortical
area. This can be corrected by converting the count into a rate (count per unit area):

(3)
log(C

A
) = —Õ

0 + —Õ
1R + ‘

where A was a vector containing the area corresponding to each count in C.

Rearranging:
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(4)
log(C) = —Õ

0 + —Õ
1R + log(A) + ‘

The mean number of vessels (—Õ
0) for a given animal may be a�ected by sensory-deprivation S (a fixed e�ect),

Age (Y ), Sex (G), and by the variation in counts due to di�erences between mice M (a random e�ect):

(5)
—Õ

0 = “1S + “2Y + “3G + u1M

where “1 was the fixed e�ects of sensory deprivation (S), “2 was the fixed-e�ect of age (Y ), “3 was the fixed
e�ect of sex (G), and u1 was the random e�ect of an individual mice on the vessel mean. S and G were
categorical variables, which was assigned a dummy variable (0 = sensory deprivation, 1 = sham; 0 = Female,
1 = Male). We also considered that the e�ect of age may be di�erent among treatments:

(6)
“2 = –0 + –1S

Additionally, since the whiskers were plucked we examined whether sensory deprivation impacted counts
within cortical regions

(7)
—Õ

1 = “4 + “5S

where “4 was the fixed-e�ect of the cortical region, and “5 was the fixed-e�ect of the interaction (*) between
sensory deprivation and cortical region. Combining equations (4) - (7), our final model was:

(8)
log(C) = “1S + –0Y + –1(Y ú S) + “3G + “4R + “5(S ú R) + u1M + log(A) + ‘

Instructions for replicating the results

The code blocks below contain commands in the “R” scripting language. To replicate the reported results the
contents of the code blocks can be copied and pasted into the R-command line or the entire contents of the
.rmd document can be loaded into R-Studio and run.

In order to run the code, the “tidyverse”, “lme4”, “multcomp”, and “knitr” packages must be installed into R.

Setup

Load Packages

library(tidyverse) # suite of packages for plotting and cleaning

## -- Attaching packages ---------------------------------- tidyverse 1.2.1 --

## v ggplot2 2.2.1 v purrr 0.2.4
## v tibble 1.3.4 v dplyr 0.7.4
## v tidyr 0.7.2 v stringr 1.2.0
## v readr 1.1.1 v forcats 0.2.0

## -- Conflicts ------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()

library(lme4) # for fitting the general linear model

## Loading required package: Matrix
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##
## Attaching package: �Matrix�

## The following object is masked from �package:tidyr�:
##
## expand

library(multcomp) # for Tukey HSD test

## Loading required package: mvtnorm

## Loading required package: survival

## Loading required package: TH.data

## Loading required package: MASS

##
## Attaching package: �MASS�

## The following object is masked from �package:dplyr�:
##
## select

##
## Attaching package: �TH.data�

## The following object is masked from �package:MASS�:
##
## geyser

library(knitr) # for publication of markdown

Load Data

BranchData = read.table("../Data/OFFSHOOT_29Sep2017_004858.txt", header=T, sep="\t")
head(BranchData)

## Name Group Area nBranches fractionOfBranches AvgNumVertInBranch
## 1 MDA101L Sham AUD 20 0.023148148 3.350000
## 2 MDA101L Sham VIS 64 0.074074074 3.500000
## 3 MDA101L Sham HIND 7 0.008101852 2.428571
## 4 MDA101L Sham FORE 13 0.015046296 3.230769
## 5 MDA101L Sham BF 53 0.061342593 3.018868
## 6 MDA105L Sham AUD 18 0.018887723 4.833333
## AvgNumEdgesInBranch
## 1 2.350000
## 2 2.500000
## 3 1.428571
## 4 2.230769
## 5 2.018868
## 6 3.833333

PAData = read.table("../Data/LMA_PA_Data_Appended.txt", header = T, sep = "\t")
head(PAData)

## Animal Treatment Region NumLMA NumPA Area Age Sex
## 1 MDA101L Sham Barrels 3 31 2.7685 60 M
## 2 MDA105L Sham Barrels 0 36 2.4597 62 F
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## 3 MDA106L Sham Barrels 2 48 3.3594 62 F
## 4 MDA307L Sham Barrels 4 30 2.3019 60 M
## 5 MDA308L Sham Barrels 1 36 2.4488 60 M
## 6 MDA401L Sham Barrels 1 36 2.0627 50 F

Clean Data

# Recode the area variable
BranchClean <- BranchData %>%

mutate(Area = recode(Area, AUD = "A", BF = "BF", FORE = "FL", HIND = "HL", VIS = "V"))

# Rename fieldnames of the data frames to match
colnames(BranchClean) <- c("Animal","Treatment","Region","nBranches","fractionOfBranches",

"AvgNumVertInBranch","AvgNumEdgesInBranch")

# PAData: Pipe1 - convert the NumLMA to numeric
# Pipe2 - convert the NumPA to numeric
# Pipe3 - recode the regions
PAClean <- PAData %>%

mutate(NumLMA = as.numeric(levels(NumLMA)[NumLMA])) %>%

mutate(NumPA = as.numeric(levels(NumPA)[NumPA])) %>%

mutate(Region = recode(Region, Auditory = "A", Barrels = "BF", Forepaw = "FL",
Hindpaw = "HL", Visual = "V"))

# Merge the two data frames, Entries in PAData without a corresponding entry
# in BranchClean will be entered as NaN
# Pipe 1: Convert "Animal" variable to a factor
# Pipe 2: Create a new variable containing the density of LMA per mm^2
# Pipe 3: Create a new variable containing the density of PA per mm^2
Data <- as.tibble(left_join(PAClean,BranchClean) %>%

mutate(Animal = factor(Animal)) %>%

mutate(LMADensity = NumLMA/Area) %>%

mutate(PADensity = NumPA/Area))

## Joining, by = c("Animal", "Treatment", "Region")

## Warning: Column �Animal� joining factors with different levels, coercing to
## character vector
# Pipe 1: Convert the "Animal" field from names to numbers
# Pipe 2: rescale the age variable
Data <- Data %>%

mutate(Animal = factor(Data$Animal, level=levels(Data$Animal),
labels=c(1:nlevels(Data$Animal)))) %>%

mutate(Age_scaled = scale(Age, center = T, scale = T))

# Clean data for figures
Data.Figs.RegionFilt <- dplyr::filter(Data, Region == "BF" | Region == "FL" | Region == "HL")
Data.Figs.Num <- mutate(aggregate(cbind(NumLMA, NumPA, Area) ~ Animal,

data = Data.Figs.RegionFilt, sum, na.action = na.pass))
Data.Figs.Fctrs <- dplyr::filter(Data.Figs.RegionFilt, Region == "BF") %>%

dplyr::select(Animal, Sex, Age, Age_scaled, Treatment) %>%

dplyr::mutate(Age_scaled = Age_scaled[,1])
Data.Figs <- left_join(Data.Figs.Num, Data.Figs.Fctrs)
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## Joining, by = "Animal"

Data.Figs.Complete = Data.Figs[complete.cases(Data.Figs),] %>%

mutate(LMADensity = NumLMA/Area) %>%

mutate(PADensity = NumPA/Area)

Compare the area of the cytochrome-oxidase stained regions between the sham

and plucked conditions

Plot

ggplot(data = Data, mapping = aes(x = Treatment, y = Area)) +

geom_point(na.rm = TRUE) +

facet_wrap(~Region, nrow = 2) +

labs(title = "Area of cortical regions compared between treatment conditions",
x = "Treatment", y = "Sensory region area (mm^2)") +

theme_bw()
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Test for di�erences in areas among treatments

AreaModel.Full = lm(data = Data, Area ~ Region*Treatment, na.action = na.omit)
summary(AreaModel.Full)

##
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## Call:
## lm(formula = Area ~ Region * Treatment, data = Data, na.action = na.omit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.76909 -0.08298 -0.02710 0.06971 1.03451
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.956080 0.109814 8.706 3.03e-13 ***
## RegionBF 1.675520 0.146419 11.443 < 2e-16 ***
## RegionFL -0.488260 0.146419 -3.335 0.00129 **
## RegionHL -0.647853 0.146419 -4.425 2.98e-05 ***
## RegionV 2.723906 0.155301 17.540 < 2e-16 ***
## TreatmentSham -0.027808 0.143181 -0.194 0.84649
## RegionBF:TreatmentSham -0.079692 0.195759 -0.407 0.68501
## RegionFL:TreatmentSham -0.019176 0.195759 -0.098 0.92221
## RegionHL:TreatmentSham 0.022088 0.195759 0.113 0.91044
## RegionV:TreatmentSham -0.002738 0.202488 -0.014 0.98925
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Residual standard error: 0.2905 on 81 degrees of freedom
## (4 observations deleted due to missingness)
## Multiple R-squared: 0.9577, Adjusted R-squared: 0.953
## F-statistic: 203.9 on 9 and 81 DF, p-value: < 2.2e-16

Comment: The linear model indicates that the only factor a�ecting the size of the cytochrome stained area
is the identity of the cortical region. There was not an e�ect of treatment on the area overall, or for any
individual region (p > 0.05).

Plot the number of LMAs vs. PAs

# Fit the points
LMA.Model.PA.All = lm(data = Data.Figs.Complete,

LMADensity ~ PADensity, na.action = na.omit)
Data.Figs.Plucked <- dplyr::filter(Data.Figs.Complete, Treatment == "Plucked")
LMA.Model.PA.Plucked = lm(data = Data.Figs.Plucked,

LMADensity ~ PADensity, na.action = na.omit)
Data.Figs.Sham <- dplyr::filter(Data.Figs.Complete, Treatment == "Sham")
LMA.Model.PA.Sham = lm(data = Data.Figs.Sham,

LMADensity ~ PADensity, na.action = na.omit)

# Summarize results as a table
LMA.Table.PA <- tibble(

Treatment = c("All","Plucked","Sham"),
Slope = c(summary(LMA.Model.PA.All)$coefficients[2,1],

summary(LMA.Model.PA.Plucked)$coefficients[2,1],
summary(LMA.Model.PA.Sham)$coefficients[2,1]),

tStat = c(summary(LMA.Model.PA.All)$coefficients[2,3],
summary(LMA.Model.PA.Plucked)$coefficients[2,3],
summary(LMA.Model.PA.Sham)$coefficients[2,3]),

pVal = c(summary(LMA.Model.PA.All)$coefficients[2,4],
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summary(LMA.Model.PA.Plucked)$coefficients[2,4],
summary(LMA.Model.PA.Sham)$coefficients[2,4])

)
kable(LMA.Table.PA)

Treatment Slope tStat pVal
All 0.0673640 1.5422802 0.1414143
Plucked 0.2071705 3.0988325 0.0173507
Sham 0.0103519 0.2776666 0.7883089

# Plot
ggplot(data = Data.Figs.Complete, mapping = aes(x = PADensity, y = LMADensity, color = Treatment)) +

geom_point() +

scale_color_manual(values = c("orange","blue")) +

geom_line(mapping = aes(x = PADensity, y = fitted(LMA.Model.PA.All)),
color = "black", size = 1) +

geom_line(Data.Figs.Plucked, mapping = aes(x = PADensity, y = fitted(LMA.Model.PA.Plucked)),
color = "orange", size = 1) +

geom_line(Data.Figs.Sham, mapping = aes(x = PADensity, y = fitted(LMA.Model.PA.Sham)),
color = "blue", size = 1) +

labs(x = "PA Density (PA/mm^2)", y = "LMA Density (LMA/mm^2)",
title = "Density of PAs and LMAs in the BF, FL, HL") +

xlim(10,30) +

ylim(0,3) +

theme_bw()
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ggsave("NumPAvsNumLMA.eps")

## Saving 6.5 x 4.5 in image

E�ect of sensory deprivation on LMA count

Hypothesis: Sensory deprivation (whisker plucking) alters the number LMA within individual cortical
regions

Null hypothesis (H0): Sensory deprivation DOES NOT a�ect number of LMAs in a cortical region.

Alternative hypothesis (Ha): Sensory deprivation DOES a�ect the number of LMAs in a cortical region.

Plot the distribution of LMA counts

ggplot(data = Data, mapping = aes(x=NumLMA)) +

geom_histogram(bins = 15, na.rm = TRUE) +

theme_bw() +

xlim(0,15) +

labs(title = "Distribution of all LMA counts:", x = "LMA count", y = "Frequency")
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Plot the LMA counts by Region, Treatment, and Animal

ggplot(data = Data, mapping = aes(x=Region, y=NumLMA, group = Animal, shape = Sex)) +

geom_point(na.rm = TRUE, mapping = aes(col = Animal), size = 4) +

geom_line(na.rm = TRUE, mapping = aes(col = Animal), size = 1) +

facet_wrap(~Treatment, nrow = 1) +

labs(title = "LMA counts for each animal:", x = "Cortical region", y = "LMA count") +

guides(color = FALSE) +

theme_bw()
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Plot the LMA density by Region, Treatment, and Animal

ggplot(data = Data, mapping = aes(x=Region, y=LMADensity, group = Animal, shape = Sex)) +

geom_point(na.rm = TRUE, mapping = aes(col = Animal), size = 4) +

geom_line(na.rm = TRUE, mapping = aes(col = Animal), size = 1) +

facet_wrap(~Treatment, nrow = 1) +

labs(title = "LMA density for each animal:", x = "Cortical region",
y = "LMA density (LMA*mm-2)") +

guides(color = FALSE) +

theme_bw()
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Plot the relationship between Age and total LMA count

# Build models
LMA.Model.Age.All = lm(data = Data.Figs.Complete,

LMADensity ~ Age_scaled, na.action = na.omit)
Data.Figs.Plucked <- dplyr::filter(Data.Figs.Complete, Treatment == "Plucked")
LMA.Model.Age.Plucked = lm(data = Data.Figs.Plucked,

LMADensity ~ Age_scaled, na.action = na.omit)
Data.Figs.Sham <- dplyr::filter(Data.Figs.Complete, Treatment == "Sham")
LMA.Model.Age.Sham = lm(data = Data.Figs.Sham,

LMADensity ~ Age_scaled, na.action = na.omit)

# Summarize model results in table
LMA.Table.Age <- tibble(

Treatment = c("All","Plucked","Sham"),
Slope = c(summary(LMA.Model.Age.All)$coefficients[2,1],

summary(LMA.Model.Age.Plucked)$coefficients[2,1],
summary(LMA.Model.Age.Sham)$coefficients[2,1]),

tStat = c(summary(LMA.Model.Age.All)$coefficients[2,3],
summary(LMA.Model.Age.Plucked)$coefficients[2,3],
summary(LMA.Model.Age.Sham)$coefficients[2,3]),

pVal = c(summary(LMA.Model.Age.All)$coefficients[2,4],
summary(LMA.Model.Age.Plucked)$coefficients[2,4],
summary(LMA.Model.Age.Sham)$coefficients[2,4])
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)
kable(LMA.Table.Age)

Treatment Slope tStat pVal
All -0.1681540 -1.2125910 0.2418689
Plucked -0.2284799 -0.9068762 0.3946176
Sham -0.0565696 -0.4346794 0.6752821

# Plot
ggplot(data = Data.Figs.Complete, mapping = aes(x = Age, y = LMADensity)) +

geom_point(mapping = aes(color = Treatment), size = 3) +

scale_color_manual(values = c("orange","blue")) +

geom_line(mapping = aes(x = Age, y = fitted(LMA.Model.Age.All)),
color = "black", size = 1) +

geom_line(Data.Figs.Plucked, mapping = aes(x = Age, y = fitted(LMA.Model.Age.Plucked)),
color = "orange", size = 1) +

geom_line(Data.Figs.Sham, mapping = aes(x = Age, y = fitted(LMA.Model.Age.Sham)),
color = "blue", size = 1) +

labs(x = "Age (days)", y = "LMA density", title = "Effect of age on Number of LMAs:") +

theme_bw()
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ggsave("EffectOfAgeOnNumberOfLMAs.eps")

## Saving 6.5 x 4.5 in image
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Model the LMA count

LMA.Poisson.Full = glmer(NumLMA ~ 1 + Age_scaled + Sex + Treatment + Region +

Treatment:Region + Age_scaled:Treatment + (1|Animal) +

offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

LMA.Summary.Poisson.Full = summary(LMA.Poisson.Full)
LMA.Summary.Poisson.Full

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## NumLMA ~ 1 + Age_scaled + Sex + Treatment + Region + Treatment:Region +
## Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## Data: Data
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 291.6 326.7 -131.8 263.6 77
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.5574 -0.6740 -0.1173 0.4263 3.3976
##
## Random effects:
## Groups Name Variance Std.Dev.
## Animal (Intercept) 0 0
## Number of obs: 91, groups: Animal, 19
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.20510 0.34325 0.598 0.550162
## Age_scaled -0.05300 0.09964 -0.532 0.594778
## SexM 0.17151 0.14530 1.180 0.237853
## TreatmentSham -0.29327 0.47221 -0.621 0.534556
## RegionBF -0.25708 0.38933 -0.660 0.509053
## RegionFL -0.36318 0.60124 -0.604 0.545808
## RegionHL 1.43391 0.41724 3.437 0.000589 ***
## RegionV 0.24408 0.36666 0.666 0.505611
## TreatmentSham:RegionBF -0.04698 0.56420 -0.083 0.933636
## TreatmentSham:RegionFL 0.56419 0.82013 0.688 0.491492
## TreatmentSham:RegionHL -0.31889 0.62958 -0.507 0.612492
## TreatmentSham:RegionV 0.56341 0.50824 1.109 0.267626
## Age_scaled:TreatmentSham -0.04604 0.14027 -0.328 0.742750
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

##
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it

Comment: The fixed e�ects are compared to the intercept which is the log(mean) of the LMA count in
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auditory cortex for sensory deprived mice. The model summary suggested that cortical region is likely the
only significant e�ect. We used maximum likelihood ratios to test the e�ects directly.

Perform likelihood ratio tests to test main and interaction e�ects:

Test the significance of Sex on the LMA counts

LMA.Poisson.Reduced1 = glmer(NumLMA ~ 1 + Age_scaled + Treatment + Region +

Treatment:Region + Age_scaled:Treatment + (1|Animal) +

offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

anova(LMA.Poisson.Full, LMA.Poisson.Reduced1)

## Data: Data
## Models:
## LMA.Poisson.Reduced1: NumLMA ~ 1 + Age_scaled + Treatment + Region + Treatment:Region +
## LMA.Poisson.Reduced1: Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## LMA.Poisson.Full: NumLMA ~ 1 + Age_scaled + Sex + Treatment + Region + Treatment:Region +
## LMA.Poisson.Full: Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## LMA.Poisson.Reduced1 13 290.96 323.60 -132.48 264.96
## LMA.Poisson.Full 14 291.56 326.71 -131.78 263.56 1.3998 1
## Pr(>Chisq)
## LMA.Poisson.Reduced1
## LMA.Poisson.Full 0.2368

Comment: the p-value (p=0.2368) indicated that the model was not significantly improved by inclusion of
sex as a factor and there was no e�ect of sex on mean LMA counts.

Test the significance of Age on LMA counts

LMA.Poisson.Reduced2 = glmer(NumLMA ~ 1 + Treatment + Region + Treatment:Region +

(1|Animal) + offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

anova(LMA.Poisson.Reduced1, LMA.Poisson.Reduced2)

## Data: Data
## Models:
## LMA.Poisson.Reduced2: NumLMA ~ 1 + Treatment + Region + Treatment:Region + (1 | Animal) +
## LMA.Poisson.Reduced2: offset(log(Area))
## LMA.Poisson.Reduced1: NumLMA ~ 1 + Age_scaled + Treatment + Region + Treatment:Region +
## LMA.Poisson.Reduced1: Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## LMA.Poisson.Reduced2 11 287.78 315.4 -132.89 265.78
## LMA.Poisson.Reduced1 13 290.96 323.6 -132.48 264.96 0.8259 2
## Pr(>Chisq)
## LMA.Poisson.Reduced2
## LMA.Poisson.Reduced1 0.6617

Comment: the p-value (p=0.6617) indicated that the model was not significantly improved by including age
as a factor and there was no e�ect of age on mean LMA counts for all animals or for either treatment group.
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Test the significance of the e�ect of sensory deprivation on LMA counts within cortical regions

LMA.Poisson.Reduced3 = glmer(NumLMA ~ 1 + Treatment + Region + (1|Animal) +

offset(log(Area)), data = Data,
family = poisson,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

anova(LMA.Poisson.Reduced2, LMA.Poisson.Reduced3, test = "Chisq")

## Data: Data
## Models:
## LMA.Poisson.Reduced3: NumLMA ~ 1 + Treatment + Region + (1 | Animal) + offset(log(Area))
## LMA.Poisson.Reduced2: NumLMA ~ 1 + Treatment + Region + Treatment:Region + (1 | Animal) +
## LMA.Poisson.Reduced2: offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## LMA.Poisson.Reduced3 7 285.82 303.4 -135.91 271.82
## LMA.Poisson.Reduced2 11 287.78 315.4 -132.89 265.78 6.0428 4
## Pr(>Chisq)
## LMA.Poisson.Reduced3
## LMA.Poisson.Reduced2 0.196

Comment: the p-value (p=0.196) indicated that the model was not significantly improved by including the
interaction between Treatment and Region and that there was no di�erential, region-specific e�ect of the
sensory deprivation.

Test the significance of the e�ect of sensory deprivation on LMA count

LMA.Poisson.Reduced4 = glmer(NumLMA ~ 1 + Region + (1|Animal) + offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

LMA.Summary.Poisson.Reduced4 = summary(LMA.Poisson.Reduced4)
anova(LMA.Poisson.Reduced3, LMA.Poisson.Reduced4, test = "Chisq")

## Data: Data
## Models:
## LMA.Poisson.Reduced4: NumLMA ~ 1 + Region + (1 | Animal) + offset(log(Area))
## LMA.Poisson.Reduced3: NumLMA ~ 1 + Treatment + Region + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## LMA.Poisson.Reduced4 6 283.98 299.04 -135.99 271.98
## LMA.Poisson.Reduced3 7 285.82 303.40 -135.91 271.82 0.1512 1
## Pr(>Chisq)
## LMA.Poisson.Reduced4
## LMA.Poisson.Reduced3 0.6974

Comment: the p-value (p=0.697) indicated that the model was not significantly improved by including the
overall e�ect of Treatment on the LMA count and that the sensory deprivation did not alter the number of
LMAs.

Test the significance of the e�ect of cortical region on LMA count
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LMA.Poisson.Reduced5 = glmer(NumLMA ~ 1 + (1|Animal) + offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

anova(LMA.Poisson.Reduced4, LMA.Poisson.Reduced5, test = "Chisq")

## Data: Data
## Models:
## LMA.Poisson.Reduced5: NumLMA ~ 1 + (1 | Animal) + offset(log(Area))
## LMA.Poisson.Reduced4: NumLMA ~ 1 + Region + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## LMA.Poisson.Reduced5 2 322.60 327.62 -159.30 318.60
## LMA.Poisson.Reduced4 6 283.98 299.04 -135.99 271.98 46.62 4
## Pr(>Chisq)
## LMA.Poisson.Reduced5
## LMA.Poisson.Reduced4 1.83e-09 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Comment: the p-value (p=1.83e-09) indicated that the model was signficantly improved by including the
e�ect of cortical region on the LMA count and that LMA counts were di�erent between regions.

Use Tukey’s honest significance di�erence-test to test which regions are di�erent.

Tukey’s HSD evaluated signficance based on a studentized distribution that corrects for multiple comparisons.
LMA.PostHoc.Region = glht(LMA.Poisson.Reduced4, mcp(Region = "Tukey"))
LMA.Summary.PostHoc.Region = summary(LMA.PostHoc.Region)
(LMA.Summary.PostHoc.Region)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = NumLMA ~ 1 + Region + (1 | Animal) + offset(log(Area)),
## data = Data, family = poisson, control = glmerControl(optimizer = "bobyqa"),
## na.action = na.omit)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## BF - A == 0 -0.24902 0.28080 -0.887 0.89371
## FL - A == 0 -0.05256 0.40826 -0.129 0.99993
## HL - A == 0 1.34125 0.30917 4.338 < 0.001 ***
## V - A == 0 0.56957 0.25231 2.257 0.14678
## FL - BF == 0 0.19646 0.36657 0.536 0.98200
## HL - BF == 0 1.59026 0.25153 6.322 < 0.001 ***
## V - BF == 0 0.81859 0.17707 4.623 < 0.001 ***
## HL - FL == 0 1.39381 0.38874 3.585 0.00279 **
## V - FL == 0 0.62213 0.34525 1.802 0.35200
## V - HL == 0 -0.77168 0.21932 -3.518 0.00361 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
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## (Adjusted p values reported -- single-step method)
# Extract the estimates for the significant results
LMA.SigCoef.PostHoc.Region <-

LMA.Summary.PostHoc.Region$test$coefficients[LMA.Summary.PostHoc.Region$test$pvalues < 0.05]

# Extract the effect size for the signficant results
LMA.SigZ.PostHoc.Region <-

LMA.Summary.PostHoc.Region$test$tstat[LMA.Summary.PostHoc.Region$test$pvalues < 0.05]

#Get the significant p-values
LMA.SigP.PostHoc.Region <-

LMA.Summary.PostHoc.Region$test$pvalues[LMA.Summary.PostHoc.Region$test$pvalues < 0.05]

plot(LMA.PostHoc.Region, xlab = "Difference in log(mean) of LMA")
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Comment: The Tukey-adjusted p-values indicated that the hindlimb, barrel, and visual cortices varied in
their LMA counts.

Test model assumptions

Test assumption of Poisson distribution

An assumption of the Poisson distribution was that the mean and variance of the error distribution was equal.
The error was distributed according to ‰2, where, by definition, the mean = degrees of freedom. Thus, the
Poisson assumption can be tested by comparing the residual degrees of freedom (= mean residual) to the
variance of the (studentized) residual (rp):
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(9)
rp = actual ≠ fittedÔ

fitted

# Get the degrees of freedom for the residuals (rdf)
rdf <- LMA.Summary.Poisson.Reduced4$AICtab[[5]]

# Get the studentized residuals of the model
rp <- residuals(LMA.Poisson.Reduced4,type="pearson")

# Calculate the variance of the studentized residuals
rp_var <- sum(rp^2)

# Show the ratio of error variance, mean
rat = rp_var/rdf

# Get the probability (pval) that the variance > mean
pval_over <- pchisq(rp_var, df = rdf, lower.tail = FALSE)
pval_under <- pchisq(rp_var, df = rdf, lower.tail = TRUE)

# Summarize
overdisp = c(Residual_Variance = rp_var, Ratio = rat, df = rdf,

p_over = pval_over, p_under = pval_under)
overdisp

## Residual_Variance Ratio df p_over
## 73.5444383 0.8652287 85.0000000 0.8077790
## p_under
## 0.1922210

Plot the fitted values against the residuals
# Calculate the studentized residuals
Resids = data.frame(Mouse_Number = Data[complete.cases(Data$NumLMA),]$Animal,

Fitted_Value = fitted(LMA.Poisson.Reduced4),
Standardized_Resids = residuals(LMA.Poisson.Reduced4, type="pearson"))

# Fit the plot with a line to test whether slope = 0
Resids.Fitted = lm(Standardized_Resids~Fitted_Value, data = Resids)

# Plot the studentized residual amplitude vs. the fitted value
plot(LMA.Poisson.Reduced4)
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# Test the significance of the slope
anova(Resids.Fitted)

## Analysis of Variance Table
##
## Response: Standardized_Resids
## Df Sum Sq Mean Sq F value Pr(>F)
## Fitted_Value 1 0.006 0.00571 0.0069 0.9339
## Residuals 89 73.534 0.82623

Interpretation: The ratio V ar
error

mean
error

= 73.54
85 = 0.865 was not significantly greater than 1 (p=0.81). This

indicated that the model was not overdispersed. Nor was it significantly less than 1 (p=0.19). This indicated
that the assumption of a Poisson distribution was appropriate for these data. Similarly, there was no
relationship between the fitted values and the residuals.

Summary of LMA count analysis:

These models indicated that sensory deprivation had no e�ect on the number LMAs overall or
within any cortical area. The only significant factor in the LMA count was the cortical region.

E�ect of sensory deprivation on PA counts

This analysis tests the hypothesis that sensory deprivation (plucking whiskers) a�ects the distribution of
penetrating arterioles (PA).
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Hypothesis: Sensory deprivation (whisker plucking) alters the density of PA within individual cortical
regions

Null hypothesis (H0): Sensory deprivation DOES NOT a�ect the density of PAs in a cortical region.

Alternative hypothesis (Ha): Sensory deprivation DOES a�ect the density of PAs in a cortical region.

Plot the distribution of all PA counts

ggplot(data = Data, mapping = aes(x=NumPA)) +

geom_histogram(bins = 30, na.rm = TRUE) +

theme_bw() +

labs(title = "Distribution of all PA counts:", x = "PA count", y = "Frequency") +

xlim(0,120)
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Distribution of all PA counts:

Plot the PA counts by Region, Treatment, and Animal

ggplot(data = Data, mapping = aes(x=Region, y=NumPA, group = Animal, shape = Sex)) +

geom_point(na.rm = TRUE, mapping = aes(col = Animal), size = 4) +

geom_line(na.rm = TRUE, mapping = aes(col = Animal), size = 1) +

facet_wrap(~Treatment, nrow = 1) +

labs(title = "PA counts for each animal:", x = "Cortical region", y = "PA count") +

guides(color = FALSE) +

theme_bw()
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PA counts for each animal:

Plot the PA density by Region, Treatment, and Animal

ggplot(data = Data, mapping = aes(x=Region, y=PADensity, group = Animal, shape = Sex)) +

geom_point(na.rm = TRUE, mapping = aes(col = Animal), size = 4) +

geom_line(na.rm = TRUE, mapping = aes(col = Animal), size = 1) +

facet_wrap(~Treatment, nrow = 1) +

labs(title = "PA density for each animal:", x = "Cortical region",
y = "PA density (PA*mm-2)") +

guides(color = FALSE) +

theme_bw()
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PA density for each animal:

Plot the relationship between Age and total PA count

# Build models
PA.Model.Age.All = lm(data = Data.Figs.Complete,

PADensity ~ Age_scaled, na.action = na.omit)
Data.Figs.Plucked <- dplyr::filter(Data.Figs.Complete, Treatment == "Plucked")
PA.Model.Age.Plucked = lm(data = Data.Figs.Plucked,

PADensity ~ Age_scaled, na.action = na.omit)
Data.Figs.Sham <- dplyr::filter(Data.Figs.Complete, Treatment == "Sham")
PA.Model.Age.Sham = lm(data = Data.Figs.Sham,

PADensity ~ Age_scaled, na.action = na.omit)

# Summarize model results in table
PA.Table.Age <- tibble(

Treatment = c("All","Plucked","Sham"),
Slope = c(summary(PA.Model.Age.All)$coefficients[2,1],

summary(PA.Model.Age.Plucked)$coefficients[2,1],
summary(PA.Model.Age.Sham)$coefficients[2,1]),

tStat = c(summary(PA.Model.Age.All)$coefficients[2,3],
summary(PA.Model.Age.Plucked)$coefficients[2,3],
summary(PA.Model.Age.Sham)$coefficients[2,3]),

pVal = c(summary(PA.Model.Age.All)$coefficients[2,4],
summary(PA.Model.Age.Plucked)$coefficients[2,4],
summary(PA.Model.Age.Sham)$coefficients[2,4])
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)
kable(PA.Table.Age)

Treatment Slope tStat pVal
All -1.597851 -2.480459 0.0238831
Plucked -1.410038 -1.720261 0.1290679
Sham -1.850212 -1.751150 0.1180262

# Plot
ggplot(data = Data.Figs.Complete, mapping = aes(x = Age, y = PADensity)) +

geom_point(mapping = aes(color = Treatment), size = 3) +

scale_color_manual(values = c("orange","blue")) +

geom_line(mapping = aes(x = Age, y = fitted(PA.Model.Age.All)),
color = "black", size = 1) +

geom_line(Data.Figs.Plucked, mapping = aes(x = Age, y = fitted(PA.Model.Age.Plucked)),
color = "orange", size = 1) +

geom_line(Data.Figs.Sham, mapping = aes(x = Age, y = fitted(PA.Model.Age.Sham)),
color = "blue", size = 1) +

labs(x = "Age (days)", y = "PA density", title = "Effect of age on PA density:") +

ylim(10, 30) +

theme_bw()
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Effect of age on PA density:

ggsave("EffectOfAgeOnNumberOfPAs.eps")

## Saving 6.5 x 4.5 in image
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Model the PA counts

PA.Poisson.Full = glmer(NumPA ~ 1 + Age_scaled + Sex + Treatment + Region +

Treatment:Region + Age_scaled:Treatment + (1|Animal) +

offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

PA.Summary.Poisson.Full = summary(PA.Poisson.Full)
PA.Summary.Poisson.Full

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: poisson ( log )
## Formula:
## NumPA ~ 1 + Age_scaled + Sex + Treatment + Region + Treatment:Region +
## Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## Data: Data
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 541.4 576.6 -256.7 513.4 77
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.85338 -0.53442 -0.00016 0.53880 1.62960
##
## Random effects:
## Groups Name Variance Std.Dev.
## Animal (Intercept) 0.01977 0.1406
## Number of obs: 91, groups: Animal, 19
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.912757 0.114288 25.486 <2e-16 ***
## Age_scaled -0.037765 0.058746 -0.643 0.5203
## SexM -0.123392 0.081989 -1.505 0.1323
## TreatmentSham -0.183534 0.143632 -1.278 0.2013
## RegionBF -0.136685 0.107691 -1.269 0.2044
## RegionFL -0.148316 0.156968 -0.945 0.3447
## RegionHL 0.201240 0.160326 1.255 0.2094
## RegionV 0.009628 0.106175 0.091 0.9277
## TreatmentSham:RegionBF 0.184202 0.146579 1.257 0.2089
## TreatmentSham:RegionFL 0.394254 0.211502 1.864 0.0623 .
## TreatmentSham:RegionHL -0.093107 0.230164 -0.405 0.6858
## TreatmentSham:RegionV 0.287380 0.141278 2.034 0.0419 *
## Age_scaled:TreatmentSham -0.028452 0.079923 -0.356 0.7218
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

##
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE) or
## vcov(x) if you need it

Comment: Fixed-e�ects were compared to PA counts in the auditory cortex of sensory deprived mice. The
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results indicate there may be an e�ect of sensory deprivation on the visual cortex. Use likelihood ratios to
test this directly.

Perform likelihood ratio tests to test main and interaction e�ects:

Test the significance of sex on overall PA counts

PA.Poisson.Reduced1 = glmer(NumPA ~ 1 + Age_scaled + Treatment + Region +

Treatment:Region + Age_scaled:Treatment + (1|Animal) +

offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

anova(PA.Poisson.Full, PA.Poisson.Reduced1, test = "Chisq")

## Data: Data
## Models:
## PA.Poisson.Reduced1: NumPA ~ 1 + Age_scaled + Treatment + Region + Treatment:Region +
## PA.Poisson.Reduced1: Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## PA.Poisson.Full: NumPA ~ 1 + Age_scaled + Sex + Treatment + Region + Treatment:Region +
## PA.Poisson.Full: Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## PA.Poisson.Reduced1 13 541.62 574.26 -257.81 515.62
## PA.Poisson.Full 14 541.45 576.60 -256.72 513.45 2.1712 1
## Pr(>Chisq)
## PA.Poisson.Reduced1
## PA.Poisson.Full 0.1406

Comment: The p-value (p=0.1406) indicated that the model was not significantly improved by inclusion of
sex in the model and that sex had no e�ect on the mean PA counts

Test the significance of sex on overall PA counts

PA.Poisson.Reduced2 = glmer(NumPA ~ 1 + Treatment + Region + Treatment:Region +

(1|Animal) + offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

anova(PA.Poisson.Reduced1, PA.Poisson.Reduced2, test = "Chisq")

## Data: Data
## Models:
## PA.Poisson.Reduced2: NumPA ~ 1 + Treatment + Region + Treatment:Region + (1 | Animal) +
## PA.Poisson.Reduced2: offset(log(Area))
## PA.Poisson.Reduced1: NumPA ~ 1 + Age_scaled + Treatment + Region + Treatment:Region +
## PA.Poisson.Reduced1: Age_scaled:Treatment + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## PA.Poisson.Reduced2 11 540.48 568.10 -259.24 518.48
## PA.Poisson.Reduced1 13 541.62 574.26 -257.81 515.62 2.8666 2
## Pr(>Chisq)
## PA.Poisson.Reduced2
## PA.Poisson.Reduced1 0.2385

Comment: The p-value (p=0.2385) indicated that the model was not significantly improved by inclusion of
age as a factor in the model and that the age of the mouse did not a�ect the PA count.
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Test the significance of the e�ect of sensory deprivation on PA counts within cortical regions

PA.Poisson.Reduced3 = glmer(NumPA ~ 1 + Treatment + Region + (1|Animal) +

offset(log(Area)), data = Data,
family = poisson,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

anova(PA.Poisson.Reduced2, PA.Poisson.Reduced3, test = "Chisq")

## Data: Data
## Models:
## PA.Poisson.Reduced3: NumPA ~ 1 + Treatment + Region + (1 | Animal) + offset(log(Area))
## PA.Poisson.Reduced2: NumPA ~ 1 + Treatment + Region + Treatment:Region + (1 | Animal) +
## PA.Poisson.Reduced2: offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## PA.Poisson.Reduced3 7 540.35 557.92 -263.17 526.35
## PA.Poisson.Reduced2 11 540.48 568.10 -259.24 518.48 7.8654 4
## Pr(>Chisq)
## PA.Poisson.Reduced3
## PA.Poisson.Reduced2 0.09664 .
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Comment: The p-value (p=0.096) indicated that the model was not significantly improved by including
the interaction e�ects and that the PA counts in cortical regions were not di�erentially a�ected by sensory
deprivation.

Test the significance of the e�ect of sensory deprivation on PA count

PA.Poisson.Reduced4 = glmer(NumPA ~ 1 + Region + (1|Animal) + offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

PA.Summary.Poisson.Reduced4 = summary(PA.Poisson.Reduced4)
anova(PA.Poisson.Reduced4, PA.Poisson.Reduced3, test = "Chisq")

## Data: Data
## Models:
## PA.Poisson.Reduced4: NumPA ~ 1 + Region + (1 | Animal) + offset(log(Area))
## PA.Poisson.Reduced3: NumPA ~ 1 + Treatment + Region + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## PA.Poisson.Reduced4 6 538.48 553.55 -263.24 526.48
## PA.Poisson.Reduced3 7 540.35 557.92 -263.17 526.35 0.1332 1
## Pr(>Chisq)
## PA.Poisson.Reduced4
## PA.Poisson.Reduced3 0.7151

Comment: The p-value (p=0.715) indicated that the model was not significantly improved by indluding the
overall treatment e�ects, indicating that the overall PA counts were not a�ected by sensory deprivation.
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Test the significance of the e�ect of cortical region on PA count

PA.Poisson.Reduced5 = glmer(NumPA ~ 1 + (1|Animal) + offset(log(Area)),
data = Data, family = poisson,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

anova(PA.Poisson.Reduced4, PA.Poisson.Reduced5, test = "Chisq")

## Data: Data
## Models:
## PA.Poisson.Reduced5: NumPA ~ 1 + (1 | Animal) + offset(log(Area))
## PA.Poisson.Reduced4: NumPA ~ 1 + Region + (1 | Animal) + offset(log(Area))
## Df AIC BIC logLik deviance Chisq Chi Df
## PA.Poisson.Reduced5 2 552.90 557.93 -274.45 548.90
## PA.Poisson.Reduced4 6 538.48 553.55 -263.24 526.48 22.423 4
## Pr(>Chisq)
## PA.Poisson.Reduced5
## PA.Poisson.Reduced4 0.0001651 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Comment: The p-value (p=1.651e-4) indicated that the model was improved by including the cortical region
as a factor

Use Tukey’s honest significance di�erence-test to determine which regions are di�erent in PA
counts

Tukey’s HSD evaluated signficance based on a studentized distribution that corrected for multiple comparisons.
PA.PostHoc.Region = glht(PA.Poisson.Reduced4, mcp(Region = "Tukey"))
PA.Summary.PostHoc.Region = summary(PA.PostHoc.Region)
PA.Summary.PostHoc.Region

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = NumPA ~ 1 + Region + (1 | Animal) + offset(log(Area)),
## data = Data, family = poisson, control = glmerControl(optimizer = "bobyqa"),
## na.action = na.omit)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## BF - A == 0 -0.031002 0.073001 -0.425 0.9925
## FL - A == 0 0.068901 0.105195 0.655 0.9622
## HL - A == 0 0.171839 0.114614 1.499 0.5398
## V - A == 0 0.178210 0.069849 2.551 0.0719 .
## FL - BF == 0 0.099903 0.091767 1.089 0.7977
## HL - BF == 0 0.202841 0.102543 1.978 0.2570
## V - BF == 0 0.209212 0.047405 4.413 <0.001 ***
## HL - FL == 0 0.102938 0.127467 0.808 0.9216
## V - FL == 0 0.109309 0.089352 1.223 0.7192
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## V - HL == 0 0.006371 0.100316 0.064 1.0000
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
## (Adjusted p values reported -- single-step method)
# Extract the estimates for the significant results
PA.SigCoef.PostHoc.Region <-

PA.Summary.PostHoc.Region$test$coefficients[PA.Summary.PostHoc.Region$test$pvalues < 0.05]

# Extract the effect size for the signficant results
PA.SigZ.PostHoc.Region <-

PA.Summary.PostHoc.Region$test$tstat[PA.Summary.PostHoc.Region$test$pvalues < 0.05]

#Get the significant p-values
PA.SigP.PostHoc.Region <-

PA.Summary.PostHoc.Region$test$pvalues[PA.Summary.PostHoc.Region$test$pvalues < 0.05]

plot(PA.PostHoc.Region, xlab = "Difference in log(mean) of LMA")
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Comment: the visual and barrel cortex were di�erent in PA counts although the di�erence was not drastic
(1.22 PA/mmˆ2)

Test model assumptions

# Get the degrees of freedom for the residuals (rdf)
rdf <- PA.Summary.Poisson.Reduced4$AICtab[[5]]
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# Get the studentized residuals of the model
rp <- residuals(PA.Poisson.Reduced4,type="pearson")

# Calculate the variance of the studentized residuals
rp_var <- sum(rp^2)

# Show the ratio of error variance, mean
rat = rp_var/rdf

# Get the probability (pval) that the variance > mean
pval_over <- pchisq(rp_var, df = rdf, lower.tail = FALSE)
pval_under <- pchisq(rp_var, df = rdf, lower.tail = TRUE)

# Summarize
disp_summary = c(Residual_Variance = rp_var, Ratio = rat, df = rdf,

p_over = pval_over, p_under = pval_under)
disp_summary

## Residual_Variance Ratio df p_over
## 59.47415597 0.69969595 85.00000000 0.98401561
## p_under
## 0.01598439
# Calculate the studentized residuals
Resids = data.frame(Mouse_Number = Data[complete.cases(Data$NumPA),]$Animal,

Fitted_Value = fitted(PA.Poisson.Reduced4),
Standardized_Resids = residuals(PA.Poisson.Reduced4, type="pearson"))

# Fit the plot with a line to test whether slope = 0
Resids.Fitted = lm(Standardized_Resids~Fitted_Value, data = Resids)

# Plot the studentized residual amplitude vs. the fitted value
plot(PA.Poisson.Reduced4)
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# Test the significance of the slope
anova(Resids.Fitted)

## Analysis of Variance Table
##
## Response: Standardized_Resids
## Df Sum Sq Mean Sq F value Pr(>F)
## Fitted_Value 1 0.001 0.00141 0.0021 0.9634
## Residuals 89 59.455 0.66804

Comment: The ratio V ar
error

mean
error

= 73.54
85 = 0.984 was not significantly greater than 1 (p=0.98). This indicated

that the model was not overdispersed. However, it was significantly less than 1 (p=0.015, 0.03 [bonferroni
corrected]). This indicated that the data are slightly under-dispersed. However, examination of the fitted
vs. residual plot indicated that this e�ect was subtle.

Summary of PA count analysis:

These models indicated that sensory deprivation had no e�ect on the number of PAs overall
or within any cortical area. The only significant factor in the LMA count was the cortical
region.

E�ect of sensory deprivation on vessel branching structure

Branching structure can be evaluated by the amount of branches (vertices) per vessel. This analysis tested
whether sensory deprivation altered the branching structure.
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Plot the distribution o�shoots per vessel

ggplot(data = Data, mapping = aes(x=AvgNumVertInBranch)) +

geom_histogram(bins = 15, na.rm = TRUE) +

theme_bw() +

xlim(0,10) +

labs(title = "Distribution of all branch densities:", x = "Vertices per offshoot",
y = "Frequency")
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Distribution of all branch densities:

Comment: These data were not normal and were continuous. We therefore used a GLM based on a
Gamma-distribution.

Plot the average number of vertices per o�shoot by region, treatment, and animal

ggplot(data = Data, mapping = aes(x=Region, y=AvgNumVertInBranch, group = Animal)) +

geom_point(na.rm = TRUE) +

geom_line(na.rm = TRUE, mapping = aes(col = Animal)) +

facet_wrap(~Treatment, nrow = 1) +

labs(title = "Avg # Vertices per offshoot for each animal:", x = "Cortical region",
y = "Avg # Vertices per offshoot") +

guides(color = FALSE) +

theme_bw()
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Model build

Vert.Gamma.Max = glmer(AvgNumVertInBranch ~ 1 + Treatment*Region + (1|Animal),
data = Data, family = Gamma,
control = glmerControl(optimizer="bobyqa"), na.action = na.omit)

Vert.Summary.Gamma.Max = summary(Vert.Gamma.Max)
Vert.Summary.Gamma.Max

## Generalized linear mixed model fit by maximum likelihood (Laplace
## Approximation) [glmerMod]
## Family: Gamma ( inverse )
## Formula: AvgNumVertInBranch ~ 1 + Treatment * Region + (1 | Animal)
## Data: Data
## Control: glmerControl(optimizer = "bobyqa")
##
## AIC BIC logLik deviance df.resid
## 168.1 197.1 -72.0 144.1 71
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.4765 -0.6266 -0.1040 0.4944 4.0012
##
## Random effects:
## Groups Name Variance Std.Dev.
## Animal (Intercept) 0.001038 0.03222
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## Residual 0.038826 0.19704
## Number of obs: 83, groups: Animal, 17
##
## Fixed effects:
## Estimate Std. Error t value Pr(>|z|)
## (Intercept) 0.293733 0.023526 12.486 < 2e-16 ***
## TreatmentSham -0.023408 0.033768 -0.693 0.488186
## RegionBF 0.046720 0.025475 1.834 0.066658 .
## RegionFL 0.106098 0.028276 3.752 0.000175 ***
## RegionHL 0.118048 0.028857 4.091 4.3e-05 ***
## RegionV 0.051748 0.029076 1.780 0.075122 .
## TreatmentSham:RegionBF -0.008676 0.035456 -0.245 0.806681
## TreatmentSham:RegionFL -0.024093 0.038970 -0.618 0.536406
## TreatmentSham:RegionHL -0.000246 0.040662 -0.006 0.995173
## TreatmentSham:RegionV -0.044276 0.037217 -1.190 0.234177
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
##
## Correlation of Fixed Effects:
## (Intr) TrtmnS RegnBF RegnFL RegnHL ReginV TS:RBF TS:RFL TS:RHL
## TreatmntShm -0.686
## RegionBF -0.458 0.319
## RegionFL -0.414 0.287 0.381
## RegionHL -0.406 0.282 0.373 0.336
## RegionV -0.419 0.286 0.372 0.337 0.331
## TrtmntS:RBF 0.329 -0.448 -0.718 -0.273 -0.268 -0.267
## TrtmntS:RFL 0.300 -0.407 -0.276 -0.725 -0.244 -0.244 0.388
## TrtmntS:RHL 0.287 -0.390 -0.265 -0.239 -0.710 -0.234 0.372 0.339
## TrtmntSh:RV 0.327 -0.432 -0.291 -0.264 -0.258 -0.781 0.407 0.372 0.356

Comment: The fixed-e�ects were compared to branches per vessel in auditory cortex of sensory deprived
mice. They indicated a possible di�erence in branching structure between cortical region. Directly tested the
fixed-e�ects using the likelihood ratio test.

Perform likelihood ratio tests to test main and interaction e�ects:

Test the significance of the e�ect of sensory deprivation on vertices per o�shoot within cortical
regions

Vert.Gamma.NoInteraction = glmer(AvgNumVertInBranch ~ 1 + Treatment + Region + (1|Animal),
data = Data, family = Gamma,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

anova(Vert.Gamma.Max, Vert.Gamma.NoInteraction, test = "Chisq")

## Data: Data
## Models:
## Vert.Gamma.NoInteraction: AvgNumVertInBranch ~ 1 + Treatment + Region + (1 | Animal)
## Vert.Gamma.Max: AvgNumVertInBranch ~ 1 + Treatment * Region + (1 | Animal)
## Df AIC BIC logLik deviance Chisq Chi Df
## Vert.Gamma.NoInteraction 8 161.83 181.18 -72.915 145.83
## Vert.Gamma.Max 12 168.08 197.10 -72.039 144.08 1.7519 4
## Pr(>Chisq)
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## Vert.Gamma.NoInteraction
## Vert.Gamma.Max 0.7813

Comment: The p-value (p=0.781) indicated that the model of branching was not significantly improved by
including the interaction between sensory deprivation and cortical region and that sensory deprivation did
not di�erentially a�ect the branching in any cortical area

Test the significance of the e�ect of cortical region on vertices per o�shoot

Vert.Gamma.Treatment = glmer(AvgNumVertInBranch ~ 1 + Treatment + (1|Animal),
data = Data, family = Gamma,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

Summary.Gamma.Treatment = summary(Vert.Gamma.Treatment)
anova(Vert.Gamma.NoInteraction, Vert.Gamma.Treatment, test = "Chisq")

## Data: Data
## Models:
## Vert.Gamma.Treatment: AvgNumVertInBranch ~ 1 + Treatment + (1 | Animal)
## Vert.Gamma.NoInteraction: AvgNumVertInBranch ~ 1 + Treatment + Region + (1 | Animal)
## Df AIC BIC logLik deviance Chisq Chi Df
## Vert.Gamma.Treatment 4 189.73 199.41 -90.867 181.73
## Vert.Gamma.NoInteraction 8 161.83 181.18 -72.915 145.83 35.903 4
## Pr(>Chisq)
## Vert.Gamma.Treatment
## Vert.Gamma.NoInteraction 3.03e-07 ***
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1

Comment: The p-value (p=3.03e-07) indicated that the model was improved by including the cortical region
as a factor.

Test the significance of the treatment on vertices per o�shoot

Vert.Gamma.Null = glmer(AvgNumVertInBranch ~ 1 + (1|Animal),
data = Data, family = Gamma,
control = glmerControl(optimizer = "bobyqa"),
na.action = na.omit)

Summary.Gamma.Null = summary(Vert.Gamma.Null)
anova(Vert.Gamma.Treatment, Vert.Gamma.Null, test = "Chisq")

## Data: Data
## Models:
## Vert.Gamma.Null: AvgNumVertInBranch ~ 1 + (1 | Animal)
## Vert.Gamma.Treatment: AvgNumVertInBranch ~ 1 + Treatment + (1 | Animal)
## Df AIC BIC logLik deviance Chisq Chi Df
## Vert.Gamma.Null 3 189.59 196.85 -91.795 183.59
## Vert.Gamma.Treatment 4 189.73 199.41 -90.867 181.73 1.8569 1
## Pr(>Chisq)
## Vert.Gamma.Null
## Vert.Gamma.Treatment 0.173

Comment: The p-value (p=0.173) indicated that the model was not improved by including sensory
deprivation as a factor and that sensory deprivation did not alter vessel branching overall.
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Use Tukey’s honest significance di�erence-test to test which regions are di�erent in branches
per vessel

Tukey’s HSD evaluates signficance based on a studentized distribution that corrects for multiple comparisons.
Vert.Gamma.Region = glmer(AvgNumVertInBranch ~ 1 + Region + (1|Animal),

data = Data, family = Gamma,
control = glmerControl(optimizer="bobyqa"),
na.action = na.omit)

Vert.PostHoc.Region = glht(Vert.Gamma.Region, mcp(Region = "Tukey"))

Vert.Summary.PostHoc.Region = summary(Vert.PostHoc.Region)
Vert.Summary.PostHoc.Region

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = AvgNumVertInBranch ~ 1 + Region + (1 | Animal),
## data = Data, family = Gamma, control = glmerControl(optimizer = "bobyqa"),
## na.action = na.omit)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## BF - A == 0 0.04213 0.02065 2.040 0.24500
## FL - A == 0 0.09336 0.02263 4.126 < 0.001 ***
## HL - A == 0 0.11761 0.02360 4.984 < 0.001 ***
## V - A == 0 0.02386 0.02093 1.140 0.78377
## FL - BF == 0 0.05123 0.02393 2.140 0.20139
## HL - BF == 0 0.07548 0.02485 3.037 0.02004 *
## V - BF == 0 -0.01827 0.02233 -0.818 0.92451
## HL - FL == 0 0.02426 0.02651 0.915 0.89036
## V - FL == 0 -0.06949 0.02417 -2.876 0.03242 *
## V - HL == 0 -0.09375 0.02508 -3.739 0.00171 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
## (Adjusted p values reported -- single-step method)
# Extract the estimates for the significant results
Vert.SigCoef.PostHoc.Region <-

Vert.Summary.PostHoc.Region$test$coefficients[Vert.Summary.PostHoc.Region$test$pvalues < 0.05]

# Extract the effect size for the signficant results
Vert.SigZ.PostHoc.Region <-

Vert.Summary.PostHoc.Region$test$tstat[Vert.Summary.PostHoc.Region$test$pvalues < 0.05]

#Get the significant p-values
Vert.SigP.PostHoc.Region <-

Vert.Summary.PostHoc.Region$test$pvalues[Vert.Summary.PostHoc.Region$test$pvalues < 0.05]

summary(Vert.PostHoc.Region)

##
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## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: glmer(formula = AvgNumVertInBranch ~ 1 + Region + (1 | Animal),
## data = Data, family = Gamma, control = glmerControl(optimizer = "bobyqa"),
## na.action = na.omit)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## BF - A == 0 0.04213 0.02065 2.040 0.24495
## FL - A == 0 0.09336 0.02263 4.126 < 0.001 ***
## HL - A == 0 0.11761 0.02360 4.984 < 0.001 ***
## V - A == 0 0.02386 0.02093 1.140 0.78380
## FL - BF == 0 0.05123 0.02393 2.140 0.20126
## HL - BF == 0 0.07548 0.02485 3.037 0.02001 *
## V - BF == 0 -0.01827 0.02233 -0.818 0.92450
## HL - FL == 0 0.02426 0.02651 0.915 0.89035
## V - FL == 0 -0.06949 0.02417 -2.876 0.03248 *
## V - HL == 0 -0.09375 0.02508 -3.739 0.00171 **
## ---
## Signif. codes: 0 �***� 0.001 �**� 0.01 �*� 0.05 �.� 0.1 � � 1
## (Adjusted p values reported -- single-step method)

plot(Vert.PostHoc.Region, xlab = "Difference in log(mean) of LMA")
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Comment: The branching structure in forelimb/hindlimb regions were di�erent from visual, barrel, and
auditory cortex.

Check that error is independent of the fitted value

# Calculate the studentized residuals
Resids = data.frame(Mouse_Number = Data[complete.cases(Data$AvgNumVertInBranch),]$Animal,

Fitted_Value = fitted(Vert.Gamma.Region),
Standardized_Resids = residuals(Vert.Gamma.Region, type="pearson"))

# Fit the plot with a line to test whether slope = 0
Resids.Fitted = lm(Standardized_Resids~Fitted_Value, data = Resids)

# Plot the studentized residual amplitude vs. the fitted value
plot(Vert.Gamma.Region)
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# Test the significance of the slope
anova(Resids.Fitted)

## Analysis of Variance Table
##
## Response: Standardized_Resids
## Df Sum Sq Mean Sq F value Pr(>F)
## Fitted_Value 1 0.08484 0.084837 2.3914 0.1259
## Residuals 81 2.87360 0.035476
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Comment: There was no significant slope between the fitted values and residuals, indicating the the
Gamma-distribution appropriately captured the mean-variance structure.

Summary of the analysis of branching structure:

These models indicate that sensory deprivation had no e�ect on the overall branching structure
or the branching structure within any cortical area. The only significant factor in the LMA
count was the cortical region.

Summary Table

# Gather data for table
TabData <- tibble(

Measurement = c(rep("LMACount",length(LMA.SigCoef.PostHoc.Region)),
rep("PACount",length(PA.SigCoef.PostHoc.Region)),
rep("BranchPerVessel",length(Vert.SigCoef.PostHoc.Region))),

RegionComparison = c(names(LMA.SigCoef.PostHoc.Region),
names(PA.SigCoef.PostHoc.Region),
names(Vert.SigCoef.PostHoc.Region)),

Difference = c(exp(LMA.SigCoef.PostHoc.Region),
exp(PA.SigCoef.PostHoc.Region),
exp(Vert.SigCoef.PostHoc.Region)),

EffectSize = c(LMA.SigZ.PostHoc.Region,
PA.SigZ.PostHoc.Region,
Vert.SigZ.PostHoc.Region),

PValue = c(LMA.SigP.PostHoc.Region,
PA.SigP.PostHoc.Region,
Vert.SigP.PostHoc.Region)

)
kable(TabData)

Measurement RegionComparison Di�erence E�ectSize PValue
LMACount HL - A 3.8238080 4.338214 0.0001619
LMACount HL - BF 4.9050442 6.322428 0.0000000
LMACount V - BF 2.2672926 4.622904 0.0000329
LMACount HL - FL 4.0301694 3.585437 0.0027877
LMACount V - HL 0.4622369 -3.518452 0.0036118
PACount V - BF 1.2327068 4.413329 0.0000948
BranchPerVessel FL - A 1.0978522 4.125771 0.0003526
BranchPerVessel HL - A 1.1248075 4.984126 0.0000044
BranchPerVessel HL - BF 1.0784032 3.037364 0.0200439
BranchPerVessel V - FL 0.9328649 -2.875664 0.0324197
BranchPerVessel V - HL 0.9105094 -3.738812 0.0017144
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Supplementary Figure 1: Effect of age at time of perfusion on the number of PAs and LMAs. (A) Age versus 

number of penetrating arterioles. Age had no detectable effect on the number of PAs (Likelihood ratio test, 

p=0.24, χ2(2) = 0.87). (Sham: n = 10, Plucked: n = 9, Linear regression fit by least squares: Pooled: p=0.07 

(Bonferroni corrected), t(17)=-2.48; Plucked: p = 0.13, t(7)=-1.72; Sham: p=0.12, t(8)=-1.75 ). (B) Age vs the 

number of leptomeningeal anastomoses. Age has no significant effect on the number of LMAs at the time of 

perfusion (Likelihood ratio test, p=0.66, χ2=0.83). (Sham: n = 10, Plucked n = 7, Linear regression: Pooled: 

p=0.24, t(17) = -1.21; Plucked: p=0.39, t(7)=-0.91; Sham: p=0.68, t(8)=-0.44, (Bonferroni corrected)).  

 

  



Supplementary data set 1: All pial arterial reconstructions used in this study. The backbone of the MCA 

from the left hemispheres used in this study are shown in dark red, PAs in red, and LMAs in green. The cortical 

regions are shown in blue. The Voronoi cells are shown in orange, plotted with a PA at the center of each cell. 

The watershed line can be defined two different ways, manually, or by assigning the Voronoi polygons 

surrounding the individual PAs to a vascular territory.  The purple line shows the manually drawn watershed line 

which bisects the LMAs.  The dark orange line denotes the boundary obtained by assigning the territory perfused 

by each PA to the MCA or the ACA/PCA.   The MCA territory will be below the watershed line(s) in these 

schematics, the PCA/ACA territory will be above it. 
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